滑模变结构控制方法

合集下载

滑模理论及其控制实例ppt课件

滑模理论及其控制实例ppt课件

x2 s0

O(0,0)
s0 x1
s0
•A
x•0
图1 滑模控制示意图
从定义中可以看出,设计变构控制的基本步骤,它包括两个相对部分,即寻求
切换函数s(x)和寻求控制量 u (x)和u (x) 。
8
滑模控制的特性:
1)设计反馈u(x),限定是变结构的,它能将系统的运动引导到一个超平面 s(x)=0上。且系统在该滑模面上的运动是渐进稳定的。
s0 x1
s0
•A
x•0
图1 滑模控制示意图
6
滑模控制器的设计思想:设计一个控制器,将从任一点出发的状态轨线 通过控制作用拉到滑模面上,然后沿着此滑模面滑动到原点。
根据所确定的滑模面函数 s(x),设计如下形式控制律
u
u
u
( (
x) , x),
s(x) 0 s(x) 0
其中 u (x) u (x) ,使得系统在任何初始点都能在有限时间内到达滑模面,
在机器人、航空航天、电力系统、伺服系统等领域得到了广泛应用。
3
基本概念
变结构控制是一类特殊的非线性控制,其非线性表现为控制作用的不 连续性。与其他控制策略的不同之处:系统的“结构”并不固定,而是在 动态过程中,根据系统当前的状态有目的地不断变化。
结构的变化若能启动“滑动模态”运动,称这样的控制为滑模控制。 注意:不是所有的变结构控制都能滑模控制,而滑模控制是变结构控制中 最主流的设计方法。
u
u u
( (
x) , x),
s(x) 0 s(x) 0
u Rm,t R
5)什么条件下可以确保滑动模态运动的存在以及系统在进入滑动模态运动 以后能具有良好的动态特性如渐近稳定等,是变结构控制理论所要研究 的主要问题。

滑模变结构控制概述

滑模变结构控制概述

滑模变结构控制概述1滑模变结构控制的定义 (1)2滑动模态的存在及到达条件 (2)3滑动模态运动方程 (3)变结构控制是前苏联学者Emeleyanov 、Utkin 、Itkin 在20世纪60年代初提出的一种控制方法。

该方法最初研究的主要是二阶线性系统和单输入高阶系统。

1977年,V.I.Utkin 提出了滑模变结构控制的方法,推动了变结构控制的研究和发展。

后来许多学者也提出了多种变结构控制的设计方法,但只有带滑动模态的变结构控制被认为是最有发展前途的,滑模变结构控制也成为变结构控制的主要内容,有时也简称滑模控制。

滑模变结构控制本质上是一类特殊的非线性控制,与常规控制的根本区别在于控制的不连续性,即一种使控制系统结构随时间变化的开关特性。

该控制特性可以迫使系统的状态被限制在某一子流形上运动,即所谓的“滑动模态”运动。

这种滑动模态是可以设计的,并且当系统运行在滑动模态时,系统状态与系统的参数摄动和外界扰动完全无关,这种性质称为滑动模态的不变性。

这样,处于滑动模态的系统就具有很好的鲁棒性。

但是滑模变结构控制存在一个严重的缺点就是抖振。

由于抖振很容易激发系统的未建模特性,从而影响了系统的控制性能,给滑模变结构控制的实际应用带来了困难。

1滑模变结构控制的定义对于任一非线性系统,可以表示为:(),, ,,n n n x f x u t x R u R t R =∈∈∈ (1) 如果存在一个滑动流形()0s x =,并且在该流形的某一区域对于非线性系统的运动是“吸引”区,即系统一旦运动到该区域附近就会被“吸引”并保留在该区域内运动,此时称在该区域为滑动模态区,简称为滑模区。

系统在滑模区中的运动就叫做滑模运动。

此流形()0s x =称为滑模面或者切换面。

滑模变结构控制的基本问题是需要确定滑模面函数或切换函数:()0s x = s n R ∈ (2)并且设计控制函数或者控制律()()()() s 0 s 0u x x u u x x +-⎧>⎪=⎨<⎪⎩ (3) 其中,()()u x u x +-≠,使得(1)滑动模态存在。

滑模控制和滑膜变结构控制

滑模控制和滑膜变结构控制

滑模控制和滑膜变结构控制1. 引言滑模控制和滑膜变结构控制是现代控制理论中重要的控制策略,广泛应用于各个领域的控制系统中。

滑模控制通过引入一个滑模面来实现系统的稳定性和鲁棒性;滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动。

2. 滑模控制滑模控制最早由俄罗斯科学家阿莫斯特芬于1968年提出,并在1974年得到了进一步的发展。

滑模控制通过引入一个滑模面,将系统状态从非线性区域滑到线性区域,从而实现系统的稳定性和鲁棒性。

2.1 滑模面滑模面是滑模控制的核心概念之一,它通常由一个超平面表示,可以用数学方程描述为:s=Sx其中,s为滑模面,S为一个可逆矩阵,x为系统的状态变量。

2.2 滑模控制律滑模控制律用于调节系统状态,以使系统状态滑到滑模面上。

滑模控制律的一般形式可以表示为:u=−S−1B Tλ(s)其中,u为控制输入,B为输入矩阵,λ(s)为滑模曲线。

2.3 滑模控制的优点滑模控制具有以下几个优点:•鲁棒性强:滑模控制能够在面对参数扰动和外部干扰时保持系统的稳定性。

•快速响应:由于滑模面能够将系统状态快速滑到线性区域,使得系统具有快速响应的特性。

•无需精确模型:滑模控制不需要系统的精确模型,因此对于复杂系统的控制较为便捷。

3. 滑膜变结构控制滑膜变结构控制(SMC)由美国科学家丹尼尔·尤斯托曼在20世纪90年代末提出,是一种基于滑模控制的新型控制策略。

滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动,从而提高系统的鲁棒性和性能。

3.1 滑膜设计滑膜变结构控制的关键是设计一个合适的滑膜来响应系统的不确定性和扰动。

滑膜通常由一个或多个滑模面组成,通过在线调整滑膜的参数,可以适应不同的工作条件和控制要求。

3.2 滑膜变结构控制律滑膜变结构控制律的一般形式可以表示为:u=−K(θ)s−δ(θ)sign(s)其中,u为控制输入,K(θ)和δ(θ)分别为滑膜参数和输出增益,θ为参数向量,s为滑模曲线。

滑模变结构控制理论研究综述

滑模变结构控制理论研究综述

滑模变结构控制理论研究综述滑模变结构控制理论是一种广泛应用于各种系统的控制方法。

本文旨在全面深入地探讨滑模变结构控制理论的研究现状及其发展趋势。

本文将简要介绍滑模变结构控制理论的背景和意义,以及其在各个领域的应用前景。

然后,本文将详细介绍滑模变结构控制理论的基本原理和研究现状,并针对目前存在的问题和不足进行探讨。

本文将分析滑模变结构控制理论的发展趋势,提出未来的研究方向和挑战。

滑模变结构控制理论是一种非线性控制方法,其本质是利用系统结构在动态过程中的切换来实现对系统的控制。

滑模变结构控制理论具有鲁棒性强、适应性好等优点,因而在许多领域都具有广泛的应用价值。

然而,滑模变结构控制理论在实际应用中也存在着一些问题和挑战,如抖振、控制精度等问题,因而其研究具有重要性和必要性。

滑模变结构控制理论的研究主要涉及理论研究和实际应用两个方面。

在理论研究方面,主要研究滑模面的设计、系统抖振的抑制等问题。

例如,通过设计合适的滑模面,可以使得系统状态在滑模面上滑动的过程中具有较好的动态性能和鲁棒性。

在实践应用方面,滑模变结构控制理论已被广泛应用于各种系统,如无人驾驶汽车、机器人、电力电子系统等。

随着科学技术的发展,滑模变结构控制理论的研究也在不断深入。

未来滑模变结构控制理论的发展趋势主要体现在以下几个方面:抖振的抑制:抖振问题是滑模变结构控制理论在实际应用中一个亟待解决的问题。

未来的研究将致力于寻找更有效的抖振抑制方法,提高系统的控制精度和鲁棒性。

智能优化算法的应用:随着智能优化算法的发展,未来的研究将更加注重将滑模变结构控制理论与智能优化算法相结合,以实现更高效、更精确的系统控制。

多变量系统的控制:目前滑模变结构控制理论的研究主要集中在单变量系统,而对于多变量系统的研究还比较少。

未来将加强对于多变量系统的滑模控制研究,以实现更加复杂的系统控制。

应用于更多领域:目前滑模变结构控制理论已经应用于许多领域,如无人驾驶汽车、机器人等。

控制系统的滑模控制理论与方法

控制系统的滑模控制理论与方法

控制系统的滑模控制理论与方法滑模控制(Sliding Mode Control,SMC)是一种针对非线性系统的控制方法,它通过引入一个滑模面,使系统状态在这个面上滑动,从而实现对系统的控制。

本文将介绍滑模控制的理论基础和常用方法,并分析其在控制系统中的应用。

一、滑模控制的基本原理滑模控制是一种基于滑模面的控制策略,其基本原理可以归纳为以下几点:1. 滑模面的选取:滑模面是指系统状态在该面上滑动的一个超平面,通过适当选取滑模面可以实现对系统状态的控制。

滑模面通常由线性和非线性组成,其中线性部分用于系统稳定,非线性部分用于解决系统的鲁棒性问题。

2. 滑模控制律:在滑模控制中,需要设计一个控制律来将系统状态引入滑模面,并保持系统在滑模面上滑动。

控制律通常由两部分组成:滑模面控制部分和滑模面切换部分。

滑模面控制部分用于实现系统状态在滑模面上滑动的动力学特性,滑模面切换部分用于保持系统状态在滑模面上滑动直至系统稳定。

3. 滑模模态:滑模模态指的是系统状态在滑模面上滑动的特性。

通常情况下,滑模模态可以分为饱和模态和非饱和模态两种。

在饱和模态下,系统状态在滑模面上滑动的速度有上限,从而保证系统的稳定性。

而在非饱和模态下,系统状态在滑模面上滑动的速度无上限,可以实现更快的响应速度。

二、滑模控制的方法与技巧在实际应用中,滑模控制可以采用不同的方法和技巧进行设计和实现。

以下是一些常见的滑模控制方法和技巧:1. 内模态滑模控制:内模态滑模控制是一种将滑模控制与内模态控制相结合的方法,通过在滑模控制律中引入内模态控制的思想,可以提高系统的鲁棒性和动态性能。

2. 非等效控制:非等效控制是一种通过选择系统输出和滑模面的差异性来实现控制的方法。

通过设计非等效控制律,可以对滑模模态进行优化,提高系统的控制性能。

3. 离散滑模控制:离散滑模控制是一种将滑模控制应用于离散时间系统的方法。

通过在离散时间下设计滑模控制律,可以对离散系统进行稳定控制和鲁棒性设计。

滑模变结构控制基础

滑模变结构控制基础
2.1.3 系统结构定义 系统的一种模型,即由某一组数学方程描述的模型,
称为系统的一种结构,系统有几种不同的结构,就是说它 有几种(组)不同数学表达式表达的模型。
可编辑ppt
4
2.1 滑模变结构控制简介
2.1.4 滑模控制优点 滑动模态可以设计且与对象参数和扰动无关,具有快
速响应、对参数变化和扰动不灵敏( 鲁棒性)、无须系统 在线辨识、物理实现简单。
s(x)>0
A
B
C
s(x)<0
s(x)=0
可编辑ppt
10
2.3.1 右端不连续微分方程
若切换面上某一区域内所有点都是止点,则一旦状 态点趋近该区域,就会被“吸引”到该区域内运动。此 时,称在切换面上所有的点都是止点的区域为“滑动模 态”区域。系统在滑动模态区域中的运动就叫做“滑动 模态运动”。按照滑动模态区域上的点都必须是止点这 一要求,当状态点到达切换面附近时,必有:
所以,一般将变结构控制就称为滑模控制(SMC),为 了突出变结构这个特点,本书统称为滑模变结构控制。
可编辑ppt
3
2.1 滑模变结构控制简介
2.1.2 滑动模态定义
人为设定一经过平衡点的相轨迹,通过适当设计,系 统状态点沿着此相轨迹渐近稳定到平衡点,或形象地称为 滑向平衡点的一种运动,滑动模态的”滑动“二字即来源 于此。
2.1.5 滑模控制缺点 当状态轨迹到达滑动模态面后,难以严格沿着滑动模
态面向平衡点滑动,而是在其两侧来回穿越地趋近平衡点, 从而产生抖振——滑模控制实际应用中的主要障碍。
可编辑ppt
5
2.2 滑模变结构控制发展历史
20世纪50年代:
前苏联学者Utkin和Emelyanov提出了变结构控 制的概念,研究对象:二阶线性系统。

非线性控制系统中的滑模变结构控制技术

非线性控制系统中的滑模变结构控制技术

非线性控制系统中的滑模变结构控制技术在实际生产和工程控制中,很多系统存在非线性、时变性、多变量等复杂特性,这些使得传统的控制方法难以达到精准的控制目标,严重影响了系统的可靠性和效率。

为了解决这一问题,人们引入了滑模变结构控制技术,该技术基于滑模控制和变结构控制相结合,保证了系统的鲁棒性和稳定性。

本文将对滑模变结构控制技术进行详细介绍。

一、滑模控制滑模控制是一种能够抵抗外部干扰的控制方法,它通过将系统状态带入一个具有滑动模态的平面内,从而实现对系统的控制。

具体来说,滑模控制的核心思想是建立一个滑模面,当系统状态进入该面时,系统会发生快速运动,从而将状态带入该面内。

由于滑模面以及系统状态在该面内的运动是非常快速、迅速且可控的,因此,外来扰动对系统的影响可以得到有效的抑制。

二、变结构控制变结构控制是一种在控制系统中引入结构变化的控制方法,它可以对系统进行实时调整和适应,提高系统的性能和鲁棒性。

变结构控制的核心思想是为控制系统建立多个不同的控制结构,当系统状态进入某一结构时,控制系统会自动切换到该结构,从而实现对系统的控制。

三、滑模变结构控制滑模变结构控制是一种将滑模控制与变结构控制相结合的控制方法,它既能够抵抗外部干扰,又能够实现实时调整和适应。

具体来说,滑模变结构控制方法利用滑模控制的滑动模态和变结构控制的结构变化,为系统建立多个滑模面,并且在不同的面上对系统进行不同的控制调节。

当系统进入某一滑模面时,控制系统会自动切换到该面,并进行相应的控制。

这种控制方式能够在维持系统的稳定性的同时,提高系统的跟踪性和鲁棒性,适用于各种非线性控制系统。

四、应用滑模变结构控制在许多领域上都有着广泛的应用。

例如,机械控制、飞行器控制、船舶控制、发电机控制、电力网络控制等。

其中,机械控制方面的应用较多,例如,滑模变结构控制在工业机器人中的应用,可以实现机械臂的准确抓取和定位,提高生产效率;在飞行器控制方面,滑模变结构控制可以通过在不同的飞行阶段调整系统的控制结构,从而提高飞行器的飞行性能,实现复杂的飞行任务。

滑模控制——精选推荐

滑模控制——精选推荐

滑模控制:在数学中应用的综述Alessandro Pisano, Elio Usai公式要用公式编辑器输入!摘要:本文介绍了一个关于滑模变结构控制系统的简短的综述。

从等号右边不连续的动态系统的滑模开始,考虑到滑模控制系统的经典方法,并且得出对于这种不确定系统的控制的一般结论。

然后,提出高阶滑模作为消除控制作用的间断性的工具,当用高阶滑模处理相对高阶的系统和提高滑模作用精度时,必须把时间的离散性考虑在内。

最后,提出了滑模控制理论在应用数学问题方面的三个应用:受限制的QDE(常微分方程)的数量解,实时微分,以及寻找非线性系统的零点的问题。

第一种是几乎直接应用滑模控制理论,然而后两种是通过计算正确定义的动力系统的解完成的。

可以用一些仿真来解释这种方法。

1、简介非线性动态系统由于其可能产生的结果而被认为是研究领域一个感兴趣的话题。

其实,真正的系统总是非线性的,把它们的近似线性可能会给他们的工作范围施加过于严格的要求或产生不可行的结果。

而且非线性系统甚至可以比线性系统的性能更好,因此往往在反馈控制系统中有意引入一些非线性行为。

在非线性系统中,切换控制系统非常有趣,因为它实现简单甚至可能是一些控制问题的最优解。

切换动态系统产生于有趣的数学问题,因为它们的特征是等号右边不连续的ODE (常微分方程),常微分方程的解通常定义和存在条件不再有效;因此必须适当地将经典微分方程理论进行扩展。

切换系统的特征是系统中存在动态变化,这些变化和状态空间中的不同状态集合有关系。

这些不同的集合彼此被边界线分隔开来,在一些混合动力系统的文献中被命名为卫兵,跨越边界的矢量场的方向有可能指向边界本身。

在这种情况下会形成滑模而且状态空间不同集合之间的边界定义了不同的矢量场,通常被称为滑动面。

在滑模稳定存在的情况下,滑动面是状态空间的一个不变集,在适当的条件下,状态轨迹独立于原来的系统动态特性,约束运动提出了一个半组属性。

这种不变性,对于滑模不确定性的匹配,引起了控制工程师的兴趣,工程师认为这是在反馈中有意引进切换的开关机会,不管系统的不确定性和外部扰动是否满足匹配条件,都能够使闭环控制系统有着满意的表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档