苏州市立达中学初一数学下册期末试卷
2020-2021苏州市初一数学下期末试卷(带答案)

2020-2021苏州市初一数学下期末试卷(带答案) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是()A.1B.0C.-2D.-13.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°4.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤55.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°6.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是()队名比赛场数胜场负场积分前进1410424光明149523远大147a21卫星14410b钢铁1401414……………A.负一场积1分,胜一场积2分B.卫星队总积分b=18C.远大队负场数a=7D.某队的胜场总积分可以等于它的负场总积分7.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)8.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-39.已知,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限11.关于x,y的方程组2,226x y ax y a+=⎧⎨+=-⎩的解满足0x y+=,则a的值为()A.8B.6C.4D.212.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.453560(2)35x yx y-=⎧⎨-=-⎩B.453560(2)35x yx y=-⎧⎨-+=⎩C.453560(1)35x yx y+=⎧⎨-+=⎩D.453560(2)35x yy x=+⎧⎨--=⎩二、填空题13.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为_____.14.的平方根是3±,则a=_________15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.3的平方根是_________.17.线段CD是由线段AB平移得到的,其中点A(﹣1,4)平移到点C(﹣3,2),点B (5,﹣8)平移到点D,则D点的坐标是________.18.已知a>b,则﹣4a+5_____﹣4b+5.(填>、=或<)19.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.20.若方程组23133530.9a ba b-=⎧⎨+=⎩的解为8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解为_______.三、解答题21.解方程组()() 31210 21132x yxy⎧++-=⎪⎨+=-⎪⎩22.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.23.若关于x,y的方程组2431(1)3mx ny x yx y nx m y+=-=⎧⎧⎨⎨+=+-=⎩⎩与有相同的解.(1)求这个相同的解;(2)求m、n的值.24.某单位需采购一批商品,购买甲商品10件和乙商品15件需资金350元,而购买甲商品15件和乙商品10件需要资金375元.()1求甲、乙商品每件各多少元?()2本次计划采购甲、乙商品共30件,计划资金不超过460元,①最多可采购甲商品多少件?②若要求购买乙商品的数量不超过甲商品数量的45,请给出所有购买方案,并求出该单位购买这批商品最少要用多少资金.25.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒(已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C .【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:2423m n m n -=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.3.A解析:A【解析】∠︒∴∠︒∴∠∠︒ .故选A.1=1303=502=23=1004.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A正确;B、b=2×4+1×10=18,选项B正确;C、a=14-7=7,选项C正确;D、设该队胜了z场,则负了(14-z)场,依题意,得:2z=14-z,解得:z=143,∵z=143不为整数,∴不存在该种情况,选项D错误.故选:D.【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.7.D解析:D【解析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 8.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.9.B解析:B【解析】【分析】【详解】∵12,∴3<m<4,故选B.【点睛】的取值范围是解题关键.10.D解析:D【解析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.11.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.B解析:B【解析】根据题意,易得B.二、填空题13.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①② 由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2,即4a <1, 解得,a<4.故答案是:a<4.14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±,,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:17.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A (-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.18.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a >b∴﹣4a<﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都解析:<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.19.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.20.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.三、解答题21.12 xy=⎧⎨=-⎩.【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】方程组整理得:321 432x yx y+=-⎧⎨+=-⎩①②,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.【解析】【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠CPE -∠DPE =∠β-∠α;当点P 在B 、O 两点之间时,∠CPD =∠α-∠β.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.23.(1)21x y =⎧⎨=-⎩;(2)m=6,n=4 【解析】【分析】先解关于x,y 的方程组,再代入其他方程,再解关于m,n 的方程组.【详解】解:(1)由13x y x y +=⎧⎨-=⎩得, 21x y =⎧⎨=-⎩ , (2)把21x y =⎧⎨=-⎩代入含有m,n 的方程,得 224213m n n m -=⎧⎨-+=⎩ , 解得64m n =⎧⎨=⎩【点睛】本题考核知识点:解方程组.解题关键点:熟练解方程组.24.(1)甲商品每件17元,乙商品每件12元;(2)①最多可采购甲商品20件;②购买方案有四种,方案一:甲商品20件,乙商品10件,此时花费为:20×17+10×12=460(元); 方案二:甲商品19件,乙商品11件,此时花费为:19×17+11×12=455(元); 方案三:甲商品18件,乙商品12件,此时花费为:18×17+12×12=450(元); 方案四:甲商品17件,乙商品13件,此时花费为:17×17+13×12=445(元). 即购买甲商品17件,乙商品13件时花费最少,最少要用445元.【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以解答本题.【详解】解:(1)设甲商品每件x 元,乙商品每件y 元,10153501510375x y x y +=⎧⎨+=⎩, 解得,1712x y =⎧⎨=⎩, 即甲商品每件17元,乙商品每件12元;(2)①设采购甲商品m 件,17m+12(30-m )≤460,解得,m≤20,即最多可采购甲商品20件;②由题意可得,204305m m m ≤⎧⎪⎨-≤⎪⎩, 解得,216203m ≤≤, ∴购买方案有四种, 方案一:甲商品20件,乙商品10件,此时花费为:20×17+10×12=460(元), 方案二:甲商品19件,乙商品11件,此时花费为:19×17+11×12=455(元), 方案三:甲商品18件,乙商品12件,此时花费为:18×17+12×12=450(元), 方案四:甲商品17件,乙商品13件,此时花费为:17×17+13×12=445(元). 即购买甲商品17件,乙商品13件时花费最少,最少要用445元.【点睛】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.25.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a∥b(已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。
江苏省苏州市2021年七年级下学期数学期末考试试卷(I)卷

江苏省苏州市2021年七年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·富顺期中) 下列各式中,正确个数是()① ;② ;③ 的平方根是;④ 的算术平方根是;⑤ 是的平方根.A . 1个B . 2个C . 3个D . 4个2. (2分) (2019七下·广丰期末) 下面四个图形中∠1与∠2为互为对顶角的说法正确的是()A . 都互为对顶角B . 图1、图2、图3中的∠1、∠2互为对顶角C . 都不互为对顶角D . 只有图3中的∠1、∠2互为对顶角3. (2分)下列调查中适合采用全面调查的是()A . 调查市场上某种白酒的塑化剂的含量B . 调查鞋厂生产的鞋底能承受弯折次数C . 了解某火车的一节车厢内感染禽流感病毒的人数D . 了解某城市居民收看辽宁卫视的时间4. (2分) (2017七下·海珠期末) 下列不等式中一定成立的是()A . 5a>4aB . ﹣a>﹣2aC . a+2<a+3D . <5. (2分)是整数,则正整数的最小值是()A . 4B . 5C . 6D . 76. (2分)如图:一条公路两次转弯后又回到原来的方向(即AB∥CD),如果第一次转弯时的∠B=140°。
那么∠C应是()A . 40°B . 140°C . 100°D . 180°7. (2分)在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则()A . y=5x-3B . y=-x-3C . y=5x+3D . y=-5x-38. (2分) (2018八上·江都月考) 在平面直角坐标系中,点P(-2,5)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分) (2019七下·确山期末) 已知方程组的解为则的立方根是()A . -2B . 2C .D .10. (2分)下列语句中正确的是()A . 的平方根是9B . 的平方根是±9C . 的算术平方根是±3D . 9的算术平方根是3二、填空题 (共6题;共6分)11. (1分)(2017·白银) 估计与0.5的大小关系是: ________0.5.(填“>”、“=”、“<”)12. (1分)一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为________ ,频率为________ .13. (1分) (2020七下·仁寿期中) 不等式的非负整数解为________ .14. (1分) (2020七下·温州期中) 已知:是二元一次方程ax+by=2的一组解,且ab=3,则a2+b2=________。
苏教版初一数学下册期末试卷及答案 苏教版初一数学下册

苏教版初一数学下册期末试卷及答案苏教版初一数学下册苏教版初一数学下册期末的考试大家有把握吗?下面小编给大家分享一些苏教版初一数学下册的期末试卷及答案,大家快来跟小编一起看看吧。
苏教版初一数学下册期末试卷一、选择题(每小题2分,共12分)1.下列计算错误的是(▲)A.B.C.D.2.下列各式从左到右的变形,是因式分解的是(▲)A.;B.;C.;D.;3.若方程组的解满足,则的取值是(▲)A.﹦-1B.﹦1C.﹦0D.不能确定4.不等式组中两个不等式的解集在数轴上可表示为(▲)A.B.C.D.5.下列命题:①同旁内角互补,两直线平行;②若=,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是(▲)A.4个B.3个C.2个D.1个6.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为(▲)A.10B.8C.6D.4二、填空题(每小题3分,共24分)7.生物具有遗传多样性,遗传信息大多储存在DNA分子上。
一个DNA分子的直径约为0.0000003㎝,这个数用科学记数法可表示为㎝,则=_▲.8.若一个多边形的内角和等于外角和的2倍,则该多边形是__▲___边形.9.如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A﹦▲°.10.若,,则=▲.11.若,则﹦▲.12.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为▲.13.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了__▲__场.14.若多项式加上一个含字母的单项式,就能变形为一个含的多项式的平方,则这样的单项式为▲.三、解答题:(本题满分64分)15.计算、化简:(本题满分6分,每小题3分)(1)计算:;(2)化简:16.因式分解:(本题满分6分,每小题3分)(1)(2)17.(本题满分6分)完成以下证明,并在括号内填写理由:已知:如图,∠EAB=∠CDF,CE∥BF.求证:AB∥CD.证明:∵CE∥BF(),∴∠CDF=∠C(),∵∠EAB=∠CDF,∴∠_____=∠______(),∴AB∥CD().18.解方程组或不等式组:(本题满分8分,每小题4分) (1)(2),并写出它的整数解.19.(本题满分7分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,连接BD.(1)利用三角板在图中画出△ABD中AB边上的高,垂足为H.(2)①画出将先向右平移2格,再向上平移2格得到的;②平移后,求线段AB扫过的部分所组成的封闭图形的面积.20.(本题满分7分)第31届夏季奥林匹克运动会将于2016年8月5日——21日在巴西的里约热内卢举行,小明在网上预订了开幕式和闭幕式两种门票共10张,其中开幕式门票每张700元,闭幕式门票每张550元.(1)若小明订票总共花费5800元,问小李预定了开幕式和闭幕式的门票各多少张?(2)若小明订票费用不到6100元,则开幕式门票最多有几张?21.(本题满分8分)如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于点F,∠1+∠2=90°,试猜想:直线AB、CD在位置上有什么关系?∠2和∠3在数量上有什么关系?并证明你的猜想.22.(本题满分8分)已知,关于x,y的方程组的解满足.(1)求a的取值范围;(2)化简.23.(本题满分8分)△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=40º,求∠BAC的度数.苏教版初一数学下册期末试卷参考答案选择题ACADBB填空题7.78.六9.5410.11.12.28°13.714.三、解答题15.(1)-22;(2)16.(1);(2)17.略(每空1分)18.(1)(2),整数解为1,2.19.(1)如图(2分);(2)如图(3分);(3)9(2分).20.(1)开幕式门票2张,闭幕式门票8张;(4分)(2)最多3张.(3分)21.AB‖CD,∠2+∠3=90°(各4分,其中结论1分,理由3分).22.(1)(5分,其中解方程组正确得2分,解不等式组正确得3分);(2)3(3分).23.(1)∠AOC=∠ODC(猜想正确得1分,理由正确得2分);(2)①略(2分);②80°(3分,若只有结果无过程只得1分).一数学下册期末试卷大家做好了吗?看完以上为大家整理的资料之后是不是意犹未尽呢?小编为大家进一步推荐初一的其他课程视频学习,高分也能轻松拿哦。
江苏省苏州市立达中学校2023-2024学年七年级下学期期中数学试题(解析版)

苏州市立达中学校2023-2024学年度第二学期期中考试试卷初一数学一、选择题1. 下列等式从左到右的变形中,属于因式分解的是( )A. x 2-6x =x (x -6)B. (x +3)2=x 2+6x +9C. x 2-4+4x =(x +2)(x -2)+4xD. 8a 2b 4=2ab 2·4ab 2【答案】A【解析】【详解】分析:直接利用因式分解的定义分析得出答案.详解:A 、x 2-6x=x (x-6),正确;B 、(x+3)2=x 2+6x+9,是多项式的乘法运算,故此选项错误;C 、x 2-4+4x=(x+2)(x-2)+4x ,不符合因式分解的定义,故此选项错误;D 、8a 2b 4=2ab 2·4ab 2,不符合因式分解的定义,故此选项错误.故选A .点睛:此题主要考查了分解因式的定义,正确把握定义是解题关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查整式混合运算,涉及同底数幂的乘法、单项式乘以单项式、积的乘方、幂的乘方及同底数幂的除法运算等知识,根据整式相关运算法则逐项验证即可得到答案,熟记底数幂的乘法、单项式乘以单项式、积的乘方乘方、幂的乘方及同底数幂的除法运算法则是解决问题的关键.【详解】解:A 、由同底数幂的乘法运算法则可知,,计算错误,不符合题意;B 、由单项式乘以单项式运算法则可知,,计算错误,不符合题意;C 、由积乘方、幂的乘方运算法则可知,,计算错误,不符合题意;D 、由同底数幂的除法运算法则可知,,计算正确,符合题意;故选:D .的326a a a ⋅=236m n m n ⋅=+()32528b b -=-()32()a a a -÷-=3256a a a a ⋅=≠2366m n mn m n ⋅=≠+()3265288b b b -=-≠-()32()a a a -÷-=3. 若二次三项式是一个完全平方式,则的值为( )A. 6B. C. D. 12【答案】C【解析】【分析】本题主要考查了完全平方式,根据题意可知两平方项分别为,据此可得一次项可以为,由此可得答案.【详解】解:∵二次三项式是一个完全平方式,∴,∴,故选:C .4. 若等腰三角形的两边长分别为和,则它的周长为( )A. B. 或 C. D. 以上都不对【答案】C【解析】【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【详解】解:当是腰时,3+3<8,不符合三角形三边关系,故舍去;当是腰时,周长;故它的周长为.故选:C .【点睛】本题考查等腰三角形,三角形三边的关系,注意分类讨论思想的应用和三角形三边关系是解题的关键.5. 一个多边形的边数每增加一条,这个多边形的( )A. 内角和增加360°B. 外角和增加360°C. 对角线增加一条D. 内角和增加180°【答案】D【解析】【详解】因为n 边形的内角和是(n ﹣2)•180°,当边数增加一条就变成n +1,则内角和是(n ﹣1)•180°,236x mx ++m 6±12±226x ,12x ±222366x mx x mx ++=++2612mx x x =±⋅⋅=±12m =±3cm 8cm 14cm14cm 19cm 19cm 3cm 8cm ()88319cm =++=19cm内角和增加:(n ﹣1)•180°﹣(n ﹣2)•180°=180°;故选D .6. 若一个三角形的3个外角的度数之比,则与之对应的3个内角的度数之比为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了三角形的外角及其性质及三角形的外角与它相邻的内角互补的知识,设三角形的3个外角度数分别为、、,根据三角形的外角及其性质解出三角形的3个外角度数分别为、、,再求出对应的内角,即可得出对应的3个内角的度数之比.【详解】解:设三角形的3个外角度数分别为、、,根据题意得,解得,所以三角形的3个外角度数分别为、、,则对应的三角形的3个内角度数分别为、、,所以对应的3个内角的度数之比为.故选:C .7. 某小区有一正方形草坪,如图所示,小区物业现对该草坪进行改造,将该正方形草坪边方向的长度增加4米,边方向的长度减少4米,则改造后的长方形草坪面积与原来正方形草坪面积相比( )A. 增加8平方米B. 增加16平方米C. 减少16平方米D. 保持不变【答案】C【解析】【分析】本题考查根据图形列代数式解决实际问题,涉及平方差公式、整式减法运算等知识,读懂题意,准确表示出改造前后的长方形草坪面积与原来正方形草坪面积,利用整式运算求解即可得到答案,利用代数式表示出图形面积是解决问题的关键.【详解】解:如图所示:2:3:43:2:44:3:25:3:13:1:52x 3x 4x 80︒120︒160︒2x 3x 4x 234360x x x ++=︒40x =︒80︒120︒160︒100︒60︒20︒100:60:205:3:1︒︒︒=ABCD AB AD设正方形草坪的边长为米,则由题意可知,,,,,即改造后的长方形草坪面积与原来正方形草坪面积相比减少16平方米,故选:C .8. 在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记;.已知,则的值是( )A. 4B. 5C. D. 【答案】B【解析】【分析】本题考查多项式乘以多项式、整式的加减,由系数可知,再根据题中新定义,将已知等式左边展开化简,然后使常数项相等即可求解.【详解】解:∵系数为5,∴,∴,ABCD x 4AE x =-4AG x =+2S x ∴=正方形()()24416S x x x =+-=-矩形()221616S S x x ∴-=--=正方形矩形∑1123...(1)n k k n n ==++++-+∑()()()()334...n k x k x x x n =+=+++++∑()()221570n k x k x k xmx =⎡⎤+-+=+-⎣⎦∑m 5-4-2x 6n =2x 6n =()()21nk x k x k =⎡⎤+-+⎣⎦∑(2)(1)(3)(2)(4)(3)(5)(4)(6)(5)x x x x x x x x x x =+-++-++-++-++-()()()()2222226122030x x x x x x x x x x =+-++-++-++-++-25570x x =+-∵,∴,故选:B .二、填空题9. 微电子技术使半导体材料的精细加工尺寸大幅度缩小,某种电子元件的面积大约为平方毫米,数据用科学记数法表示为 _____________.【答案】【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解.故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10. 计算的结果是______.【答案】【解析】【分析】本题主要考查了同底数幂乘法的逆运算,积的乘方的逆运算,把原式先变形为,进一步变形得到,据此求解即可.【详解】解:的()()221570nk x k x k x mx =⎡⎤+-+=+-⎣⎦∑5m =0.000000650.0000006576.510-⨯10n a -⨯70.00000065 6.510-=⨯76.510-⨯10n a -⨯110a ≤<()2021202320222 1.513⎛⎫⨯⨯- ⎪⎝⎭1.5-()202120212113.5.51⎛⎫⎝⨯⨯⨯- ⎪⎭()20212 1.51153.⎛⎫⨯⨯- ⎪⨯⎝⎭()2021202320222 1.513⎛⎫⨯⨯- ⎪⎝⎭()202120212113 1.5.5⎛⎫=⨯⨯⨯- ⎪⎝⎭()20212 1.511.53⎛⎫=⨯⨯- ⎪⨯⎝⎭,故答案为:.11. 若,则的取值范围是______.【答案】【解析】【分析】本题主要考查了零指数幂,根据零指数幂有意义的条件是底数不为0进行求解即可.【详解】解:∵,∴,∴,故答案为;.12. 若2x ﹣y =3,xy =3,则=_____.【答案】21【解析】【分析】首先将已知条件平方,进而将已知代入求出答案.【详解】解:∵2x ﹣y =3,∴,∵xy =3;∴=9+4xy =21;故答案为:21.【点睛】本题主要考查完全平方公式,熟记公式及用整体代入求值是解题的关键.13. 已知,则的值为______.【答案】【解析】【分析】本题主要考查了整式的化简求值,先求出,再利用平方差公式,完全平方公式和单项式乘以多项式的计算法则去括号后,合并同类项,最后利用整体代入法代值计算即可得到答案.【详解】解:∵,()20211511.⨯=⨯-1.5=- 1.5-()021b +=b 2b ≠-()021b +=20b +≠2b ≠-2b ≠-224y x +()2222494x y x xy y --+==224y x +230x x --=()()()()2215222x x x x x +-+++-823-=x x 230x x --=∴,∴.14. 如图,是的中线,是的中线,于点.若,,则长为______.【答案】9【解析】【分析】本题考查了三角形的面积、三角形的中线的性质等知识,由,,推出再根据三角形的面积公式即可得出答案【详解】解:∵是的中线,∴,∵是的中线,∴,∴,,∴,23-=x x ()()()()2215222x x x x x +-+++-222441524x x x x x =++--+-25x x =-+35=+8=AD ABC BE ABD △EFBC ⊥F 36ABC S =△4EF =BC 12ABD ABC S S = 12BDE ABD S S = 1136944BDE ABC S S ==⨯=△△AD ABC 12ABD ABC S S = BE ABD △12BDE ABD S S = 1136944BDE ABC S S ==⨯=△△12BDE S BD EF =⋅△192BD EF ⋅=即,解得:,∴,故答案为:9.15. 如图,AB ∥DE ,∠ABC =80°,∠CDE =150°,则∠BCD 的度数为_____°.【答案】50【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B =∠BCF ,∠CDE+∠DCF =180°,根据已知条件等量代换得到∠BCF =80°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:如图,过点C 作FG ∥AB ,因为FG ∥AB ,AB ∥DE ,所以 FG ∥DE ,所以∠B =∠BCF ,(两直线平行,内错角相等 )∠CDE+∠DCF =180°,(两直线平行,同旁内角互补)又因为∠B =80°,∠CDE =150°,所以∠BCF =80°,(等量代换)∠DCF =30°,(等式性质)所以∠BCD =50°.故答案为:50.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.16. 如图,将纸片沿折叠,使点落在四边形内点的位置,则与之间的数量关系为______.1492BD ⨯⨯=92BD =9BC =ABC DE A BCDE A 'A ∠12∠+∠【答案】【解析】【分析】本题主要考查了折叠的性质,三角形外角的性质,先由折叠的性质,再由三角形外角的性质可得,,由此即可得到.【详解】解:由折叠的性质知:.由三角形的外角性质知:,;∴,即.故答案为:.17. 如图,在同一平面内,于点于点,连接平分交于点,点为延长线上一点,连接,下列结论:①;②;③;④;⑤若,则,正确的有______.【答案】①②③④【解析】【分析】本题主要考查了平行线的性质与判定,三角形外角的性质,三角形内角和定理,由垂直可得,即可证明①;根据条件证明,即可证明②;根据角平分线的性质和第②问的结论即可证明③;根据角平分线的性质和即可证明④;根据题中条件找到即可证明⑤.【详解】解:∵,,∴,∴,故①正确;122A∠+∠=∠DAE DA E '∠=∠1EAA EA A ''∠=∠+∠2DAA DA A ''∠=∠+∠122A ∠+∠=∠DAE DA E '∠=∠1EAA EA A ''∠=∠+∠2DAA DA A ''∠=∠+∠122DAE DA E DAE '∠+∠=∠+∠=∠122A ∠+∠=∠122A ∠+∠=∠AB BC ⊥,B DC BC ⊥C ,AD DE ADC ∠BC E F CD ,AF BAF EDF ∠=∠BAD ADF ∠=∠AF ED ∥2ADC F ∠=∠1902CED ADC ∠+∠=︒13ADE BAD ∠=∠160AFD BED ∠+∠=︒AB CD EDA DAF ∠=∠DC BC ⊥23ADC BAD ∠=∠AB BC ⊥DC BC ⊥AB CD BAD ADF ∠=∠∵,,∴,∴,故②正确;∴,∵平分,∴,∴,∴,故③正确;∵,∴,∵平分,∴,∴,故④正确;∵,∴,∵,平分,∴,∴,∴,∴,∵,平分,∴,,∴,∴,故⑤错误;故答案为;①②③④.BAF EDF ∠=∠BAD ADF ∠=∠EDA DAF ∠=∠AF ED ∥CDE F ∠=∠DE ADC ∠CDE ADE ∠=∠ADE F ∠=∠2ADC F ∠=∠DC BC ⊥90CED CDE ∠+∠=︒DE ADC ∠CDE ADE ∠=∠1902CED ADC ∠+∠=︒AB CD 180BAD CDA ∠+∠=︒13ADE BAD ∠=∠DE ADC ∠23ADC BAD ∠=∠21803BAD BAD ∠+∠=︒108BAD ∠=︒72ADC ∠=︒2ADC F ∠=∠DE ADC ∠36ADE CDE ∠==︒∠36F ∠=︒126BED CDE DCE ∠=+=︒∠∠162AFD BED ∠+∠=︒18. 当______时,代数式的值为1.【答案】或或【解析】【分析】本题主要考查了有理数的乘方计算和零指数幂,根据1的任何次方都为1,负1的偶次方为1 ,非零底数的零指数结果为1进行求解即可.【详解】解:当,即时,原式,符合题意;当,即时,原式,符合题意;当,即时,原式,符合题意;综上所述,当或或时,代数式的值为1.故答案为:或或.三、解答题19. 计算:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【解析】【分析】本题主要考查了乘法公式,零指数幂,负整数指数幂,积的乘方和同底数幂乘除法计算:(1)先计算积的乘方,同底数幂乘除法,最后合并同类项即可得到答案;(2)先计算零指数幂,负整数指数幂和乘方,再计算加减法即可得到答案;(3)先根据完全平方公式和平方差公式去括号,然后合并同类项即可得到答案;(4)先把原式变形为,然后利用完全平方公式和平方差公式进行计算即可得到x =()201623x x ++1-2-2016-231x +==1x -120162015111-+===231x +=-2x =-()()220162014111-+=-=-=20160x +=2016x =-()02016231=-⨯+==1x -2x =-2016x =-()201623x x ++1-2-2016-()32248232a a a a a -+⋅-÷()30202213.1412π-⎛⎫--- ⎪⎝⎭()()()2223a b b a a b +---()()33x y x y +--+626a -8-22568a ab b -+-2269x y y -+-()()33x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦答案.【小问1详解】解:;【小问2详解】解:;【小问3详解】解;;【小问4详解】解:.20. 把下列各式因式分解:(1);(2);(3)(4)()32248232a a a a a -+⋅-÷666272a a a =-+-626a =-()30202213.1412π-⎛⎫--- ⎪⎝⎭181=--8=-()()()2223a b b a a b +---()2222469a b a ab b =-+--+2222469a b a ab b =-+-+-22568a ab b =-+-()()33x y x y +--+()()33x y x y =+---⎡⎤⎡⎤⎣⎦⎣⎦()223x y =--()2269x y y =--+2269x y y =-+-2425x -269a a -+2464x -22344ab a b b --【答案】(1)(2)(3)(4)【解析】【分析】本题主要考查了分解因式:(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因数4,再利用平方差公式分解因式即可;(4)先提取公因式,再利用完全平方公式分解因式即可.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:;【小问4详解】解:.21. 如图,在每个小正方形边长为1的方格纸内将经过一次平移后得到,图中标出了点的对应点.根据下列条件,利用格点和直尺画图:()()2525x x +-()23a -()()444x x +-()22--b a b b -2425x -()()2525x x =+-269a a -+()23a =-2464x -()2416x =-()()444x x =+-22344ab a b b --()2244b a ab b =--+()22b a b =--ABC A B C ''' B B '(1)补全;(2)利用格点在图中画出边上的高线;【答案】(1)见解析(2)见解析【解析】【分析】本题考查作图—平移变换,画三角形的高:(1)根据点B 和点的位置确定平移方式为向左平移5个单位长度,向下平移2个单位长度,据此找到A 、C 对应点的位置,然后顺次连接即可得到答案;(2)根据网格的特点结合三角形高的定义作图即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:如图所示,即为所求;22. (1)已知,求的值.(2)已知,求的值.【答案】(1);(2)【解析】【分析】本题主要考查了幂的乘方及其逆运算,同底数幂乘法及其逆运算:A B C ''' AC BE B 'A C ''、A B C '''、、A B C ''' BE 233m n +=927m n ⋅105,106x y ==3210x y +274500(1)根据幂的乘方的逆运算法则得到,进而根据同底数幂乘法计算法则把原式变形为,据此代值计算即可;(2)先由幂的乘方计算法则得到,再根据同底数幂乘法的逆运算法则得到,据此代值计算即可.详解】解:(1)∵,∴;解:∵,∴,∴,∴.23. 如图,AD ⊥BC ,垂足D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C +∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.【答案】(1)详见解析;(2)EF ⊥BC ,证明详见解析.【解析】【分析】(1)根据垂直的定义得到∠1+∠C =90°,等量代换得到∠1=∠ADE ,于是得到结论;(2)等量代换得到∠2=∠ADE ,根据平行线的性质即可得到结论.【为2392733m n m n ⋅=⋅233m n +321012536x y ==,1022331100x x y y +=⋅10233m n +=927m n⋅()()2333m n=⋅2333m n=⋅233m n+=33=27=105,106x y ==()()3232105106x y ==,321012536x y ==,1022331101253645000x y x y +⋅=⨯==10【详解】(1)证明:∵AD ⊥BC ,∴∠1+∠C =90°,∵∠C +∠ADE =90°,∴∠1=∠ADE ,∴DE ∥AC ;(2)解:EF ⊥BC ,理由:∵∠1=∠2,∠1=∠ADE ,∴∠2=∠ADE ,∴EF ∥AD ,∴∠EFD =∠ADC =90°,∴EF ⊥BC .【点睛】本题主要考查了垂直的定义及平行线的性质与判定,关键是根据“同角的余角相等”来得到角的等量关系,进而求证问题.24. (1)填空:,,,……(2)探索(1)中式子的规律,试写出第个等式,并说明第个等式成立;(3)计算【答案】(1)见解析;(2)详见解析;(3)【解析】【分析】此题主要考查了探寻数列规律问题.(1)根据乘方的运算法则计算即可;(2)根据式子规律可得,然后利用提公因式可以证明这个等式成立;(3)设题中的表达式为,再根据同底数幂的乘法得出的表达式,相减即可.【详解】(1).(2)第个等式为:左边右边左边右边.(3)设( )1022___2-==( )2122___2-==( )3222___2-==n n 0123100022222++++⋯+100121-11222n n n ---=12n -a 2a 10021132222212,22422,22842-=-=-=-=-=-=n 11222n n n ---= ()111222212n n n n ---=-=-=12n -=∴=11222n n n --∴-=0123100022222a =++++⋯+则②-①得:故:.25. 先阅读后解题:若,求m 和n 的值.解:等式可变形为:即,因为,,所以,即,.像这样将代数式进行恒等变形,使代数式中出现完全平方式的方法叫做“配方法”.请利用配方法,解决下列问题:(1)已知的三边长a ,b ,c 都是正整数,且满足,则的周长是______;(2)求代数式的最小值是多少?并求出此时a ,b 满足的数量关系;(3)请比较多项式与的大小,并说明理由.【答案】(1)9(2)3, (3),理由见解析【解析】【分析】(1)根据配方法,可得a ,b 的值,在根据三角形三边的关系,可得c 的值,根据三角形的周长,可得答案;(2)根据配方法,可得非负数的和,根据非负数的性质,可得答案;(3)根据多项式的减法计算,然后根据配方法化简多项式的差,可得结论.【小问1详解】123100122222a =+++⋯+100121a =-0123100010012222221a =++++⋯+=-2226100m m n n ++-+=2221690m m n n +++-+=()()22130m n ++-=()210m +≥()230n -≥10m +=30n -=1m =-3n =ABC 222216330a b a b +--+=ABC 2244487a b ab a b ++--+234x x +-2223x x +-22b a +=234x x +-<2223x x +-222216330a b a b +--+= ()()221240a b ∴-+-=已知的三边长a ,b ,c 都是正整数,的周长是故答案为:【小问2详解】当时,的最小值为3【小问3详解】【点睛】本题考查了非负数的性质,利用配方法得出非负数的和是解题关键.26. 数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时,利用几何直观的方法和面积法获取结论,在解决整式运算问题时经常运用.()()210240a b -≥-≥ ,()10240a b ∴-=-=,14a b ∴==, ABC 35c ∴<<4c ∴=∴ABC 1449++=92244487a b ab a b ++--+()()22427b a b a =+-++()2223b a =+-+()220b a +-≥ ∴22b a +=2244487a b ab a b ++--+234x x +-()2223x x +--2234223x x x x =+---+21x x =-+-213024x ⎛⎫=---< ⎪⎝⎭∴234x x +-<2223x x +-【问题探究】探究1:如图1所示,大正方形的边长是,它是由两个小正方形和两个长方形组成,所以大正方形的面积等于这四个图形的面积之和.根据等积法,我们可以得出结论:探究2:请你根据探究1所使用的等积法,从图2中探究出的结果.【形成结论】(1)探究2中 ;【应用结论】(2)利用(1)问所得到的结论求解:已知,,求的值;【拓展应用】(3)在(2)的条件下,求的值.【答案】(1) ;(2);(3)【解析】【分析】本题主要考查了完全平方公式在几何图形中的应用,熟练掌握完全平方公式,采用数形结合的思想,准确进行计算是解此题的关键.(1)根据大正方形的面积为大正方形边长的平方,也可以表示为几个小正方形和长方形的面积之和,由此即可得出答案;(2)结合(1)中的公式进行计算即可;(3)先求出,再结合,进行计算即可得出答案.【详解】解:(1)由图可得:()a b +()2222a b a ab b +=++()2a b c ++()2a b c ++=0a b c ++=2224a b c ++=ab bc ca ++22222222a b b c c a a ab b ++++222222a b c ab bc ac +++++2ab bc ca ++=-222222222a b b c c a a ab b ++=++2222224a b b c c a ++=c a b =--大正方形的边长为,故大正方形的面积为,大正方形的面积还可以表示为,,故答案为:;(2),,,;(3) ,,,,,,即,,.27. 已知,如图,,直线交于点,交于点,点是线段上一点,分别在射线上,连接平分平分.()a b c ++()2a b c ++222222a b c ab bc ac +++++()2222222a b c a b c ab bc ac ∴++=+++++222222a b c ab bc ac +++++0a b c ++= 2224a b c ++=()()()22222044ab bc ca a b c a b c ∴++=++-++=-=-2ab bc ca ∴++=-()2222222222222ab bc ca a b b c c a ab c abc a bc ++=+++++ ()2222222222222a b b c c a ab bc ca ab c abc a bc∴++=++---()()222abc a b c =--++420abc =-⨯4=0a b c ++= c a b ∴=--2224a b c ++=Q ()2224a b a b ∴++--=222224a b ab ++=222a b ab ∴++=22222222422a b b c c a a ab b ++∴==++AB CD MN AB M CD N E MN ,P Q ,MB ND ,,PE EQ PF ,MPE QF ∠DQE ∠(1)如图1,当时,求的度数;(2)如图2,求与之间的数量关系,并说明理由.【答案】(1)(2),理由见解析【解析】【分析】(1)延长交于,设,交于点,设,则,根据可表示出,进而根据三角形内角和推论表示出,进而表示出,在和中,由三角形内角和得出关系式,进一步得出结果;(2)类比(1)的方法过程,即可得出结果.【小问1详解】解:延长交于,设,交于点,如图所示:平分,设,则,,,,,,平分,,在和中,,,PE QE ⊥PFQ ∠PEQ ∠PFQ ∠135︒2180PFQ PEQ ∠∠-=︒PE CD G PE FQ H 2APE α∠=12FPH APE ∠∠α==AB CD PGQ ∠EQD ∠EQH ∠EQH △PFH △PE CD G PE FQ H PF Q MPE ∠2APE α∠=12FPH APE ∠∠α==∥ AB CD 2PGQ APE ∠∠α∴==PE QE ⊥ 90QEH QEG ∠∴==︒902EQD QEG PGQ ∠∠∠α∴=+=︒+QF DQE ∠1452EQH EQD ∠∠α∴==︒+EQH △PFH △=180HEQ HQE EHQ ∠+∠+∠︒180FPH FHP PFH ∠∠∠++=︒,,即,,故答案为:;【小问2详解】解:延长交于,设,交于点,如图所示:平分,设,则,,,,,平分,,和中,,,,,即,.【点睛】本题考查了平行线性质,角平分线定义,三角形内角和定理及其推论等知识,解决问题的关键数形结合,准确找出各个角度之间的和差倍分关系列方程.在PHF EHQ ∠∠=HEQ HQE FPH PFH ∠∠∠∠∴+=+9045PFH αα∠︒+︒+=+135PFH ∠∴=︒135︒PE CD G PE FQ H PF Q MPE ∠2APE α∠=12FPH APE ∠∠α==∥ AB CD 2PGQ APE ∠∠α∴==180GEQ PEQ ∠∠=︒- 1802EQD QEG PGQ PEQ ∠∠∠∠α∴=+=︒-+QF DQE ∠119022HQE EQD PEQ ∠∠α∠∴==︒+-EQH △PFH △=180PEQ HQE EHQ ∠+∠+∠︒180FPH FHP PFH ∠∠∠++=︒PHF EHQ ∠∠=PEQ HQE FPH PFH ∠∠∠∠∴+=+1902PEQ PEQ PFQ ∠α∠α∠+︒+-=+2180PFQ PEQ ∠∠∴-=︒。
苏教版七年级数学下册期末考试卷(参考答案)

苏教版七年级数学下册期末考试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则a-不一定是负数D.零既不是正数也不是负数5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.下列说法正确的是( )A .如果一个数的立方根等于这个数本身,那么这个数一定是零B .一个数的立方根和这个数同号,零的立方根是零C .一个数的立方根不是正数就是负数D .负数没有立方根8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.如图,A α∠=,,ABC ACD ∠∠的平分线相交于点1P ,11,PBC PCD ∠∠的平分线相交于点2P ,2P BC ∠,2PCD ∠的平分线相交于点3P ……以此类推,则n P ∠的度数是___________(用含n 与α的代数式表示).3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是________.4.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x ,y 的方程组mx 7234ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,求m ,n 的值.3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、C6、B7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、12nα⎛⎫ ⎪⎝⎭34、2 35、316、4.三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、m=5 n=13、72°4、(1)60°;(2)50°;(3)18021nα︒--或18021nα︒-+5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)玲玲到离家最远的地方需要12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:15千米/时;(4)10千米/时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市2010-2011学年度第二学期期末试卷初一数学
班级初一( _____)学号______ 姓名_______ 成绩_______
一、填空题(每题2分,共20分)
1.计算:22xx_______.
2.在显微镜下,一种细胞的截面可以近似地看成圆,它的半径约为0. 000 000 78m,用科学记
数法,我们可以把0. 000 000 78m写成_______m.
3.据统计,某市今年参加初三毕业考试的学生为48000人.为了了解全市初三考生毕业考试数学
考试情况,从中随机抽取了600名考生的数学成绩进行统计分析,在这个问题中,样本容量是
________.
4.计算:100101144_______.
5.计算:2a·22na_______.(n是整数)
6.若方程组71axbyaxby的解是21xy,则ab_______.
7.一个多边形的每一个外角都是60°,则这个多边形的内角和为________°.
8.若x-y=2,xy=3,则x2y-xy2=________.
9.若 =ab-c,ac bd=ad-bc,则 × 3x 2x_______.
10.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c
中的∠CFE的度数是_______°.
二、选择题(每题3分,共24分,请将答案填写在表格中)
题号 11 12 13 14 15 16 17 18
答案
11.下列各计算中,正确的是( )
A.824aaa B.336xxx
C.2m·35mm D.336aa
12.下列四种说法;①为了了解某批灯泡的使用寿命可以用普查的方式;②“在同一年出生的367
名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是
随机事件;④如果一个事件发生的概率只有十亿分之一,那么它是不可能事件.其中,正确的说
法是( )
A.②④ B.①② C.③④ D.②③
13.某人不慎将一块三角形的玻璃摔碎成如下图所示的四块(即图中标有1、2、3.,4的四块),
你认为将其中的哪一块带去玻璃店,就能配一块与原来形状相同的三角形玻璃.应该带( )
A.第1块 B.第2块 C.第3块 D.第4块
14.如下图,AB=DB,∠1=∠2,添加了下面的条件但仍不能判定....△ABC≌△DBE的是( )
A.BC=BE B.∠ACB=∠DEB C.∠A=∠D D.AC=DE
15.如图,DE∥BC,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A的度数是 ( )
A.60° B.50° C.40° D.不能确定
16.如图,与左边正方形图案属于全等的图案是( )
17.某中学七年级—班40名同学为灾区捐款,共捐款2000元,捐款情况如下表:
由于疏忽,表格中捐款40元和50元的人数忘记填写了,若设捐款40元的有x名同学,捐款50
元的有y名同学,根据题意,可得方程组( )
A.2240502000xyxy B.2250402000xyxy
C.2240501000xyxy D.2250401000xyxy
18.若关于x,y的二元一次方程组331224717xykxyk的解满足不等式x<0,y>0,则k的取值范
围是( )
A.-7
19.计算:(每小题3分,共6分)
(1)2301253 (2)33a·452aa
20.因式分解:(每小题3分,共6分)
(1) x2+5x+6 (2) ac-bc+3a-3b
21.(本题4分)先化简,再求值:(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),其中x=13.
22.解方程组:(每小题4分,共8分)
(1)34536xyxy (2)57213xyxzyz
23.(本题4分)学习了统计知识后,某班的数学老师要求学生就本班同学的上学方式进行一次调
查统计,下图是通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列
问题:
(1)该班共有_______名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中:“乘车”部分所对应的圆心角的度数是_______°;
(4)若全年级有700名学生,估计该年级骑自行车上学的学生人数大约是_______人.
本班同学上学方式条形统计图 本班同学上学方式扇形统计图
24.(本题5分)如图,已知:AB=AC,BD=CD,E为AD上一点,求证:
(1) △ABD∽△ACD;
(2) ∠BED=∠CED.
25.(本题4分)如图,∠DBC和∠ECB是△ABC的两个外角.
(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(保留作图痕迹,不写画法)
(2)过点P分别画AB、AC、BC的垂线段PM PN、PQ,垂足为M、N、Q;
(3)垂线段PM、PN、PQ相等吗?(直接给出结论,不需说明理由)
26.(本题6分)先阅读下面的内容,再解决问题,
例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2—6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
问题(1)若x2+2y2-2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c
的取值范围.
27.(本题6分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种
无盖的长方体纸盒.(长方形的宽与正方形的边长相等)
(1)现有正方形纸板50张,长方形纸板100张,若要做竖式纸盒个x,横式纸盒y个.
①根据题意,完成以下表格:
②若纸板全部用完,求x、y的值;
(2)若有正方形纸板90张,长方形纸板a张(a是整数),做成上述两种纸盒,纸板恰好全部用完.已
知16428.(本题7分)如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线
OM上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交
的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.
xkb1.com