液压系统简介.

液压系统简介.
液压系统简介.

液压原理培训教材

第一章液压系统简述

一、液压传动的工作原理

1、液压传动是以液体为工作截止来传递动力的

2、液压传动用液体的压力能来传递动力,它与液体动能的液力传

动是不相同的。

3、液压传动中的工作介质是在受控制,受调节的状态下进行工作

的,因此液压传动和液压控制常常难以截然分开。

二、液压传动的组成部分

1、动力装置―――把机械能转换成油液液压能的装置,最常见的形式就是液压泵,它给液压系统提供压力油。

2、执行装置―――把油液的液压能转换成机械能的装置,它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。

3、控制调节装置―――对系统中油液的压力、流量、或流动方向进行控制或调节的装置,例如溢流阀,节流阀、换向阀、先导阀等,这些元件的不同组合形成了不同功能的液压系统。

4、辅助装置―――上述部分以外的其它装置,例如油箱、滤油器、油管等。

三、液压传动的控制方式

液压传动的“控制方式”有两种不同的涵义,一种指对传动部分的操控调节方式,另一种是指控制部分本身结构组成形式。

液压传动的操纵调节方式可以概略的分为手动式,半自动式、和

全自动式。而液压系统中控制部分的结构组成形式有开环和闭环式的两种。如平台的液压猫头就是开式的手动控制系统。而顶驱机械手的液压控制系统为闭环控制。

四、液压传动的优缺点

优点:

1、在同等体积下,液压装置能比电气装置产生出更多的动力。在

同等功率下,液压装置的体积小,重量轻,结构紧凑。液压马达的体积和重量只有同等功率电机的12%左右。

2、液压装置工作比较平稳。

3、液压装置能在大范围内实现无极调速,它还可以在运动状态下

进行调速。

4、液压装置易于实现自动化。当液压控制和电气控制。电子控制

或气动控制结合起来使用的时候,整个传动装置能实现很复杂的顺序动作。接收远程控制。

5、液压装置易于实现过载保护。

6、由于液压元件已实现标准化,系列化和通用化。液压装置的设

计、制作和使用都比较方便。

7、用液压装置实现直线运动比机械传动简单。

缺点:

1、液压传动不能保证严格的传动比,这是由于液压油的可压缩

性和泄漏等原因造成的。

2、液压传动在工作过程中有较大的能量损失)摩擦损失、泄漏

损失),长距离损失更是如此。

3、液压传动对油温变化比较敏感,它的工作稳定性很易受到温

度的影响,因此它不适宜在很高或很低的温度条件下工作。

4、为了减少泄漏,液压元件的加工精度要求较高,因此的它的

造价较高,而且对油的污染比较敏感。

5、液压传动要求有单独的能源。

6、液压传动出现故障时不易找出原因。

第二章液压油液

在液压系统中,液压油液是传递动力和信号的工作介质,同时它还起着润滑、冷却和防锈的作用,也凹系统能否可靠、有效的工作,在很大程度上取决于系统所用的液压油。因此,在掌握液压系统之前,必须先对液压油液有一清晰的了解。

第一节液压油液的特性和选择

一、液压油液的特性

液压系统中使用的液压油液的种类如表2-1所示。

石油型的液压油以机械油为基料,精炼后按需要加入适当的添加剂而成。这种油液的润滑性好,但抗燃性差。

目前,我国在液压系统中仍大量采用机械油和汽轮机油。机械油是一种工业用润滑油,价格虽较低,但物理化学性能较差,使用时以生粘稠胶质,堵塞元件,影响系统的性能。压力越高,问题越严重。因此,只在压力较低和要求不高的场合中使用。

汽轮机油和机械油相比,氧化要定性好,使用寿

命长,与水混合后能迅速分

离,纯净度高。普通液压油中加有抗氧化、防锈和抗饱和的添加剂,在液压系统中使用最

广。

乳化液有两大类:一类是少量油(约5%~10%)分散在大量的水中,称为水包油乳化液,也称高水基液(O/W );另一类是水分散在大量的油中(约占60%),称为油包水乳化液(W/O )。后者的润滑性比前者好。

水—乙二醇液使用于要求防火的液压系统。如液体长期在高于65℃的温度下工作,水分的蒸发使它的粘度上升,因此必须经常检验。低温粘度小,它的润滑性比石油性液压油差,对大多数金属基液压系统中使用的大多数橡胶密封圈材料均能相容,但会使许多油漆脱落。

磷酸酯液自燃点高,氧化按定性好,润滑性好,使用温度宽,对大多数金属不腐蚀,但能溶解许多非金属材料,因此必须选择合适的橡胶密封材料。这种液体有毒。

为了改善液压油的性能,往往在油液中加入各种各样的添加剂。添加剂有两类:一类是改善油液化学性能的,如抗氧化剂、防腐剂、防锈剂等;另一类是改善油液物理性能的,如增粘剂、抗饱剂、抗磨剂等。

2-1液压油液的种类

二、 液压油液的物理性质

液压油液的一些基本性质可在有关资料中查道,例如,石油性液压油液在15℃时的密度为900kg/m 3左右,在实用中可认为不受温度和压力的影响;体积膨胀系数和比热容分别为(6.3~7.8)ⅹ10-4K -1和(1.7~2.1)ⅹ103J/(kg.K)等等。在液压技术中,液压油液最重要的性质是它的可压缩性和粘性。

(一)可压缩性

压力为P 0、体积为V 0的液体,如压力增大ΔV ,则此液体的可压缩性可用体积压缩系数k ,即单位压力变化下的体积相对体积变化量来表示。

k=(—1/ΔP )*(ΔV/ V 0)

由于压力增大时液体的体积减小,因此上式右边必须加一符号。

液体体积系数的倒数,称为体积弹性模

量K ,简称体积模量。即K=1/k 。表2-2示各

种液压油液的体积模量。由表中石油型液压

油体积的数值可知,它的可压缩性是钢的100~500倍。液压油液的体积模量和温度、压力有关:温度增大时,K 值减小,在液压油液正常的工作范围内,K 值会有5%~25%的变化;压力增大时,K 值增大,但这种变化不成线性关系,当P ≥3MPa 时,K 值基本上不再增大。液压油液中如混有气泡时,K 值将大大减小。

封闭在容器内的液体在外力作用下的情况极像一个弹簧:外力增大,体积减小;外力减小,体积增大。这种弹簧的刚度k h ,在液体表2-2各种液压油液的体积模量 (20℃,大气压)

承压面积A不变时(图2-1),可以通过压力变化ΔP=ΔF/A、体积变化ΔV=A/Δl(Δl为液柱长度变化),和式(2-1)求出,即

k h=-ΔF/Δl=A2K/V

液压油液的可压缩性对在动态下工作的液压系统来说影响极大;但当液压系统在静态(稳态)下工作时,一般不予考虑。

(二)粘性

液体在外力作用下流动(或有流动趋势)时,分子间的内聚力要阻止分子相对运动而产生一种内摩擦力,这种现象叫做液体的粘性。液体只有在流动(或有流动趋势)时才会呈现出粘性,静止的液体是不呈现粘性的。

粘性使流动液体内部各处的速度不相等,以图2-2为例,若两平行平板间充满液体,下平板不动,而上平板以速度u0向右平动。由于液体的粘性,紧靠下平板和上平板的液体层速度分别为零和u0,而中间各液层的速度则视它距下平板的距离按曲线规律或线性规律变化。

实验测定指出,液体流动时相邻液层间的内摩擦力F f与液层接触面积A、液层间速度梯度d u/d y成正比,即

F f=ηAd u/d y (2-3)式中,η为比例常熟,称为粘性系数或粘度。如τ表示切应力,即单位面积上的内摩擦力,则

τ=F f/A=ηd u/d y (2-4) 这就是牛顿的液体内摩擦定律。

由上可知,液体的粘度是指它在单位速度梯度下流动时单位面积上产生的内摩擦力。粘度是衡量液体粘性的指标。这里的粘度η又称绝对粘度,或动力粘度,它的法定计算单位为Pa.s,以前沿用的单位为P(泊,dyne.s/cm2),1Pa.s=10P=103Cp(厘泊)。

液体动力粘度与其密度的比值,称为液体的运动粘度υ,即

υ=η/ρ。运动粘度的法定计算单位外为m2/s,以前沿用的单位为St(拖),1m2/s=104St=106cSt(厘拖)。就物理意义来说,υ不是一个粘度的量,但习惯上常用它来标志液体粘度,例如机械油的牌号就是用机械油在40℃时运动粘度υ(mm2/s计)的平均值来标志的。

液体粘度在工程上的测定方法是测出液体的“相对粘度”,然后再根据关系使换算出动力粘度或运动粘度。相对粘度又称条件粘度,它是按一定测量条件制定的。我国、德国等国采用恩氏粘度0E,美国用赛氏粘度SSU,英国用雷氏粘度R,等等。

恩氏粘度用恩氏粘度计测定:将200mL温度为t0C的被测液体装入粘度计的容器内,使子之由其下部直径为2.8mm的小孔流出,测出液体流尽所需要的时间t1(s);再测出200mL温度为200C的蒸馏水在同一粘度计中流尽所需的时间t2(s)。这两个时间的比值即为被测液体粘度的标准温度,由此而得来的恩氏粘度分别用0E20、0E50和0E100标记。

恩氏粘度与运动粘度间的换算关系式为

υ=(7.310E-6.31/0E)ⅹ10-6

υ的单位为m2/s。液体的粘度也可用旋转粘度计测定。

液体的粘度随液体的压力和温度而变。对液压油液来说,压力增大时,粘度增大。但在一般液压系统使用的压力范围内,增大数值很小,可以忽略不计。液压油液粘度对温度的变化十分敏感,如图2-3所示,温度升高,粘度下降。这个变化率的大小直接影响液压油液的使用,其重要性不亚于粘度本身。

(三)其它性质

液压油液还有其它一些性质,如稳定性(热稳定性、氧化稳定性、水解稳定性、剪切稳定性等)、抗泡沫性、抗乳化性、防锈性、润滑性以及相容性(对所接触的金属、密封材料、涂料等不起作用便是相容性好,否则便是不好)等,都对它的选择和使用有重要影响。

三、对液压油液要求

不同的工作机械、不同的使用情况对液压油液的要求有很大的不同,为了很好的传递运动和动力,液压系统使用的液压油液应具备如下性能:

1)合适的粘度,υ=(1..5~41.3)ⅹ10-6m2/s或2~5.80E50,较好的粘温特性。

2)润滑性能好。

3)质地纯净,杂质少。

4)对金属和密封件有良好的相容性。

5)对热、氧化、水解和剪切都有良好的稳定性。温度低于570C 时,油液的氧化进程缓慢,之后,温度每增加100C,氧化程度增加一倍,所以控制液压油液的温度特别重要。

6)抗泡沫性好,抗乳化性好,腐蚀性小,防锈性好。

7)体积膨胀系数小,比热容大。

8)流动点和凝固点低,闪点(明火能使油面上油蒸汽闪燃,但油本身不燃烧时的温度)和燃点高。

9)对人体无害,成本低。

反之,对轧钢机、压铸机、挤压机、飞机等处则须突出耐高温、热稳定不腐蚀、无毒、不挥发、防火等项的要求。

四、液压油液的选择方式

(一)液压油液的选择因素

正确而合理地选择液压油液,对液压系统适应各种工作环境的能力、延长系统和元件寿命、提高系统的工作可靠性等都有重要的影响。

选择液压油液时要考虑的因素如表2-3所示。

在众多的考虑因素中,最重要的因素是液压油液的粘度。粘度太大,液流的压力损失和发热大,使系统的效率下降;粘度太小,泄漏增大也影响系统效率。因此应选择使系统能正常、高效和可靠的油液粘度。

在液压系统中,液压泵的工作条件最为严峻,不但压力大、转速高和温度高,而且油液在被泵吸入和由泵压出时要受剪切作用,所以一般根据泵的要求来确定液压油液的粘度,如表2-4所示。

上面说过,油温对粘度影响极大,因此,为了发挥液压系统的最佳运转效率,应依具体情况控制油温,使泵和系统在油液的最佳粘度范围内工作。图2-4示各种液压油液的最佳应用温度范围。事实上,

过高的油温不仅大大改变了油液的粘度,而且会使常温下平和、稳定的油液变得带腐蚀性,分解出不利于使用的成分,或因过量汽化而使液压油泵吸空,无法正常工作。

液压油液的选择,一般要经历下述四个基本步骤:

1)定出所用油液的某些特性(粘度、密度、蒸汽压、空气溶解率、体积模量、抗燃性、温度界限、压力限、润滑性、相容性、毒性等)的容许范围。

表2-3选择液压油液时考虑的因素

2)查看说明书,找出符合或基本符合上述各项特性要求的油液。

3)进行综合、权衡,调整各方面的要求和参数。

4)征询油液制造厂的最终意见。表2-4 液压泵用油液的粘度

(二)液压油液的使用

根据一定的要求来选择或配制液压油液之后,不能认为液压系统工作介质的问题已全部解决了。事实上,使用不当还是会使油液的性质发生变化的。例如,通常以为油液在某一温度和压力下的粘度是一定值,与流动情况无关,实际上油液被过度剪切后,粘度会显著减小,因此在使用液压油液时,应注意一下几点:

1)对长期使用的液压油液,氧化、热稳定性是决定温度界限的因素,因此,应使油液长期处在低于它开始氧化的温度下工作。

2)在贮存、搬运及加注过程中,应防止油液被污染。

3)对油液定期抽样检验,并建立定期换油制度。

4)油箱的贮油量应充分,以利于系统的散热。

5)保持系统的密封,一旦有泄漏,应立即排除。

一般说来,只要对使用石油型液压系统进行彻底清洗以及更换某些密封件和油箱涂料后,便可更换高水基液压液。但是,由于高水基液压液的粘度低、泄漏大、润滑性差、蒸发和气蚀等一系列缺点,因此在实际使用高水基液的液压系统时,还必须注意下述几点:1)由于粘度低、泄漏大,系统的最高压力不要超过7MPa。

2)要防止气蚀现象,可用高置油箱使泵进油口处压力增大,泵的转速不要超过1200r/min。

3)系统浸渍不到油液的部位,金属的气相锈蚀较为严重,因此应使系统尽量的充满油液。

4)由于油液的pH值高,容易发生有金属电位差引起的腐蚀,因

此应避免使用镁合金、锌、镉之类金属。

5)定期检查油液pH值、浓度、霉菌生长情况,并对其进行控制。

6)滤网的通疏能力须4倍于泵的流量,而不是常规的1.5倍。(三)海上作业对液压油的要求

(1)粘度适当。当船舶航区经常变化且跨越纬度较大时,应选用粘温特性良好的液压油。一般选用运动年度20~30mm2/s(500C时)、粘度指数在90以上的液压油。

(2)防锈性好。因船舶液压管线不经常拆装,液压元件长期封闭于油路之中。这样,若使用防锈性差的液压油,易使元件锈蚀,影响系统的工作寿命。

(3)抗氧化性好。长时间工作时,液压油就会因温度升高而容易氧化变质,并会产生胶质和沉淀渣滓。

(4)抗乳化性好。即要求液压油中安定性差的物质含量要少,以减少混入液压油中的水分形成有机酸和皂类,降低液压油的润滑性。(5)抗泡沫性好。工作时如接触气体产生的泡沫不易消散,气体就难于分离而放出。会使液压机械产生爬行、颤动和发出噪声。(6)凝固点低。船舶航行在低温海区时,通常要求其凝固点要比气温低10~150C。

(7)闪点高。船舶的防火要求很高,特别是运送石油产品的传播和军舰,故其闪点至少要高于1350C。

(8)水解稳定好。液压油与水后分解变质的程度成为水解稳定性。水在液压油中,大部分沉积在油箱或贮油部件的底部,但是有一部分

会随油一起循环,加速系统的腐蚀。当油也处于低温状态时,水就会从油中析出,凝结成坚硬的小冰粒,划伤机件的工作表面。

(9)相容性好。液压油在系统中与各种材料产生化学反应的能力称为相容性。因为液压油在系统中不可避免的会与颜料、油漆、电器绝缘物质、密封件、软管以及蓄能磨片等接触,所以要求液压油在与上述物质接触过程中应不产生化学反应或反应很轻。

(四)、海上作业液压油的选用

根据我国“液压油的分类、符号和命名”(GB7631.1-87)的规定,使用船舶液压机械的国产液压油主要有:L-HH,无添加剂或加有少量抗氧化剂的精制矿油质量比机械油(L-AN)高,抗氧化性和防锈性比汽轮油差,用于低压或简单机具的液压系统。L-HL(相当于产品YA-N)加入抗氧、防锈、抗泡沫等添加剂的精制矿物油,使用寿命比机械油长1倍,主要用于低压齿轮泵系统,使用环境温度为00C 以上,最高使用温度为800C。抗磨液压油L-HM(相当于原产品YB-N),在L-HL油机基础上增加了抗磨添加剂,在中、高压条件下能使摩擦面油膜强度提高,降低摩擦和磨损,适合于各种液压泵的中—高液压系统,适用环境温度为-100C~400C。低温液压油L-HV(相当于原产品YC-N),在L-HM基础上改善其粘温性,适用于环境温度变化大和工作条件恶劣的低、中、高液压系统。每种产品符号后附带的数字为粘度等级,相当于400C的名义粘度(mm2/s)。

表2—4为各国常用液压油的对照表。

表2-4 各国常用液压油的对照表

选用液压油是应根据泵种类、工作温度、系统压力等,首先确定适用粘度范围,然后再选择合适的液压油品种。

选择液压油一般可以从一下几方面来考虑。

(1)液压泵的类型。液压泵事业压系统的主要元件,对粘度要求比较严格。若粘度选择不当,则不仅会造成泵的迅速磨损,使容积效率变低,甚至还可能破坏泵的吸油条件。各类泵推荐用油粘度见表

2-5。

表2-5 常用液压泵使用粘度

高的油,以免泄漏过多,效率降低,而当工作压力较低时,则宜选用粘度较低的油,以减少压力损失。

(3)液压系统的环境温度。由于矿物质的粘度将随温度的变化而变化较大,故为保证液压油在工作温度时据有较适宜的粘度,就必须考虑周围环境的温度,即当温度高时,宜采用粘度较高的液压油,而温度低时,则宜采用粘温特性良好的液压油。

(4)液压系统的运动速度。当液压系统中工作部件的运动速度很高时,液压油的流苏也高,流阻损失随之增大,而泄漏率则相对减少,故宜选用粘度较低的油液;相反,当工作部件的运动速度较低时,由于每分钟所需的油量很少,这时的泄漏率相对增大,对系统的运动速影响较大,所以宜选用粘度较高的油液。

第二节液压油液的污染及其控制

实践证明,液压油液的污染是系统发生故障主要原因,它严重影响着液压系统的可靠性及元件寿命。据资料统计,液压系统的故障约

液压系统简介剖析

液压原理培训教材 第一章液压系统简述 一、液压传动的工作原理 1、液压传动是以液体为工作截止来传递动力的 2、液压传动用液体的压力能来传递动力,它与液体动能的液力传 动是不相同的。 3、液压传动中的工作介质是在受控制,受调节的状态下进行工作 的,因此液压传动和液压控制常常难以截然分开。 二、液压传动的组成部分 1、动力装置―――把机械能转换成油液液压能的装置,最常见的形式就是液压泵,它给液压系统提供压力油。 2、执行装置―――把油液的液压能转换成机械能的装置,它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。 3、控制调节装置―――对系统中油液的压力、流量、或流动方向进行控制或调节的装置,例如溢流阀,节流阀、换向阀、先导阀等,这些元件的不同组合形成了不同功能的液压系统。 4、辅助装置―――上述部分以外的其它装置,例如油箱、滤油器、油管等。 三、液压传动的控制方式 液压传动的“控制方式”有两种不同的涵义,一种指对传动部分的操控调节方式,另一种是指控制部分本身结构组成形式。 液压传动的操纵调节方式可以概略的分为手动式,半自动式、和

全自动式。而液压系统中控制部分的结构组成形式有开环和闭环式的两种。如平台的液压猫头就是开式的手动控制系统。而顶驱机械手的液压控制系统为闭环控制。 四、液压传动的优缺点 优点: 1、在同等体积下,液压装置能比电气装置产生出更多的动力。在 同等功率下,液压装置的体积小,重量轻,结构紧凑。液压马达的体积和重量只有同等功率电机的12%左右。 2、液压装置工作比较平稳。 3、液压装置能在大范围内实现无极调速,它还可以在运动状态下 进行调速。 4、液压装置易于实现自动化。当液压控制和电气控制。电子控制 或气动控制结合起来使用的时候,整个传动装置能实现很复杂的顺序动作。接收远程控制。 5、液压装置易于实现过载保护。 6、由于液压元件已实现标准化,系列化和通用化。液压装置的设 计、制作和使用都比较方便。 7、用液压装置实现直线运动比机械传动简单。 缺点: 1、液压传动不能保证严格的传动比,这是由于液压油的可压缩 性和泄漏等原因造成的。 2、液压传动在工作过程中有较大的能量损失)摩擦损失、泄漏

液压系统调节方法

拖泵及泵车液压系统调节方法 一、目的: 本调节方法适用所有砼泵系列产品,其中调试前的准备要求有质保人员确认后方可进行下一步。 二、应用范围: 所有砼泵系列产品 三、调节步骤 (一)调试前准备 1、加注AW46液压油,应用滤油机进行加油。 2、加注润滑脂,夏季用"00"型,冬季用"000"型,摇动润滑脂泵,使润滑脂达到各润滑点 3、水箱(洗涤室)必须加满清水 4、泵车及柴油机拖泵:旋转减速机加注齿轮油,将柴油箱加满柴油,向柴油机中加入机油至规定高度,向柴油机水箱中加入防冻液 5、电动机拖泵:电机输出轴旋转方向的确定,点动启动按钮,电机运转1-2秒,从泵座的观察口看电机输出轴的旋转方向——从电机轴端看电机为逆时针方向旋转,若电机旋转方向不对,则将电源任意两相交换位置接上即可 6、在主阀块至主油缸之间串入滤油车(左右各一台) 7、检查主油泵吸油自封装置是否处于开启位置。 8、检查臂架泵吸油管路上闸阀是否处于全开位置。 9、拧开主油泵、臂架泵壳体上的螺堵,排出空气,直到螺口冒油时再将螺堵拧紧。 10、蓄能器充氮气至气压为6MPa,并将蓄能器泄油球阀关死。 11、将主溢流阀及辅阀组上溢流阀全部拧松。 (二)、限幅脉冲值、时间及日期的设定 1、近控操作

控制面板图 Ⅰ、DS300文本显示器+车下操作盒界面 DS300A文本显示器操作 控制面板上装有触摸式按钮的文本显示器其中正泵、反泵、遥控/近控切换、讯响、油压表开关(ALM)可以直接操作,其它功能都由ESC键、Enter键、上翻键、下翻键、左翻键、右翻键结合文本显示器画面进行操作。现将各功能操作分述如下: 1、按钮操作 (ALM)按钮:(ALM)按钮为压力表开关按钮。主系统压力表及臂架系统压力表平时是处于关闭状态,需要观察主系统或臂架系统压力时,按下(ALM)按钮,压力表开关打开,压力表开始指示,延时2分钟后自动关闭。 遥控/近控切换按钮:用来进行遥控与近控的切换,每按一下,就改变当前工作状态,文本显示器的屏幕上显示“当前状态:遥控状态或近控状态”,表示系统已处于遥控或近控状态。 正泵按钮:当按下正泵按钮时,发动机升速,当转速升至设定转速时,开始正泵,再次按时,正泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:正泵”表示系统处于正泵工作状态。 反泵按钮:当按下反泵按钮时,发动机升速,当转速升至设定转速时,开始反泵,再次按时,反泵停止,同时发动机自动降到怠速。文本显示器的屏幕上显示“当前状态:反泵”表示系统处于反泵工作状态。按钮左上角信号灯亮时,表示系统处于反泵工作状态。反泵有优先,即在正泵工作状态时,按反泵按钮,系统立即转入反泵,再次按反泵按钮,系统又恢复到正泵状态。此功能主要是保证在出现堵管时能以最快的速度处理。 讯响按钮:按住按钮,喇叭和蜂鸣器鸣叫,松开按钮,讯响停止。 2.文本显示器画面操作 根据画面上的提示进行相应的操作:初始化设定、参数设定和功能操作: 1)初始化设置 当向PLC中新输入程序后,文本显示器立即显示下列信息: A)请选择底盘:五十铃、volvo、奔驰 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: B)请选择分动箱类型:进口分动箱、国产分动箱 按提示选择正确的底盘型号,按ENTER确认后,进入下一个选择: C)请选择水泵马达类型:低速水泵马达、高速水泵马达 按提示选择正确的底盘型号,按ENTER确认后,进入下一个提示界面:

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

液压系统原理

一、概述 由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成。油箱额定容积125L,电机功率2.2KW(或3KW),其流量Q=14升/分,P=7MPa,调压范围4~6MPa。 二、液压系统工作原理 参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定。油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力。溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。 精滤器由滤油器和电接点压差表组成,过滤精度为20μ。电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置。当滤油器进出油口压差达到0.35MPa时其表针指示会进入红色报警区域,并会接通触点。 用户可通过触点自接报警装置,触点容量为24V1A。 油液温度由温度计显示。当油温达到50℃时应接通冷却水,使其进入冷却器进行循环冷却。系统正常运行时,油温应控制在50℃以下。

常闭式盘式制动器液压站液压回路分析 盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。 由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。

液压提升机设计

1 绪论 1.1液压提升机概述 1.1.1引言 液压提升机是利用液压马达直接或通过减速箱来拖动滚筒的一种提升机,液压提升机的用途很广泛,常用于船舶、港口、建筑、矿山、冶金和林业等许多行业。习惯把卷筒直径错误!未找到引用源。< 2000mm 时的称为提升机, 而把错误!未找到引用源。≥2000mm时的称为提升机,以下统称为提升机。自60年代中期提升机出现以来,40多年发展迅速,在工业发达国家的煤矿井下已广泛使用,从大到小,从单绳到多绳,从有极绳到无极绳,从缠绕式到摩擦式,各种品种规格比较齐全。液压提升机主要由液压驱动系统、液压制动系统、液压控制系统、卷筒-负载系统、操作系统及其它如深度指示、提升超速、过卷安全保护等辅助系统组成。 1.1.2液压提升机的用途、工作原理、类型 (1)用途 液压提升机主要用于煤矿井下,作为提升和下放人员、煤、矸石及运输材料、设备之用。在煤矿主要是用于采区上、下山运输,同时也可用于井下暗立井、暗斜井和掘进时的提升运输及井下辅助运输. (2)工作原理 液压提升机由机械、液压传动、电气部分等组成。采用鼠笼型防爆主电机驱动双向变量主油泵;主油泵和二台内曲线低速大扭矩液压马达组成闭合回路、衡扭矩液压调速系统;二台液压马达分别布置在主组装置两侧与主组联接,拖动提升机运转。提升机有二台辅助油泵,一台工作、一台备用。辅助油泵中,其大泵作补油泵用,给主液压传动补油;小泵作控制用,给制动系统、操作系统、调绳系统供油。 提升机采用远距离液控操纵方式。司机通过操作液压式比例先导伐给主油泵的比例油缸输入由低到高的压力油,使主油泵的行程调节器动作,改变主油泵摆动的缸体的倾角来改变主油泵的流量,以改变液压马达的转速,使提升机起动,加速运转。司机通过操作液压式比例先导伐的手柄扳到不同角度,就可使主油泵输出不同的流量,使提升机得到不同的提升速度。当液压式比例先导伐的手柄扳到最大位置时,提升速度最大。当液压式比例先导伐的手柄扳到中立位置时,提升机停车。当手柄反方向扳动时,提升机反方向运行。 提升机采用盘型闸制动,以实现提升机的正常和紧急制动。正常制动的制动力靠液压传动装置本身产生的。提升时负荷成为制动力。下放重物时液压马达变为泵。液压泵变为液压马达。使电动机产生发电反馈制动。盘型制动器不参与工作制动。只是在提升机卷筒停止运转后作为保险装置来使用。提升机在运行中出现故障,保险装置自动工作,也可由司机用脚踏开关进行紧急制动停车。 提升制动系统有压力油时,盘型闸制动打开,没有压力油盘型闸制动。司机操作的液压式比例先导阀共有4个减压阀,其中两个减压阀操纵主油泵正反向供油,另两个减压阀控制盘型闸的开起,当司机操作液压式比例先导伐时,同时压下两个阀,一个阀输出的压力油进主泵的比例油缸,使主泵向液压马达供油并使其运转。另一个阀输出的压力油供制动系统的液控换向阀,使制动系统向盘型制动器供油,盘型闸制动打开、使提升机运转。当司机扳回液压式比例先导伐的手柄扳到中立位置时,(比例油缸向中位返回)主泵流量逐渐减小到零,液

液压系统操作规程

编号:SY-AQ-07004 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 液压系统操作规程 Operating procedures for hydraulic system

液压系统操作规程 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 1、经常检查液压油路钢管、胶管、接头的螺栓是否完全紧固。避免漏油现象发生。 2、经常检查系统中各种液压滤清器的滤芯与空气滤清器的滤芯是否堵塞。 3、经常检查液压油的油位是否达到要求,工作中也要时刻注意油位的变化,一旦发现油液不足,应马上补充,避免油泵吸空,形成真空,从而烧坏液压油泵,造成不必要的损失。 4、各种泵、调速阀的各种设定值不得修改。如觉得参数不合要求,可联系生产厂家,由厂家就各参数进行修改。 5、液压系统能否正常地工作,完全依赖于各个液压元件的工作状态,而各个液压元件的工作状态,取决于联系它们之间的油液清洁度和温度。因此,操作人员时刻注意,各个液压系统油液的清洁,保持油的温度在设定的范围内。

6、若系统出现问题,应首先仔细阅读液压原理,搞清楚各元件的功能后,研究出现的问题,等原因明了后,才能进行各个元件的清洗、调节或更换,以免造成严重不良后果。 7、拆卸运输或重新组装时,应将拆卸下来的各种钢管或胶管进行密封(油堵堵塞);组装时注意清洁,防止污物进入管道,损坏系统中的液压元器件,造成不必要的损失。 8、关于钳盘式制动器、液压泵站的有关操作、调整、注意事项请参看相关的使用说明书。 这里填写您的公司名字 Fill In Your Business Name Here

液压传动——液压传动系统设计与计算

第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。 第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 图9-1位移循环图 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

液压传动系统设计与计算

液压传动系统设计与计算 第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 位移循环图图9-1 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第中实线所示,液压缸开始作匀加速运动,然后匀速运动,9-2一种如图

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

液压系统安全操作规程通用版

操作规程编号:YTO-FS-PD975 液压系统安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

精品规程范本 编号:YTO-FS-PD975 2 / 2 液压系统安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 在液压传动中,人们利用没有固定形状但具有确定体积的液体来传动力和运动。DIET570浸渍器的上、下盖关闭后的外环锁定就是通过液压油把力传给液压缸,使其伸出、收缩,完成环锁动作。 正确安全的使用液压系统应注意以下几点: 1、保证液压系统的密封性,并按规定冲洗完毕后,更换油液及滤油器滤芯。 2、在运行过程中注意油温和油箱油位。油温过高将加速油液老化,油温过低会促使吸油困难,并引起噪音和气蚀。油位降低过快说明系统中有不正常的泄漏。 3、听见油泵启动或运行声音异常,及时停车并通知相关人员修理。 4、切勿用湿布擦拭电磁阀等电器件, 5、发现液压油管路有渗油,及时报告。 该位置可输入公司/组织对应的名字地址 The Name Of The Organization Can Be Entered In This Location

液压系统综述

本科毕业 论文 文献综述 毕业论文题目:1000吨四柱液压机台面及顶出结构 设计 学生姓名: 学号: 系别: 专业班级:机械设计制造及其自动化

液压系统综述 前言作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 1液压传动发展概况 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动 原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 第一个使用液压原理的是1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年他又将工作介质水改为油,进一步得到改善。 我国的液压工业开始于20世纪50年代,液压元件最初应用于机床和锻压设备。60年代获得较大发展,已渗透到各个工业部门,在机床、工程机械、冶金、农业机械、汽车、船舶、航空、石油以及军工等工业中都得到了普遍的应用。当前液压技术正向高压、高速、大功率、高效率、低噪声、低能耗、长寿命、高度集成化等方向发展。同时,新元件的应用、系统计算机辅助设计、计算机仿真和优化、微机控制等工作,也取得了显著成果。目前,我国的液压件已从低压到高压形成系列,并生产出许多新型元件,如插装式锥阀、电液比例阀、电液伺服阀、电业数字控制阀等。我国机械工业在认真消化、推广国外引进的先进液压技术的同时,大力研制、开发国产液压件新产品,加强产品质量可靠性和新技术应用的研究,积极采用国际标准,合理调整产品结构,对一些性能差而且不符合国家标准的液压件产品,采用逐步淘汰的措施。由此可见,随着科学技术的迅速发展,液压技术将获得进一步发展,在各种机械设备上的应用将更加广泛。 2液压传动在机械行业中的应用 机床工业——磨床、铣床、刨床、拉床、压力机、自动机床、组合机床、数控机床、 加工中心等 工程机械——挖掘机、装载机、推土机等

液压系统安全技术操作规定(正式)

编订:__________________ 单位:__________________ 时间:__________________ 液压系统安全技术操作规 定(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2745-56 液压系统安全技术操作规定(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1.工作时,必须穿戴好劳动保护用品。 2.电动机传动到油泵的安全装置保险功率,一般不得超过油泵压力功率的30%。 3.凡电动机的电动元件,均应装设安全防护罩。 4.机械上的所有螺钉、销子等紧固件,必须配全,装紧。 5.压力表,温度表等检查用仪表,应装在便于观察的地方。 6.液压传动系统发生故障时,禁止在工作状态下进行检修、拆卸和调整。 7.一切联锁装置,必须经常校正。 8.当放气阀打开时,不得面对气体喷射方向。 9.当高压系统发生喷泄时,必须停车方可检修。 10.蓄能器注入气体后,不能拆开或松螺钉,需拆

开时,必须放掉气体,确认无压力后才能进行。 11. 必须严格执行检修挂牌确认制。 12.液压设备自动控制运转时,其转换开关,不经允许不得乱动。 13. 要注意观察各种仪表的显示情况,特别是压力表、温度表等的运转情况,做到心中有数。 14.工作时不得擅自脱离岗位。非本岗位人员,严禁乱动机械设备。 15.站内不准吸烟、严禁火源,以免发生火灾。 16.站内不准堆放氧气瓶及易燃易爆物品。 17.炉顶工作压力不得超过12.5MPa温度不得超过45℃;不得低于20℃。 18.站内应保持清洁,地上油污、杂质要及时处理干净。 19.做好班中工作记录,严格执行交接班制度。 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

提升机液压站讲解

提升机液压站讲座 一、概述: 1、提升机液压站的重要性: 矿井提升机液压站是矿井提升机的重要组成部分之一。液压站 和盘式制动器、管路连接系统构成一完整的制动系统,它为执行元件提供压力油源,控制油路使制动装置和调绳装置按要求实现各项功能,其经常性的工作就是调节油压使制动器实现松闸、工作制动和必要时的安全制动。液压站性能和质量的好坏,是影响矿井提升工作、矿井产量、提升设备寿命及人身安全等的直接因素,因此使用单位都应该十分重视液压站这一重要组成部件。 2、提升机液压站的结构特点: (1)、油源部分: 要压力足够和工作充分可靠,通常是采用两套动力设备组成并联油路,一套工作时,另一套备用,并能方便地转换。 (2)、整定的油压值: 必须保证使制动器符合《安全规程》关于制动力矩的规定。主要是针对安全制动而言,为了满足安全制动对制动器制动力矩的要求,必须处理好各组制动器的制动力和投入时间的关系。 (3)、应满足工作制动的要求: 可以为盘式制动器提供可调节的压力油源,以获得大小不同的制动力矩,为提升机运转、减速和停车提供可能。 (4)、应满足安全制动的要求: 当提升容器在井筒中安全制动时,应能实现二级制动,以满足减速度要

求;当上升容器在井口附近安全制动时,对竖井要有解除二级制动的可能性。(5)、用于缠绕式双筒提升机的液压站,应能为调绳离合器的液压缸提供压力油源,并能按要求控制离合动作。 (6)、各液压元件要装配简单、维护检修方便、结构紧凑和通用性好。 二、典型液压站的组成及工作原理: (一)、液压站的调压原理: 液压站的调压方式可分为三种类型:a) 采用电液调压装置调节;b) 采用比例溢流阀调节;c) 采用手动调压装置调节。 a)电液调压装置调压原理:(图1) 液压油经网式滤油器2被泵3吸入,泵出的压力油再经过压力管路过滤器4将油中大于10μm的细屑、杂质和微粒除去后,由阀座14的P口进入溢流阀的H腔和A腔,由于溢流阀的A腔与H腔和压力管路过滤器4相通,A腔的油压就是系统油压。同时A腔的压力油经过孔1进入C腔,再经过孔2进入溢流阀先导调压阀的D腔,经过孔3作用在锥阀7。此时K口、C腔、D腔的压力相等,用P2表示。当系统油压较低,还不能打开先导调压阀时,锥阀7关闭,没有油液通过孔1,所以主阀阀芯12的A腔和C腔的油压相等,在主阀弹簧11的作用下,使主阀阀芯12处在最下端位置,将溢流口封闭。当系统油压升高到能够打开先导调压阀时,锥阀7就压缩调压弹簧8,将控制油口打开,C腔中的压力油经孔2、3、4、B腔口和阀座14的0口流回油箱。由于节流孔1的阻尼作用而产生压差,所以主阀阀芯12上端(C腔和D 腔)的油压P2小于下端(A腔)的油压P1。当主阀阀芯12上、下两端的压力差所产生的作用力超过主阀弹簧11的作用力P弹时,主阀阀芯12被向上推动,溢流阀的进油口(H腔)和溢

液压系统岗位安全环境操作规程通用版

操作规程编号:YTO-FS-PD319 液压系统岗位安全环境操作规程通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

液压系统岗位安全环境操作规程通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、上岗前,必须劳保穿戴整齐,精神状态良好。 2、操作维护和检修各种液压设备的人员,熟悉并掌握本系统设备的结构、性能、操作方法,以及使用这些设备时应遵守的安全技术规程。 3、液压系统在设计压力范围内工作,严禁随便提升压力。 4、轧钢过程中,不准随便切换工作泵。 5、油泵禁止在无介质状态下运行,设备在运行中如发现意外停电,必须将操作手柄回到零位,断开电源,以防误动作或带负荷启动。 6、在地下液压站、隧道检修时必须2人以上,煤气区域检查应携带CO报警仪(CO报警仪保持完好准确)要设专人监护并对煤气进行安全检测,严格执行煤气制度。 7、接轴、液压缸、推床等旋转、平移、升降部位防护装置齐全,工作时严禁靠近点检,设备在惯性运转时,不得用撬棍或其它物件强行制止,以免伤人。

液压系统介绍

第一章介质系统基础知识 2250项目的介质系统主要包括如下几个部分:高压除鳞水系统、液压系统、气动系统、稀油润滑系统、干油润滑系统、氮气添加装置和废油、新油中央存储设备。介质系统分布于整条热轧线的从加热炉到地下卷取机的各个区域设备中,对于整条热轧生产线的正常、可靠、安全运行起着至关重要的作用。 在介质系统的几个部分中,液压系统是最具代表性的系统,其他系统的主要工作原理都可以由液压系统来推演、转化出来。因此,这里主要以液压系统作为代表对介质系统的一些基础知识作一下简单的介绍。 1.1 液压系统简介 如图1-1和1-2所示,为一个简化了的工作台往复运动的液压系统。从图中可以看出, 液压系统包括1、油箱2、过滤器3、液压泵4、溢流阀5、手动换向阀6、节流阀7、换向阀8、液压缸等元件以及连接这些元件的管路。 液压泵3由电动机驱动,从油箱1中吸油,其输出的压力油在图1-1所示的状态下流经手动换向阀5——节流阀6——换向阀7进入液压缸8的左腔。液压缸8的活塞在压力油的推动下经活塞杆带动工作台右行。这时液压缸右腔的油液经换向阀7流回油箱。 当工作台右行至其左档块10碰到换向阀操作杆11时,换向阀阀芯12就被向左拉,成为图1-2所示状态。此时压力油经过换向阀7后进入液压缸的右腔,工作台反向左行,液压缸8左腔的油液经过换向阀7流回油箱。此后,当工作台左行至其右档块9碰到换向阀的操作杆11时,换向阀阀芯12又会被拉回到右位,液压系统恢复到图1-1的状态,工作台又向右移动。如此循环动作,实现了往复运动。

液压系统中节流阀6的通流面积是可调的,通过调节通流面积可以调节通过节流阀的流量,从而使流入液压缸的油液流量改变,这样就实现了工作台往复速度的调节。由于节流阀通流面积可以无级调节,因此也可以实现工作台速度的无级调节。 当用节流阀6调节进入液压缸的流量时,从液压泵输出的压力油除了通过节流阀6输向液压缸以外,其多余的流量通过溢流阀4流回油箱。因为只有当溢流阀进口处的压力升高到能够克服溢流阀4中的弹簧预调压力时,此阀才被打开而让油液流回油箱。当溢流阀被开启并维持一定的溢流量时,其进口处的油液压力保持在溢流阀的预调压力值上。所以,溢流阀在溢流时起到了控制油液压力的作用。 当工作台需要停止时,拨动手动换向阀5的手柄13,使阀处于左位,状态如图1-3所示。此时液压泵输出的油液直接经过手动换向阀5流回油箱。

液压系统岗位安全环境操作规程(通用版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液压系统岗位安全环境操作规 程(通用版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

液压系统岗位安全环境操作规程(通用版) 1、上岗前,必须劳保穿戴整齐,精神状态良好。 2、操作维护和检修各种液压设备的人员,熟悉并掌握本系统设备的结构、性能、操作方法,以及使用这些设备时应遵守的安全技术规程。 3、液压系统在设计压力范围内工作,严禁随便提升压力。 4、轧钢过程中,不准随便切换工作泵。 5、油泵禁止在无介质状态下运行,设备在运行中如发现意外停电,必须将操作手柄回到零位,断开电源,以防误动作或带负荷启动。 6、在地下液压站、隧道检修时必须2人以上,煤气区域检查应携带CO报警仪(CO报警仪保持完好准确)要设专人监护并对煤气进行安全检测,严格执行煤气制度。

7、接轴、液压缸、推床等旋转、平移、升降部位防护装置齐全,工作时严禁靠近点检,设备在惯性运转时,不得用撬棍或其它物件强行制止,以免伤人。 8、检查、检修轧线上所有设备设施及附属设备设施时要先停电挂牌。停电挂牌时,除到操作台控制按钮上停电挂牌外还必须到电气室(相关控制室)控制按钮上停电挂牌。(除鳞设备除按以上规定外还必须到高压水除鳞室挂停电牌)。检查、检修有液压操作动作的设备或在液压设备动作活动范围内工作时要先停泵、泄压、关阀、插安全销。并挂“有人工作,禁止操作”的安全警示牌,方可工作。 9、检修液压设备时,应停止系统工作,关闭相关阀门或停泵,油缸处于无负载状态,泄掉余压。严禁带压力工作,并严格执行检修挂牌制度,设专人监护,并做好记录,签名方可工作。 10、注意液压系统中阀门的开关顺序,先开低压,后开高压,先关高压,后关低压,操作时应缓慢进行,以防管路产生冲击爆破。 11、高压容器未经有关单位批准,严禁进行任何切割,钻孔和焊接引弧工作,严禁随便调整和拆除安全装置。

第九章典型液压系统及实例 习题答案

GAGGAGAGGAFFFFAFAF 9.2 写出图9-2所示液压系统的动作循环表,并评述这个液压系统的特点。 图9-2 [解答] 系统动作循环见下表,这个系统的主要特点是:用液控单向阀实现液压缸差动连接;回油节流调速;液压泵空运转时在低压下卸荷。 电磁铁动作顺序: lYA 2Y^ 3YA 快进 + - + 电 磁 铁 工 作 循 环

工进+-- 停留+-- 快退-+- 停止---习题解答 GAGGAGAGGAFFFFAFAF

9.1 试写出图9.9所示液压系统的动作循环表,并评述这个液压系统的特点。 解答:该液压系统的动作循环表如下: 这是单向变量泵供油的系统,油泵本身可变速,工进过程中,可以通过调速阀配合调速。执行机构为活塞杆固定的工作缸。通过三位五通电液换向阀换向。实现快进、工进、停留、快退、停止的工作过程如下:快进时:1YA通电,液压油进入工作缸的左腔,推动缸筒向左运动,由于3YA也通电,液控单向阀有控制油, GAGGAGAGGAFFFFAFAF

工作缸右腔的油经过三位阀也进入工作缸左腔,油缸实现差动快进。 GAGGAGAGGAFFFFAFAF

工进时:3YA断电,油缸右腔的回油经调速阀回油箱,缸筒以给定的速度工进,可实现稳定调速。 工进到终点,缸筒停留短时,压力升高,当压力继电器发出动作后,1YA断电,2YA通电,泵来的压力油经液控单向阀进入缸筒右腔,推动缸筒快速退回。退回至终点停止。 9.2 图9.8所示的 压力机液压系统,能 实现“快进、慢进、 保压、快退、停止” 的动作循环,试读懂 此系统图,并写出: 包括油路流动情况的 动作循环表。 解答: 1YA2YA7油流过程 GAGGAGAGGAFFFFAFAF

液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水 轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造 做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B. Pascal提出的液体中压力传递的基本定律;1681年D ?帕潘(D . Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆?乔治?阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明(F. Jin詹金所发明的世界上第一台蒸气喷射器差压 补偿流量控制阀;1795年英国人约瑟夫?布瑞釉Bramah)登记的第一台液压机 的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Ja nney)首先将矿物油代替水作液压介质后才开始改观折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使 玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学TH Aache n)在仿形刀架方面,美国麻省理工学院(MIT)Blackburn、Lee及Shearer等学者在电液伺服阀方面的研究取得

液压系统操作规程(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液压系统操作规程(新版) Safety management is an important part of production management. Safety and production are in the implementation process

液压系统操作规程(新版) 1、经常检查液压油路钢管、胶管、接头的螺栓是否完全紧固。避免漏油现象发生。 2、经常检查系统中各种液压滤清器的滤芯与空气滤清器的滤芯是否堵塞。 3、经常检查液压油的油位是否达到要求,工作中也要时刻注意油位的变化,一旦发现油液不足,应马上补充,避免油泵吸空,形成真空,从而烧坏液压油泵,造成不必要的损失。 4、各种泵、调速阀的各种设定值不得修改。如觉得参数不合要求,可联系生产厂家,由厂家就各参数进行修改。 5、液压系统能否正常地工作,完全依赖于各个液压元件的工作状态,而各个液压元件的工作状态,取决于联系它们之间的油液清洁度和温度。因此,操作人员时刻注意,各个液压系统油液的清洁,保持油的温度在设定的范围内。

6、若系统出现问题,应首先仔细阅读液压原理,搞清楚各元件的功能后,研究出现的问题,等原因明了后,才能进行各个元件的清洗、调节或更换,以免造成严重不良后果。 7、拆卸运输或重新组装时,应将拆卸下来的各种钢管或胶管进行密封(油堵堵塞);组装时注意清洁,防止污物进入管道,损坏系统中的液压元器件,造成不必要的损失。 8、关于钳盘式制动器、液压泵站的有关操作、调整、注意事项请参看相关的使用说明书。 云博创意设计 MzYunBo Creative Design Co., Ltd.

(完整word版)液压系统设计方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为

确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向套之间的密封阻力。 作用在活塞杆上的外部载荷包括工作载荷F g,导轨的摩擦力F f和由于速度变化而产生的惯性力F a。 ⑴工作载荷F g 常见的工作载荷有作用于活塞杆轴线上的 重力、切削力、挤压力等。这些作用力的方向 如与活塞运动方向相同为负,相反为正。 ⑵导轨摩擦载荷F f 对于平导轨 F f=μ(G+F N) 对于V型导轨 F f=μ(G+F N)/sin(α/2) 式中G——运动部件所受的重力(N); F N——外载荷作用于导轨上的 正压力(N); μ——摩擦系数,见表2—1; α——V型导轨的夹角,一般为90°。表2—1摩擦系数μ

相关文档
最新文档