4.生物运动学解析
运动生物知识点总结

运动生物知识点总结一、动物运动的分类1.主动运动与被动运动主动运动是生物体自发性地进行的运动,是基于生物体内在的运动能力而进行的,如动物主动寻找食物、逃避危险等。
被动运动是外部因素对生物体的作用而引起的运动,如风吹动了树叶、水流作用下的游泳动物等。
2. 意志运动与非意志运动意志运动是生物体经过思考、决定后主动进行的运动,受到大脑的支配;非意志运动是不受意识支配的运动,如心脏的搏动、消化道的蠕动等。
3. 自主运动与反射运动自主运动是由生物体自主决定并进行的运动,受外界刺激或内部环境变化的调节;反射运动是由刺激引起的无意识的、机械性的运动。
二、动物运动的机制1.运动神经元运动神经元是主要负责控制动物运动的神经细胞。
它们通过与肌肉的突触连接,能够传递神经冲动,从而使肌肉产生收缩运动。
2. 运动控制中枢主要是指脊髓和大脑皮层。
脊髓是一个重要的运动控制中枢,在脊髓发出的运动神经元能够通过脊髓神经节传递神经冲动到肌肉,从而引起肌肉的收缩。
大脑皮层则是高级的运动控制中枢,能够对运动进行精细的调节和控制。
3. 肌肉的结构和功能肌肉是动物体内最重要的运动器官,主要由肌纤维组成。
肌纤维内含有肌原纤维,当神经冲动传导到肌肉上时,肌原纤维收缩,从而导致肌肉的收缩运动。
4. 运动的调节运动过程中,生物体需要进行各种运动的调节,以适应外界环境的变化。
这主要包括神经系统和内分泌系统的调节。
神经系统通过神经冲动来控制肌肉的收缩,内分泌系统则通过激素的分泌来调节运动时的能量供给和代谢。
5. 动物的协调运动在生物体进行运动时,协调性是十分重要的。
动物在进行运动时需要各个器官之间的协调配合,包括神经系统、肌肉系统、内分泌系统等。
三、动物运动的影响因素1.环境因素动物的运动受到环境的影响很大。
比如,气温的高低会影响动物的运动能力,动物在寒冷的环境下会减少运动,而在温暖的环境下则会增加运动。
2. 营养和代谢动物的运动需要能量的供应,而这些能量来自于动物的代谢。
人体运动生物力学分析

人体运动生物力学分析生物力学是人类研究机体结构和运动规律的一门学科,它涉及了力学、生理学和解剖学等多个学科。
在人体运动方面,生物力学能够帮助我们理解人体的运动规律,从而减少运动损伤、提高运动表现等。
人体运动的生物力学分析可以分为静态和动态两个方面。
静态的生物力学分析主要是在静止的状态下,通过测量和计算人体的力学参量,如重量、力矩和压力等,来分析人体各部分的结构和功能特征。
例如,通过对人体轮廓和肌肉结构的分析,可以了解到不同个体之间的形态和大小变异,从而为定制体育器材或医疗器械提供基础数据。
动态的生物力学分析则主要是针对人体在运动状态下的生物力学状态进行分析。
这种分析方法可以通过计算和测量运动中的各种参量,如运动的速度、加速度、力矩、力量和能量等来反映人体在运动过程中的运动规律和运动学特征。
例如,在田径比赛中,通过对选手步伐的分析,可以在一个循环周期内精确地计算出他们的步频和步幅,从而更好地了解和优化运动的节奏。
除了运动学之外,生物力学还可以用来研究人体在运动过程中的动力学特征。
在运动过程中,人体的肌肉和骨骼系统会相互作用,产生力量和阻力,从而实现运动。
生物力学可以通过模拟和计算人体的肌肉力量、关节强度和动力学特征等参量,帮助我们更好地理解人体在运动中的顺畅性、稳定性和效率性。
举个例子,我们可以考虑在一个跑步的场景中,我们如何对人体进行生物力学分析。
首先,我们可以通过对身体接触地面的压力分析,了解人体在跑步时承受的压力大小和分布。
接着,我们可以通过运动和位置传感器测量人体的运动学参数,例如,步速、步长和步宽等。
最后,我们可以利用人体动力学分析来计算肌肉和关节的力量和力矩,并将这些信息与跑步表现相结合,从而进行更好的运动优化和预防运动损伤的方法。
总的来说,人体运动生物力学分析是一种研究人体运动规律和生理特征的重要方法。
它可以帮助我们更好地了解人体在运动中的力学状态和最佳运动方式,从而更好地保护和提高人体健康。
运动生物力学 经典复习资料汇总及答案解析(本科)

运动生物力学经典复习资料汇总及答案解析(本科)绪论1、运动生物力学的概念:研究体育运动中人体及器械机械运动规律及应用的科学。
2、填空习题:(1)运动学测量参数主要包括肢体的角(位移)、角(速度)、角(加速度)等;动力学测量参数主要界定在(力的测量)方面;人体测量是用来测量人体环节的(长度)、(围度)以及(惯性参数),如质量、转动惯量;肌电图测量实际上是测量(肌肉收缩)时的神经支配特性。
(2)运动生物力学的测量方法可以分为:(运动学测量)、(动力学测量)、(人体测量)、以及(肌电图测量)。
(3)人体运动可以描述为:在(神经系统)控制下,以(肌肉收缩)为动力,以关节为(支点)、以骨骼为(杠杆)的机械运动。
2 主观题:(1)运动生物力学研究任务主要有什么?标准答案:一方面,利用力学原理和各种科学方法,结合运动解剖学和运动生理学等原理对运动进行综合评定,得出人体运动的内在联系及基本规律,确定不同运动项目运动行为的不同特点。
另一方面,研究体育运动对人体有关器系结构及机能的反作用。
其主要目的是为提高竞技体育成绩和增强人类体质服务的,并从中丰富和完善自身的理论和体系。
具体如下:第一,研究人体身体结构和机能的生物力学特性。
第二,研究各项动作技术,揭示动作技术原理,建立合理的动作技术模式来指导教学和训练。
第三,进行动作技术诊断,制定最佳运动技术方案。
第四,为探索预防运动创伤和康复手段提供力学依据。
第五,为设计和改进运动器械提供依据(包括鞋和服装)。
第六,为设计和创新高难度动作提供生物力学依据。
第七,为全民健身服务(扁平足、糖尿病足、脊柱生物力学)。
第一章节人体运动实用力学基础1、质点:忽略大小、形状和内部结构而被视为有质量而无尺寸的几何点。
刚体:相互间距离始终保持不变的质点系组成的连续体。
平衡:物体相对于某一惯性参考系(地面可近似地看成是惯性参考系)保持静止或作匀速直线运动的状态。
失重:动态支撑反作用力小于体重的现象。
4.生物运动学

生物运动学-运动动作的分类
非周期性组合动作的特点 动作具有相对独立性 动作具有复杂性和稳定性 在各单一动作之间要有严密的人为联系
不固定动作的特点
它是各种复杂动作的任意组合 这种组合不是固定的,而是随时需要改变的
在整个运动过程中要求根据客观形式随时变化动作,而不能 按照预定的程序行事
生物运动学-人体动力学分类
生物运动学-爬行运动分析
爬行运动模式分类(以蛇为例)
螺旋状运动 直线运动 腹部运动 侧向运动
生物运动学-爬行运动分析
爬行运动模式的特点
一种几乎所有的蛇 都有的滑行运功模 式,其特征是在滑 动的过程中,身体 的每一部分都有相 似的运动轨迹。 一种大蛇(如 蝰蛇等)接近 猎物或滑过 光滑的表面 时所采用的 特殊滑行方 式 蛇在通过狭窄的直线通道或 放在极光滑的表面上时采用 的模式。在非常光滑的环境 中,用这种滑动模式需要很 大的推进力,因为此时推进 力的效率非常低。 生活在沙漠中的响尾蛇在滑行和像 螺线管似的抬起并推进身体时所采 取的滑动方式。在身体与滑过的表 面之间不产生滑行运动,它的动力 学特征是身体通常从上部接触地面, 因而它在诸如沙地的环境下运动时 的滑动摩擦阻力小,运动效率高。 这是一种能够适应沙漠环境的运动 模式。
生物运动学-人体动力学分类
几何模型
根据汉纳番(Hanavan)的人体简化模型, 人体被分为15个(刚体)单元,通过14个铰 链连结起来
B1:椭圆形截面的柱体,代表上躯干 B2:椭圆形截面的柱体,代表下躯干 B3和B5:椭圆形截面的截锥体,代表上臂 B4和B6:椭圆形截面的截锥体,代表前臂 B7和B9:圆形截面的截锥体,代表大腿 B8和B10:圆形截面的截锥体,代表小腿 B11:椭球体,代表头部 B12和B13:椭球体,代表手 B14和B15:椭球体,代表脚 腰关节(A1)、肩关节(A2A3)、肘关节(A4和A5)、 髋关节(A6和A7)、膝关节(A8和A9)、颈关节(A10)、 腕关节(A11和A12)以及踝关节(A13和A14)
运动生物力学(第三版)精品PPT课件

第三节 动力学(kinetics)参数
一、动力学参数 (一)力 * 力的三要素:大小、方向、作用点
α
1. 人体内力与外力 内力:人体内部各部分相互作用的力 例如:肌肉力,关节约束反作用力 外力:来自外界作用于人体的力
内力和外力是相对的(可以相互转化) 2. 人体受力特点
集中力(集中在一点上) 正心力(穿过质心) 分布力(分布在一个面上) 偏心力(离质心有一段距离)
1396408574086186762xhshanjnyahoocomcnxhshansdnueducn绪论一运动生物力学概念运动广义自然界各种物质存在的形式固有属性狭义物质的机械运动运动生物力学中的运动运动动作或体育动作第一章第一节生物学研究物体生命现象规律的科学1生物体形态结构功能及其统一2生物体内部之间的相互作用局部和整体的统一3生物体与外界环境之间的相互作用本课程中的生物一般指活的人体也有动物第一章第一节力学物体机械运动规律的科学时空生物力学力学与生物学交叉渗透融合而形成的一门边缘学科运动生物力学研究人体运动力学规律的科学它是体育科学的重要组成部分第一章第一节特点1应用性力学原理应用于生物体2交叉性人体解剖生理学等交叉3新兴性历史短但快速发展分类1人类工程学人枪
1)惯性参照系:相对于地球静止或匀速直线运 动
2)非惯性参照系:相对于地球做变速运动
2 坐标系:设置在参照系上的数轴
1)一维——百米;50米游泳
2)二维——跳远
0
3)三维——跳高;铁饼等
y
P(x,y)
z
P(x) x
P(x,y,z)
0
0
x
y
x
(三)运动学参数的瞬时性特征
1. 瞬时速度与平均速度 (1) 平均速度 V=s/ t,例如100米跑12秒 (2)瞬时速度 V=lim (s/ t)
生物力学的名词解释

生物力学的名词解释生物力学是研究生物体运动和力学特性的学科,结合生物学和力学的原理来探索人类和其他生物的运动机制。
生物力学的研究范围包括运动的力学分析、力的产生与传递、力的影响和适应等方面。
下面将对几个与生物力学相关的名词进行解释,以便更好地理解这一学科:1. 动力学:动力学是生物力学中的一个关键概念,指的是研究物体运动时的力和加速度之间的关系。
动力学与牛顿定律有关,通过分析物体受到的作用力和力的方向、大小以及物体的加速度,可以揭示运动的原理。
2. 力:力是物体之间相互作用的结果,产生运动或改变形态的原因。
在生物力学中,力是研究的重要要素,可以通过力的大小、方向和施加点来分析生物体的运动和力的效果。
3. 稳定性:稳定性是指生物体在运动过程中保持平衡和稳定的能力。
通过分析重心的位置、支撑基础的大小和形状以及运动轨迹等因素,可以研究生物体稳定性的影响因素。
4. 生物力学模型:生物力学模型是用来模拟生物体运动和力学特性的数学或物理模型。
通过建立适当的模型,可以研究生物体的运动规律、力的作用方式以及力的影响。
5. 骨骼系统:骨骼系统是人类和其他动物体内支撑和保护身体的重要结构。
它由骨骼、关节和肌肉组成,具有承载体重、提供稳定性和运动功能的作用。
生物力学研究中,骨骼系统对于运动和力的传递起着重要的作用。
6. 力矩:力矩是力绕给定点旋转的物理量。
在生物力学中,力矩用来表示力对物体产生转动效果的能力。
通过力矩的计算和分析,可以了解力对生物体运动和姿势的影响。
7. 步态分析:步态分析是研究人体行走和奔跑过程的运动学和动力学特性的分析方法。
通过记录和分析步态参数,可以揭示人体运动和力学特性的规律,有助于康复治疗和运动训练。
8. 生物力学应用:生物力学在医学、运动训练、康复治疗等领域有广泛的应用。
例如,在人工关节设计中,通过生物力学分析可以优化关节的结构和运动特性。
在体育科学中,生物力学可以帮助运动员提高技术水平和减少运动伤害。
生物学运动系统模型-概述说明以及解释

生物学运动系统模型-概述说明以及解释1.引言1.1 概述概述生物学运动系统模型是对生物体运动系统的一种模拟或描述。
生物体的运动系统涉及到骨骼、肌肉、关节以及神经系统等多个方面,而生物学运动系统模型则是通过对这些组成部分进行建模,以实现对生物运动的仿真和研究。
生物学运动系统模型可以帮助我们深入理解生物运动的机理和规律。
通过对生物体的骨骼结构、肌肉活动、力学特性等进行数学建模,我们可以模拟出生物体的运动过程,并通过模型来预测和解释不同条件下的运动行为。
此外,生物学运动系统模型还可以应用于医学和工程领域。
在医学领域,通过建立生物运动系统模型,我们可以研究人体运动相关的疾病,如运动损伤、肌无力等,并探索有效的治疗手段。
在工程领域,生物学运动系统模型可以为机器人和仿生学领域提供指导,帮助设计出更加智能和高效的机械系统。
本篇文章将从生物学运动系统模型的概念和构建方法入手,介绍这一领域的基本原理和技术,以及其在不同领域中的应用前景。
通过对生物学运动系统模型的深入了解,我们能够更好地理解和研究生物体的运动行为,为相关领域的发展提供有力支撑。
1.2 文章结构文章结构部分的内容应该包括对整篇文章大纲的概括和各个部分的简要介绍。
对于本篇文章,可以编写如下内容:文章结构:本文将重点研究生物学运动系统模型的构建方法和应用前景。
文章分为引言、正文和结论三个部分。
引言部分将概述生物学运动系统模型的概念,并介绍文章的结构和目的。
正文部分将详细讨论生物学运动系统模型的概念以及构建方法。
结尾部分将探讨生物学运动系统模型的应用前景,并对全文进行总结。
希望上述内容能够对你的文章编写有所帮助!如需修改或补充,请告诉我。
1.3 目的本文的目的是介绍生物学运动系统模型的概念和构建方法,探讨其应用前景。
将通过对该主题进行深入研究,总结出生物学运动系统模型的重要性和价值,以及它在科学研究和实践中的应用潜力。
首先,我们将会介绍生物学运动系统模型的概念,包括其定义、特点和相关理论基础。
生物运动的生物物理学研究方法

生物运动的生物物理学研究方法生物运动是指生物体在不同环境下进行各种运动的现象,如人类行走、鱼类游泳等。
这些运动如何发生?许多生物物理学家将他们的注意力放在生物运动问题上,并研究了许多不同物种的生物的运动。
以下是关于生物运动的生物物理学研究方法的探讨。
一、力学物理力学提供了研究生物运动的基础。
不同物种的运动可以用牛顿力学方程来解释。
例如,人类行走可以通过力与反作用的过程来解释,当脚着地时我们向后推,同样我们靠着重心向前推进。
研究动物运动的力学方法包括运动方向、速度、加速度、节律规律等。
研究表明,生物在运动时往往会利用上述力学的运动原理。
二、生物能量生物体内化学反应的能量释放是运动的基本原理。
生物体的能量主要来自食物,被称为化学能,并将这些能量转化为动能。
利用热量、光质等能量来分析生物运动可用量、能量代谢和利用过程。
小分子的物质给生物体提供能量,同时排放了能量,尤其是在某些情况下更为准确。
三、生物的运动学运动学是研究物体运动轨迹、速度和加速度等问题的分支学科。
这种运动往往是由力学和生物能量两个方面因素所决定的。
生物运动的区别是它不是只关注运动方向和速度,而是要通过生物的结构来探讨运动的原理,从而探究运动的繁复性。
运动学的研究可以帮助我们了解运动过程及固定角度的运动状态。
四、生物的生理学生理学是研究生物体内部及各器官功能的学问。
生物体运动是由肌肉收缩和放松过程实现的。
这些过程可能涉及到生物体的中枢神经系统和下肢肌肉的调节。
生理学研究可以通过对人类或动物运动的心理反应及组织代谢进行检验从而了解生物体运动的生理学机制。
五、生物的工程学工程学是研究如何应用自然科学,尤其是物理和数学原理,设计、建造和维护人造系统的应用学科。
在生物科学中,工程学可以应用在不同的领域包括运动生物学的机械性质、肌肉力学和生物材料科学。
这些研究可以帮助我们了解不同动物的运动机能特性,这对于开发新型采集能源的机器人系统、可穿戴智能设备等研究具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物运动学-人体动力学分类
运动分析的目的 建立链式系统的运动控制方程,求解运动方程,解决如下问题: 已知力场,求出系统的运动规律(各点的位移、速度、加速度) 已知运动规律,求各部分的应力 已知一部分力(或应力)与运动规律,求另一部分力与运动规律 由于每个关节均被肌肉所约束,所以每个关节既能传递拉力和压力,也能传 递剪力和弯矩。 运动分析方法-拉格朗日(Lagrange)法 建立链式系统运动方程比较简单有效的方法是拉格朗日(Lagrange)法 对于15个运动单元构成的系统,可以得到48个方程所构成的拉格朗日方程 组:
运动动作的生理学分析
各种运动是按主观意志进行的,主观意志包括现实的考虑以及过去长期积 累在大脑记忆系统中形成的程序 在力所能及的情况下,动作的客观效果一般可以满足主观意志的要求 由于骨骼肌是在神经系统的控制下完成动作的,所以神经系统对动作的完 成和质量都起着决定性的作用
随意运动是以各种各样的刺激所引起的感觉为开始,以脑的活动为中继,以 肌运动为终结的一种反射活动。随意运动是后天获得的条件反射,而且可以 通过不断的训练得以提高。
生物运动学-运动动作分析
运动动作分析的目的 探讨运动动作的机理(即动作产生的原因、动作过程和动 作的后果) 了解各种运动动作的规律 比较各种运动的差异和优劣 研究各种运动的发展规律及其运动的稳定性和适应性 为设计仿生系统的运动动作提供指导 运动动作的根本机理是:骨骼肌根据大脑指令产生收缩,在 收缩力和外力的共同作用下使动物产生特定的静止姿态或运 动状态,从而实现了在时间和空间上具有一定特点的运动动 作。 一个完整的运动动作分析包括三个方面的内容:即动作的结 构分析,动作的解剖分析和动作的生理分析。
生物运动学-运动动作分析
运动动作的解剖学分析
各种运动都是通过肌协同动作实现的 对于肌能力的发挥,除了神经调节因素外,肌本身的形态和结构,肌与骨 之间的相对位置等都起很大的作用 肌的两端通过腱和骨相连,当肌收缩时,它所产生的拉力即通过腱传到骨 上,使骨发生运动并在运动过程中做功 骨相当于连杆,腱相当于接头,关节相当于绞链
动力学分析:动物体各部分运动时,力与速度、加速度之间的关系 功率分析:动物体在运动过程中会消耗大量的功率,以跑步为,其 功率消耗包括如下几个方面:克服地面摩擦和克服空气阻力要消耗 的功率;加速时克服惯性力的作用要消耗的功率;骨、肌、韧带之 间的摩擦也要消耗功率。
直接测定一个动物所发出的功率值 的确非常因难。不过人们知道,动 物的能量来自其自身化学能的消耗, 不管它吃什么样的食物,每产生单 位数量的化学能都要消耗大体上数 量相当的氧气。动物消耗的氧气来 源:吸入的氧和体内储存的氧。因 此,可以通过动物消耗氧气的总质 量来确定动物在长时间运动下的能 量消耗。按照耗氧情况可以推算出 动物功率—速度之间的关系。
生物运动学-运动动作分析
运动动作的结构分析
对动作结构的分析就是分析在各个力的相互作用下,该动作的形式、外貌、 性质以及它与前后动作之间的关联。通常包括:
运动学分析:对动作的时间和空间演变规律的分析
a. 矢状面上的轨迹
b. 水平面上的轨迹
人体坐标系
人在跑步时总重心移动轨迹
生物运动学-运动动作分析
生物运动学-运动动作的分类
非周期性组合动作的特点 动作具有相对独立性 动作具有复杂性和稳定性 在各单一动作之间要有严密的人为联系
不固定动作的特点
它是各种复杂动作的任意组合 这种组合不是固定的,而是随时需要改变的
在整个运动过程中要求根据客观形式随时变化动作,而不能 按照预定的程序行事
生物运动学-人体动力学分类
生物运动学-人体动力学分类
几何模型
根据汉纳番(Hanavan)的人体简化模型, 人体被分为15个(刚体)单元,通过14个铰 链连结起来
B1:椭圆形截面的柱体,代表上躯干 B2:椭圆形截面的柱体,代表下躯干 B3和B5:椭圆形截面的截锥体,代表上臂 B4和B6:椭圆形截面的截锥体,代表前臂 B7和B9:圆形截面的截锥体,代表大腿 B8和B10:圆形截面的截锥体,代表小腿 B11:椭球体,代表头部 B12和B13:椭球体,代表手 B14和B15:椭球体,代表脚 腰关节(A1)、肩关节(A2A3)、肘关节(A4和A5)、 髋关节(A6和A7)、膝关节(A8和A9)、颈关节(A10)、 腕关节(A11和A12)以及踝关节(A13和A14)
生物运动学-运动动作的分类
固定动作 不固定动作 单一动作 静力性动作 动力性动作 周期性组合动作 非周期性组合动作 混合性组合动作 平移动作 转动动作 复杂动作
动作
组合动作
静力性动作 身体处于静止状态时的动作,如起跑准备、体操落地 对静力性动作分析的重点是研究其重心、平衡和稳定性 平衡分稳定的平衡、不稳定的平衡和临界平衡三个状态 周期性组合动作的特点 动作的反复性和连贯性 动作的节奏性 动作的交叉性 周期性动作,如跑步、游泳、 速度滑冰等
人体作为生物系统的典型代表,研究人体动力学具有普遍的指导 意义。 计算模型
由于人骨十分坚硬,故在运动中可以不考虑它的变形而作为 刚体看待,关节则可看成铰链 人体可以简化为一个刚体-铰链系统 解剖学研究表明人体中可作为刚体看待的骨有81块: 头部(1)、颈椎(7)、胸椎—肋骨构架(1)、腰椎(5)、骶 椎—尾锥—骨盆构架(1)、肱骨(2)、尺骨(2)、挠骨(2)、 腕骨构架(2)、掌指骨(30)、股骨(2)、胫骨(2)、腓骨 (2)、跗骨构架(2)、跖趾骨(20) 这些骨通过关节连结起来成为一个链式结构,即一个具有有 限个自由度的系统
生物运动学
运动动作分析
运动动作的分类
人体动力学分析
跳跃运动分析
步行运动分析
爬行运动分析
生物运动学-概述
研究对象:生物体(主要指动物)的宏观运动 研究方法: 把解剖学、生理学和力学结合起来,研究生物运动的空间 特征和时间特征,分析这些特征与生物体的内力、外力、 能量和功率之间的关系。 生物运动学是一门古老而年轻的学科 高速摄影技术和计算机技术的发展和普遍使用,有力地推 动了生物运动学的研究 使生物运动分析从定性转向定量成为可能 研究目的:通过对生物体运动学的分析,从中得到启发,继 而为创造仿生系统以及肌和神经系统的康复治疗奠定基础。