位错与强化

位错与强化赵亦希2014年09月

一、单晶体的塑性变形

常温或低温下,单晶体塑性变形(plastic deformation)方式:

1.滑移(slip)

2.孪生(twining)

3.扭折(link)

(1)滑移线和滑移带

?滑移线(slip line):

滑移线实际上是在晶体表面产生的小台阶。

?滑移带(slip band)是由一系列相互平行的更细的线组成的。

1.滑移

一、单晶体的塑性变形

铜中的滑移带

500×

滑移线和滑移带示意图

1.滑移

一、单晶体的塑性变形

1.滑

一、单晶体的塑性变形

6

位错运动

produce permanent (plastic) deformation !!!.

σ300 μm

三、塑性变形对材料组织和性能的影响

塑性变形对材料组织和性能的影响主要表现在以下方面:

?显微组织变化,包括晶粒形状的变化、亚结构

的变化、形变织构

?性能的变化,包括加工硬化、力学性能、物理

性能、化学性能

三、塑性变形对材料组织和性能的影响

1.晶粒形状的变化

(1)出现了大量的滑移带和孪晶带。

(2)晶粒形状发生了变化。出现了纤维组织(fiber microstructure)。纤维组织分布方向是材料流变伸展方向。

(3)当金属中组织不均匀,如有枝晶偏析或夹杂物时,塑性变形使这些区域伸长,这在后序的热加工或热处理过程中会出现带状组织(band microstructure)。

2. 亚结构(sub —grain)的变化

(1)随变形度增大,位错密度迅速增大。(2)位错组态和分布等亚结构发生变化

三、

塑性变形对材料组织和性能的影响

低碳钢形变(胞状)亚结构

3. 形变织构

(1)

形变织构(deformation texture):是晶粒在空间上的择优取向(preferred orientation)(2)类型及特征 ①丝织构(fiber/wire texture)及特征:用表示

②板织构(rolling texture)及特征:用{hkl}表示

三、塑性变形对材料组织和性能的影响

四、强化机理

如何增加材料的强度?

四、强化机理

材料的塑性变形取决于位错运动能力

强化材料通过阻碍位错运动来实现

?Reduce grain size 晶粒细化

?Solid solutions 固溶强化

?Strain hardening (Cold working) 冷作强化?Precipitation hardening 沉淀硬化

n

b Slip plane

o

u

n

d

a

r

y

大原子压应变

?

杂质原子使晶格发生畸变? 内应力阻碍位错运动

四、强化机理(2)固溶强化(alloying)

小原子拉应变

16

Pure atom

Substitional atoms

Interstitial atoms

Substitional atoms

四、强化机理(2)固溶强化(alloying)

?

0.9 μm

? 冷变形后的Ti 合金

四、强化机理(3)冷作硬化(COLD WORK)?屈服强度增加

?抗拉强度增加

.延伸率下降

Adapted from Fig. 7.20,

Callister & Rethwisch 8e.

low carbon steel

第十章 材料的强化

第十部分材料的强化 韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现;强度是材料抵抗变形和断裂的能力,塑性则表示材料断裂时总的塑变程度.材料在塑性变形和断裂全过程中吸收能量的多少表示韧性的高低.金属材料缺口试样落锤冲击试验侧得的韧性指标称为冲击韧性.高分子材料冲击试验的韧性指标通常称为冲击强度或冲击韧度. 第一节材料强化基本原理 1、固溶强化纯金属经适当的合金化后强度、硬度提高的现象 根据强化机理可分为无序固溶体和有序固溶体 固溶强化的特点: (1)溶质原子的原子数分数越大,强化作用越大; (2)溶质原子与基体金属原子尺寸相差越大,强化作用越大; (3)间隙型溶质原子比置换原子有更大的固溶强化作用; (3)溶质原子与基体金属的价电子数相差越大,固溶强化越明显。 2、细晶强化 多晶体金属的晶粒通常是大角度晶界,相邻取向不同的的晶粒受力发生塑性变形时,部分晶粒内部的位错先开动,并沿一定晶体学平面滑移和增殖,位错在晶界前被阻挡,当晶粒细化时,需要更大外加力才能使材料发生塑性变形,从而达到强化的目的。 霍尔-佩奇公式:σ s =σ+K y d-1/2 3、位错强化 (1)晶体中的位错达到一定值后,位错间的弹性交互作用增加了位错运动的阻力。可以有效地提高金属的强度。 流变应力τ和位错密度的关系: (2)加工硬化 定义:金属经冷加工变形后,其强度、硬度增加、塑性降低。 单晶体的典型加工硬化曲线:τ~θ曲线的斜率θ=d τ/d θ称为“加工硬化速率” ·曲线明显可分为三个阶段: I.易滑移阶段:发生单滑移,位错移动和增殖所遇到的阻力很小,θ I 很低,约为10-4G数量级。 II.线性硬化阶段:发生多系滑移,位错运动困难,θ II 远大于θ I 约为 G/100—G/300 ,并接近于 一常数。 III.抛物线硬化阶段:与位错的多滑移过程有关,θ III 随应变增加而降低,应力应变曲线变为抛物线。 4、沉淀相颗粒强化 当第二相以细小弥散的微粒均匀分布在基体相中时,将产生显著的强化作用,通常将微粒分成不可变形的和可变形的两类。 (1)可变形微粒的强化作用——切割机制 ·适用于第二相粒子较软并与基体共格的情形 强化作用主要决定于粒子本身的性质以及其与基体的联系,主要有以下几方面的作用: A.位错切过粒子后产生新的界面,提高了界面能。 B.若共格的粒子是一种有序结构,位错切过之后,沿滑移面产生反相畴,使位错切过粒子时需要附加应力。 C.由于粒子的点阵常数与基体不一样,粒子周围产生共格畸变,存在弹性应变场,阻碍位错运动。

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

材料的强化

1. 材料强化的类型:主要有晶界强化、固溶强化、位错强化、沉淀强化和 弥散强化、相变强化等。 2. 强化机制: (1) 晶界强化: 晶界分为大角度晶界(位向差大于10o)和小角度晶界(亚晶界,位向差1~2o)。晶界 两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸 变状态。晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界 处对塑性变形的抗力较晶内为大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也 困难。因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也 越高。 方法: 根据晶界强化的原理,在热处理工艺方法上发展了采用超细化热处理的新工艺,即细化奥氏体(A)晶粒 或碳化物相,使晶粒度细化到十级以上。由于超细化作用,使晶界面积增大,从而对金属塑性变形的抗力 增加,反映在力学性能方面其金属强韧性大大提高。 如果奥氏体晶粒细化在十级以上,则金属的强韧性将大大提高,为达此目的,现代发展的热处理新技 术方法有以下三种。 ①利用极高加热速度的能量密度进行快速加热的热处理。 由于极高的加热能量密度,使加热速度大大提高,在10-2 ~1s 的时间内,钢件便可加热到奥氏体(A)状 态,此时A 的起始晶粒度很小,继之以自冷淬火(冷速达104 ℃/s 以上),可得极细的马氏体(M)组织,与一 般高频淬火比较硬度可高出Hv50,而变形只有高频淬火的1/4~1/5,寿命可提高1.2~4倍。 ②利用奥氏体(A)的逆转变 钢件加热到 A 后,淬火成M,然后快速(20s)内重新加热到 A 状态,如此反复3~4 次,晶粒可细化到 13~14级。 ③采用A-F两相区交替加淬火 采用亚温淬火(F+A 双相区加热),在提高材料强韧性的同时显著降低临界脆化温度,抑制回火脆性。 在A-F两相区交替加热,可使A/F相界面积大大增加,因而使奥氏体形核率大大增多,晶粒也就越细化。 (2) 固溶强化: 是利用金属材料内部点缺陷(间隙原子置换原子)对金属基体(溶剂金属) 进行强化。它分为两类:间隙式固溶强化和置换式固溶强化。 a. 间隙式固溶强化:原子直径很小的元素如C、N、O、B 等,作为溶质元素溶入 溶剂金属时,形成间隙式固溶体。C、N 等间隙原子在基体中与“位错”产生弹性 交互作用,当进入刃型位错附近并沿位错线呈统计分布,形成“柯氏气团”。当在螺 型位错应力场作用下,C、N 原子在位错线附近有规则排列就形成“snock”气团。 7这些在位错附近形成的“气团”对位错的移动起阻碍和钉扎作用,对金属基体产生 强化效应。

论述四种强化的强化机理强化规律及强化方法

论述四种强化的强化机理 强化规律及强化方法 The Standardization Office was revised on the afternoon of December 13, 2020

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。

材料强化基本原理

第十章材料的强韧化 第一节材料强化基本原理 结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。通过改变材料的内部结构可以达到控制材料性能的目的。不同种类的材料,提高其强度的机理、方法也不同。 一、金属材料的强化原理 纯金属经过适当的合金化后强度、硬度提高的现象, 称为固溶强化。其原因可归结于溶质原子和位错的交互作 用,这些作用起源于溶质引发的局部点阵畸变。固溶体可 分为无序固溶体和有序固溶体,其强化机理也不相同。 (1)无序固溶强化固溶强化的实质是溶质原子的 长程应力场和位错的交互作用导致致错运动受阻。溶质相 位错的交互作用是二者应力场之间的作用。作用的大小要 看溶质本身及溶质与基体之间的交互作用,这种作用使位 错截交成弯曲形状。如图10—l所示. 图中的A、B、C表示溶质原子强烈地钉扎了位错。 x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。 处于位错线上的少数溶质原子与位错线的相互作用很强, 这些原子允许位错线的局部曲率远大于根据平均内应力 求出的曲率。钉扎的第一个效应就是使位错线呈曲折形 状。相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。若AC≈2y,ABC比2y略大,近似地当作2y。由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。总共需要 式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故

退火强化和退火软化

退火强化 强度和微观结构之间的关系一般可通过细晶强化和位错强化两种机制来描述[23]。细晶强化则与晶粒大小有关,其本质是大角度晶界对可动位错的阻碍,即所谓的Hall-Petch 关系;位错强化由位错密度决定,而位错主要来自两部分:晶界之间的独立位错以及小角晶界提供的位错[23] 较大的轧制变形量反而出现强度下降的反常现象,主要是由于较大变形量的样品的晶内位错密度以及小角度晶界的比例减少,而晶粒度变化不大所致。工业纯铝经大变形冷轧至某一程度时(样品B,εVM=3.3),原始的等轴晶经剪切变形破碎,大部分破碎的晶粒最终演化形成典型的层状结构区域,小部分仍处于向层状结构晶粒过渡的状态,形成了高位错密度和小角度晶界为主的近似等轴晶区域。经进一步轧制变形后(样品D,εVM=4.1),处于过渡状态的近似等轴晶区域消失,演化形成典型的层状结构区域。使得较大变形量样品整体的位错密度以及能够作为位错强化的小角度晶界的比例下降,从而导致屈服强度的降低。通常情况下,金属在塑性变形过程中,位错增殖,交互作用从而阻碍位错运动,导致材料强度上升,即所谓的加工硬化。对传统粗晶材料,塑性变形后进行热处理(退火),退火过程中材料内部的位错将发生回复,位错密度降低,从而导致材料强度降低,即退火致软化现象。但是近年来人们却在晶粒尺寸处于1μm 以下超细晶甚至晶粒尺寸处于100nm 以下的纳米晶材料中发现了相反的退火致 强化现象,即退火反而导致材料的强度上升 对于纯金属来说,材料的强度主要取决于晶界和位错的共同作用,位错与晶界在金属塑性变形中都有着双重身份。晶界会阻碍位错滑移,同时也可作为位错阱来吸收位错,位错的滑移引起塑性变形,同时缠结在一起的位错团也会阻碍位错的运动。随着晶粒的逐步细化,晶界与位错的贡献以及它们所扮演的身份也在逐步变化。对于传统的退火软化现象,很容易用我们已知的知识来解释。对于正常的工业纯铝,晶粒在几十到几百微米之间,在退火时,晶粒一定程度的长大,位错被激活运动,位错密度下降。根据霍尔佩奇关系,晶粒在几十到几百微米之间时,晶粒长大,材料强度下降,位错密度下降是的原本缠结在一起的位错部分消失,即对位错运动的阻碍降低,材料强度下降。这两者都决定了材料的退火致软化。有限位错源强化(dislocation source limited strengthening)已被基本认定为退火致强化主要机理[19,41],其基本思想可以概括为:由于Frank-Read 位错源在亚微米晶和纳米晶内部存在的可能性很小,晶界位错源成为塑性变形所需的主要位错源(source),相应地,晶界也成为位错阱。退火后,晶粒内部位错密

位错强化

位错强化:金属晶体中的位错是由相变和塑性变形引入的,位错密度愈高,位错运动愈困难,金属抵抗塑性变形的能力就愈大,表现在力学性能上,金属强度提高,即当造成金属晶体内部位错大量增殖时,金属表现出强化效果。理论研究同时也说明:制成无缺陷,几乎不存在“位错”的完整晶体,使金属晶体强度接近理论强度,则会使金属强化效果表现得更为突出。因此,金属有两种强化途径:一是对有晶体缺陷的实际金属,即存在位错金属,可以通过位错增殖而强化,二是制成无晶体缺陷的理想金属,使晶体中几乎不存在位错,则金属强化效果会更大。 方法: 通过冷加工变形或相变,使“位错”增殖 1 固溶强化: ①溶质原子与位错的弹性交互作用在固溶体中,无论是固溶原子或是位错,在其周围都存在着应力和点阵畸变,两个应力场之间的作用就属于弹性交互作用。这种弹性交互作用力代表固溶原子所提供的阻碍位错运动的力。 固溶体中的溶质原子有时会出现有序化现象,当存在短程序 时,塑性变形将改变原来的有序排列而增加势能,表现为短程序强化作用。 在有长程序的固溶体中,位错倾向于两两相随地通过晶体。第一个位错通过时,使有序结构中跨越滑移面的不同类原子对A-B改变为类原子对A-A和B-B,引起能量升高;当后随的一个位错经过时,A-A和

B-B原子对又恢复为A-B对,能量又降下来。在前后相随的两个位错之间的这段距离上,A-A和B-B原子对尚未恢复,形成所谓反相畴界(antiphase boundary)。为减少反相畴界的能量,两相随位错倾向于尽量靠近;但是当两个同号位错靠近时,它们之间的斥力急剧 上升。在这两个因素的共同作用下,两个位错间有一个平衡距离,它与两个不全位错间存在的层错很相似。在塑性变形过程中,有序合金的反相畴界的面积不断增加,从而提高了体系的能量,表现为长程序引起的强化作用。此外,无论是代位原子或是填隙原子,在条件合适的情况下,都可能发生原子偏聚而形成气团。对代位点阵来说,当溶质原子比溶剂原子的直径大时,溶质原子有富集在刃位错受胀区的趋向,反之,富集于受压区。填隙原子则总是向受胀区富集。这种靠扩散在位错附近富集的现象,称为柯氏气团(Cottrell atmosphere)。柯氏气团对位错有钉扎作用,特别是填隙原子,对位错的钉扎作用更为强烈,由此成功地解释了低碳钢的屈服现象,因为填隙原子比代位原子容易扩散,所以填隙原子气团的形成温度也较低。在位错应力场的作用下,引起晶体的非对称点阵畸变而使填隙原子产生有序化的排列称为斯氏气团Snoekatmosphere。例如碳原子在α-Fe中就形成这种应力感生有序化,即当沿c轴方向有拉伸应力时,碳原子处于体心立方点阵与c轴平行的各晶胞棱边的一半处,引起晶胞沿c轴方向膨胀而产生强化作用。因为碳原子的扩散距离较短,而且是在应力作用下进行的,因此斯氏气团的形成温度比柯氏气团更低一些。

材料强化机制

材料的强化机制 材料的强化机制主要有以下四种,分别为固溶强化、细晶强化、位错强化、第二相强化。 (一)固溶强化 由于固溶体中存在着溶质原子,便使其塑性变形抗力增加,强度、硬度提高,而塑性、韧性有所下降,这种现象称为固溶强化。 固溶强化的主要原因:一是溶质原子的溶入使固溶体的晶格发生畸变,对在滑移面上运动的位错有阻碍作用;二是在位错线上偏聚的溶质原子对位错的钉扎作用。 (二)细晶强化 一方面由于晶界的存在,使变形晶粒中的位错在晶界处受阻,每一晶粒中的滑移带也都终止在晶界附近;另一方面,由于各晶粒间存在着位向差,为了协调变形,要求每个晶粒必须进行多滑移,而多滑移必然要发生位错的相互交割,这两者均将大大提高金属材料的强度。显然,晶界越多,也即晶粒越细小,则其强化效果越显著,这种用细化晶粒增加晶界提高金属强度的方法称为晶界强化,也即细晶强化。(三)位错强化 金属中的位错密度越高,则位错运动时越容易发生相互交割,形成割阶,造成位错缠结等位错运动的障碍,给继续塑性变形造成困难,从而提高金属的强度,这种用增加位错密度提高金属强度的方法称为位错强化。 (四)第二相强化

第二相粒子可以有效地阻碍位错运动,运动着的位错遇到滑移面上的第二相粒子时,或切过,或绕过,这样滑移变形才能继续进行。这一过程要消耗额外的能量,需要提高外加应力,所以造成强化。但是第二相粒子必须十分细小,粒子越弥散,其间距越小,则强化效果越好。这种有第二相粒子引起的强化作用称之为第二相强化。根据两者相互作用的方式有两种强化机制:弥散强化和沉淀强化。 绕过机制:基体与中间相的界面上存在点阵畸变和应力场,成为位错滑动的障碍。滑动位错遇到这种障碍变得弯曲,随切应力加大,位错弯曲程度加剧,并逐渐成为环状。由于两个颗粒间的位错线段符号相反,它们将断开,形成包围小颗粒的位错环。位错则越过颗粒继续向前滑动。随着位错不断绕过第二相颗粒,颗粒周围的位错环数逐渐增加,对后来的位错造成更大的阻力。 切过机制:位错与颗粒之间的阻力较小时,直接切过第二相颗粒,结果硬颗粒被切成上下两部分,并在切割面上产生位移,颗粒与基体间的界面面积增大,需要做功。并且,由于第二相与基体结构不同,位错扫过小颗粒必然引起局部原子错排,这也会增加位错运动的阻力,从而使金属强化。 (学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报) (学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)

铁碳马氏体强化机制

铁碳马氏体的强化机制 摘要:本文介绍碳钢马氏体中的不同强化机制,解释了马氏体高强本质。 关键词:马氏体、强化机制 一、固溶强化[1] 固溶体是以某一组元为溶剂,在晶体点阵中溶入其他组元原子所形成的均匀混合的固态熔体,它保持着金属的晶体结构。按照组元原子所处的位置分为两类:间隙固溶体和置换式固溶体。固溶强化是由于溶质原子与溶剂原子的尺寸不匹配,使晶体的晶格发生畸变,形成一个强烈的应力场(间隙C 原子造成非对称畸变偶极),该应力场与位错发生强烈的交互作用,阻碍位错的运动,提高马氏体的屈服强度。在碳含量小于0.4%时,马氏体的屈服强度随碳含量增加而升高;碳含量大于0.4%时,马氏体的屈服强度不再增加。这一现象的机理:固溶的间隙C 原子处于Fe 原子组成的八面体的中心位置,马氏体中的八面体为扁八面体,C 原子溶入后形成以C 原子为中心的畸变偶极应力场,该应力场与位错产生强烈的交互作用,令位错运动使马氏体强度升高。当含碳量高于0.4%时,C 原子间距太近,产生的畸变偶极应力场彼此抵消,降低了强化效果。例如李鸿美等研究的超低碳钢[2],马氏体主要由C 、Mn 、Si 和Mo 元素引起固溶强化,其强化增量按下式计算: ][11][83][37][4570)(Mo Si Mn C MPa ss +++=σ (式中的质量分数为各合金元素固溶在基体中的数值,C 、Mn 、Si 、Mo 元素采用合金含量。) 对于高位错的马氏体而言,位错与固溶元素相互作用引起的强度增量小于位错与位错之间相互作用而引起的强度增量。另外,固溶元素所形成的弹性应力场与位错应力场相互抵消强度增量被削弱;对于低碳马氏体(含碳量<0.2%),马氏体位错中大部分碳不处于固溶体中,而是偏聚于位错上形成柯氏气团。因此,可以认为在含碳量<0.2%时,碳的直接强化作用是位错强化,其固溶强化增量视为“0”。但是,Mn 、Si 、Mo 元素造成的固溶强度增量却是不可忽视的。 二、相变强化[1] 马氏体转变指高温奥氏体经快速冷却,在较低温度下发生无扩散切变形成体心正方的马氏体。如图1所示。由于切变造成了晶格内造成晶格缺陷密度很高的亚结构,如板条马氏体中高密度的错位、片状马氏体中的孪晶等,这些缺陷都阻碍为错的运动,使得马氏体强化。这就是所谓的相变强化。实验证明,无碳马氏体的屈服强度约为284Mpa,此值与形变强化铁素体的屈服强度很接近,而退火状态铁素体的屈服强度仅为98~137Mpa ,这就说明相变强化使屈服强度提高了147~186MPa 。 图1 马氏体相变

相关文档
最新文档