反演变换

合集下载

阿波罗尼斯问题详细解答

阿波罗尼斯问题详细解答

――――――阿波罗尼斯问题详细解答1序号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 附录目录内容阿波罗尼斯是一个什么样的人?什么是阿波罗尼斯问题?阿波罗尼斯问题有多少个子问题?怎样作一条线段的垂直平分线?怎样过线段上一点作该线段的垂线?怎样过圆上一点作该圆的切线?怎样作两个圆的公切线?什么叫反演变换?怎样作反演圆内一点的反演点?怎样作反演圆外一点的反演点?怎样作一条直线的反演图形?怎样作一个圆的反演图形?怎样才能让一条直线经过反演变换后保持不变?怎样才能让一个圆经过反演变换后保持不变?怎样作线段 a、b 的比例中项 c?什么叫圆的幂?怎样作出圆的幂?什么是圆的根轴(或等幂轴)?怎样作出圆的根轴?什么是圆的根心?怎样作出圆的根心?什么叫相(位)似中心?怎样作出相(位)似中心?什么叫相(位)似点?什么叫正相(位)似点?什么叫逆相似点?什么叫两圆周的共同幂?什么叫相似轴?怎样作出相似轴?阿波罗尼斯问题之一:点点点阿波罗尼斯问题之二:线线线阿波罗尼斯问题之三:点线线阿波罗尼斯问题之四:点点线阿波罗尼斯问题之五:点点圆阿波罗尼斯问题之六:点圆圆阿波罗尼斯问题之七:点线圆阿波罗尼斯问题之八:线圆圆阿波罗尼斯问题之九:线线圆阿波罗尼斯问题之十:圆圆圆米勒问题和米勒定理页码 03 03 03 03 04 04 05 06 06 06 07 08 10 10 10 11 11 13 13 14 16 17 17 18 19 22 26 31 35 41 47 55 692第 01 个问题: 阿波罗尼斯是一个什么样的人? 阿波罗尼斯,Apollonius,有时也翻译为“阿波罗尼奥斯”,古希腊大数学家,生活在公 元前 260 年到公元前 190 年,著有《论相切》和《圆锥曲线》。

第七讲 分式线性变换

第七讲  分式线性变换

第七讲 分式线性变换 形如()(,,,0)az b f z a b c d adbc cz d+=∈-≠+£且的分式函数,即等价于 :f →#,az b z w cz d +→=+为分式线性变换. f 是£上的双射.设()az b w f z cz d +==+,1()b dw z f w z cw a --=⇒=-,即1()dw b f w cw a --+=-. 1f -也是分式线性变换.特别地,11(0)()lim (0)()lim z z b f d az b af cz d c b f a dw b d f cw a c →∞--→∞⎧=⎪⎪+⎪∞==⎪+⎨⎪=-⎪⎪-+⎪∞==--⎩1 反演变换形如1w z=的变换,称为反演变换(如图7.1). 2 相似变换(1)平移变换:(),()f z z h h =+∈£(如图7.2).(2)旋转变换:(),()i f z e z θθ=⋅∈¡(如图7.3).(3)伸缩变换:(),(0)f z rz r =>(如图7.4).综上:相似变换统一写成arg ()()i k f z kz h k e z h =+=⋅+.引理1形如()(,,,0)az b f z a b c d ad bc cz d+=∈-≠+£且的分式线性变换必是一系列相似变换与反演变换的复合;反过来,相似变换与反演变换的复合也是某个分式线性变换.证明:(⇒) case1:0()az b a b c f z z d d d+=⇒==+是相似变换. case2:10()bc ad a c f z c cz d c-≠⇒=⋅++,即如下复合: 111bc ad bc ad a z cz d cz d c cz d c cz d c --→+→→⋅→⋅++++ (⇐) 设''()''a zb g zc zd +=+,要证()gf z 也是分式线性变换.经过计算,得 ('')('')()('')('')aa cb z ba db gf z ac bd z bc db +++=+++ 为分式线性变换.证毕.反演变换的性质✓ 保圆周性定理2 分时线性变换()az b f z cz d+=+将圆周(或直线)映为圆周(或直线). 证:(方法一)Q ()az b f z cz d +=+是1w z=和w kz h =+的复合而成的 ∴只需讨论1w z =或w kz h =+的形式,其中,后一情形显然.只讨论1w z=的情形. 圆周曲线的方程为0Azz Bz Bz C +++=其中,2,,A C B AC ∈>¡.(当0A =时,是直线方程).代入1w z=得到 0Cww Bw Bw A +++=依然为圆周曲线的方程.得证.(方法二)(1)圆周方程也可写为0z z r -=如图7.5,在反演变换1w z=下,像可写为 case1:圆周不过原点0z ≠(即0z r ≠)时,像为0222200z r w z r z r -=--依然是圆周曲线的方程. case2:圆周过原点0z =(即0z r =),像为001z w z w +=01(Re())2z w =,得证.(2)直线方程0(,,,)ax by c z x iy a b c ++==+∈¡,即Re(())a ib z c -=-,在反演变换下:case1:当0c ≠时,像是圆周曲线22a ib a ib w c c--+=. case2:当0c =时,像是直线Re(())0a ib w +=.✓ 保交比性定义 在£中取1234,,,(,,1,2,3,4)i j z z z z z z i j ≠=,则交比314112344232(,,,):z z z z z z z z z z z z --=--. 注:若4z =∞,则31123432(,,,)z z z z z z z z -=-. 保交比性 分时线性变换()az b f z cz d +=+,设()(1,2,3,4)i i w f z i ==,则 12341234(,,,)(,,,)w w w w z z z z =.ex1: 已知圆周11z -=上有三点1230,2,1z z z i ===+(如图7.6),求()az bf z cz d+=+使得1(0),(1),(2)12i f f i f -=∞+==. 解:由保交比性得1(,1,,)(0,2,1,)2i w i z -∞=+,即 110(1)0::112(1)212z i i w z i -+-=---+--(3)4()(1)i z f z i z --⇒=-.✓ 保边界性复函数()w f z =,其定义域D 为区域,则值域()f D 也是区域;设D ∂是D 的边界,则()f D ∂是()f D 的边界.若指定D ∂定向,则()f D ∂保持定向.注:沿区域D 的边界行走时,区域D 总在左边(如图7.7).ex2:如图7.8,设1{|Im 0},()D z z f z z=>=,求()f D . 解:D 边界{}D ∂=实数轴,()f D ∂也是()f D 的边界,由1w z =知()f D D ∂=∂,所以()f D 边界仍为实轴.D ∂Q 定向从左到右,由1w z=知()f D ∂定向从右到左()f D ⇒必是下半平面.✓ 保对称性称平面上的点12,z z 关于圆周或直线C 对称,设12,z z ∈£,case1:当C 为直线时,12,z z 关于C 对称,即通常意义下是镜像对称; case2:当C 为圆周时, C 的方程为0z z r -= 12,z z 关于C 对称21020012()(),,z z z z r z z z ⇔--=⇔三点一线,并且他们之间的距离满足21020z z z z r -⋅-=.若()az b f z cz d +=+且12,z z 关于C 对称,则12(),()f z f z 关于()f C 对称.ex3:求()az b f z cz d+=+满足 ()0,arg '(),{|Im 0},(){|1}2f i f i D z z f D w w π==-=>=<(如图7.9).解: i -Q 与i 关于实轴对称,由保对称性()f i -与()f i 关于()f D 对称()f i ⇒-=∞可推出()()k z i f z z i-=+ 由保边界性,0D ∈∂Q 故(0)()f f D ∈∂,即(0)1f =(0)(0)0k i f k i-==-+Q (0)1f k ∴== ∴可设i k e θ=,则()()i e z i f z z i θ-=+ 22'()()i i f z e z i θ∴=⋅+代入z i =得 ()21'()()arg '()222i i i f z e e f z πθθπθ-=-=⇒=- 由条件得01k θ=⇒= ()z i f z z i-∴=+. 更一般的变换()w f z =在D 上解析且'()0,f z z D ≠∀∈,称:()f D f D →为解析变换.✓ 保角性如图7.10,θ是曲线12,C C 在点P 处的夹角,则12(),()f C f C 在点()f P 处的夹角也是θ.设曲线[]0:(),,,()C z z t t P z t αβ=∈=,在点P 处的切线方向为0000'()|'()'()'()t t z t z t x t iy t ==+@,设曲线°[]:(),,C z z t t αβ=∈%%,曲线°C在点P 处的切线方向为 0'()z t % C ∴与°C 在点P 处的夹角0'()z t @与0'()z t %的夹角θ,即00'()arg '()z t z t θ=%,如图7.11. 设:()f D f D →解析变换(也就是解析函数),f 在0z z =处满足0'()0f z ≠,同上,设°,C C 在0z z =处相交(记号同上)如图7.12解析函数()w f z =是C 对应的方程,有000000'()'(())'()arg '()arg '()arg '()w t f z t z t w t f z z t =⋅⇒=+ (1)解析函数°()w f z =%是°C对应的方程,有 °°000000'()'(())'()arg '()arg '()arg '()w t f z t z t w t f z z t =⋅⇒=+%%% (2) 上(1)(2)两式相减得°0000'()'()arg arg '()'()w t z t w t z t =% 由定义°0000'()arg '()'()arg '()w t w t z t z t ϕθ⎧=⎪⎪⎨⎪=⎪⎩% 由上式得θϕ=,该性质称为保角性.注:00'()0arg '()f z f z ≠⇒有定义.引理1 设()w f z =在D 上解析且'()0,f z z D ≠∀∈,则f 在D 上每点保角. 注:若f 是D 上单叶解析函数,则:()f D f D →称为共形映射(保形映射).。

阿波罗尼斯问题详细解答

阿波罗尼斯问题详细解答

――――――阿波罗尼斯问题详细解答1目序号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 附录 内 阿波罗尼斯是一个什么样的人? 什么是阿波罗尼斯问题? 阿波罗尼斯问题有多少个子问题? 怎样作一条线段的垂直平分线? 怎样过线段上一点作该线段的垂线? 怎样过圆上一点作该圆的切线? 怎样作两个圆的公切线? 什么叫反演变换? 怎样作反演圆内一点的反演点? 怎样作反演圆外一点的反演点? 怎样作一条直线的反演图形? 怎样作一个圆的反演图形? 容录页码 03 03 03 03 04 04 05 06 06 06 07 08 10 10 10 11 11 13 13 14 16 17 17 18 19 22 26 31 35 41 47 55 69怎样才能让一条直线经过反演变换后保持不变? 怎样才能让一个圆经过反演变换后保持不变? 怎样作线段 a、b 的比例中项 c? 什么叫圆的幂?怎样作出圆的幂? 什么是圆的根轴(或等幂轴)?怎样作出圆的根轴? 什么是圆的根心?怎样作出圆的根心? 什么叫相(位)似中心?怎样作出相(位)似中心? 什么叫相(位)似点?什么叫正相(位)似点?什么叫逆相似点? 什么叫两圆周的共同幂? 什么叫相似轴?怎样作出相似轴? 阿波罗尼斯问题之一:点点点 阿波罗尼斯问题之二:线线线 阿波罗尼斯问题之三:点线线 阿波罗尼斯问题之四:点点线 阿波罗尼斯问题之五:点点圆 阿波罗尼斯问题之六:点圆圆 阿波罗尼斯问题之七:点线圆 阿波罗尼斯问题之八:线圆圆 阿波罗尼斯问题之九:线线圆 阿波罗尼斯问题之十:圆圆圆 米勒问题和米勒定理2第 01 个问题: 阿波罗尼斯是一个什么样的人? 个问题: 阿波罗尼斯是一个什么样的人? 阿波罗尼斯,Apollonius,有时也翻译为“阿波罗尼奥斯” ,古希腊大数学家,生活在公 元前 260 年到公元前 190 年,著有《论相切》和《圆锥曲线》 。

反演变换在调和函数研究中的应用

反演变换在调和函数研究中的应用

反演变换在调和函数研究中的应用赵天玉;刘庆【摘要】反演变换也称逆矢径变换,有着比较独特的几何性质,是一种有效的数学方法,其应用十分广泛.首先给出了反演变换的定义,然后利用反演变换和凯尔文(Kelvin)变换重点讨论了调和函数的一些性质及其应用,并给出了8个相关命题及其证明.【期刊名称】《长江大学学报(自然版)理工卷》【年(卷),期】2009(006)003【总页数】4页(P1-4)【关键词】反演变换;调和函数;凯尔文(Kelvin)变换【作者】赵天玉;刘庆【作者单位】长江大学信息与数学学院,湖北,荆州,434023;长江大学信息与数学学院,湖北,荆州,434023【正文语种】中文【中图分类】O174反演变换也称逆矢径变换,有着比较独特的几何性质,在几何[1,2]、复变函数[3]和求解静电场的电位分布中有广泛的应用[4~6]。

实际上,在求解球形域和圆形域内调和方程第一边值问题的格林函数时,就用到了反演变换[7]。

研究调和函数的性质时也常常用到反演变换。

笔者首先给出了反演变换的定义,然后利用反演变换和凯尔文(Kelvin)变换重点讨论了调和函数的一些性质及其应用。

定义1 设T为空间R3上的一一变换,记以O为球心,R为半径的球面为B(O,R),对空间中异于O的点A,在OA或OA的延长线上取一点A′,使得:OA·AO′=R2在T变换下,点A对应点A′,则称T为关于球面B(O,R)的空间反演变换,记作A′=T(A)。

相应地,称点A′为点A关于球面B(O,R) 的反演点,称B(O,R)为反演球面,O为反演中心,R为反演半径。

显然,点A也是点A′的反演点,称点A和点A′关于球面B(O,R)互为反演点。

规定:球心O与无穷远点关于球面B(O,R)互为反演点。

在球面坐标下,设球心O在原点,点A的坐标是(r,θ,φ),ρ=R2/r,点A′的坐标是(ρ,θ,φ),则点A′就是点A关于球面B(O,R)的反演点。

反演变换

反演变换
,
经 反演 变换后
,
还在 该 直 线上
,
.
当确 定 反 演 幂 之
除 中心外
,
,
直 线上所 有 的点
.
构 成无 数对 对合 点
而 以 直 线 与基 圆的二 个 交 点为 不
变点
属双 曲型 对合
2
.
不 过 反 演 中心 的 直 线
,
它的 反象 是 过 反演 中心 的 圆
.
(图 4 )
设 O 为 反演 中心
,
,
是 关于④ O 的 反演 对应 点
当M 二 M 时
为 二重 点
图 3
.
落在 ④ O 上
6
.
故 ④ S 上 任一点 的对 应点 都在 原 圆 S 上
,
同时 正 交于反演 基圆 的二 圆
, 2 ,
当它们 相 交时


,
交点 互 为反 演点 联 O A 与0 5
’. :
.
设④ S 与 0 5 同时 与 0 0 正 交 交 于 A扩


2
在 直线
.
M
,
在 同一反 演变 换 中
不 共 线的 任二对 反 演对应 点 必共 圆

(共 线是 共 圆的极 限
3
情况)
4
.
通 过 任 一 对 反 演 点 的 圆 都 和 反演 基 圆 正 交


过关于 反演 基 圆 O 的 一对 反演 点 A 过 中心 O 引④ S 的切 线 O尸
,
A

作圆 S
,
,
是 关于④ O 的 反演 对应 点
当M 二 M 时

中心反演对称操作在三维空间中的变换矩阵

中心反演对称操作在三维空间中的变换矩阵

一、概述在三维空间中,中心反演是一种重要的几何变换。

它可以通过对空间中的点进行对称操作来实现。

在数学和物理学领域中,我们经常需要研究和理解各种几何变换的性质和特点。

中心反演作为一种特殊的几何变换,其变换矩阵对于研究和应用具有重要意义。

本文将介绍中心反演在三维空间中的基本概念和变换矩阵。

二、中心反演的定义中心反演是以空间中的一点为中心进行的一种对称操作。

设空间中有一点O,对于任意点A,通过中心O将点A映射到A',使得OA·OA' = r^2,其中r为一个正常数。

三、中心反演的性质1. 保角性:中心反演保持角度不变;2. 保长度性:中心反演不改变线段长度;3. 点的关系:若A在中心O的反演点为A',则A'为A的反演点。

四、中心反演的变换矩阵在三维空间中,中心反演的变换矩阵可以表示为一个3×3的矩阵。

设中心O的坐标为(a, b, c),则点A(x, y, z)关于中心O的反演点A'的坐标可以用变换矩阵表示为:A' = (1/|OA|^2) * (x-a, y-b, z-c)其中|OA|表示向量OA的模长。

可以看出,中心反演的变换矩阵与点A的坐标有直接关系,它描述了点A经过中心反演后的位置变化。

五、中心反演的应用1. 几何学中的应用:中心反演可以用来解决一些几何问题,如寻找平面图形的对称轴、确定空间中点的位置关系等;2. 物理学中的应用:在物理学中,中心反演常用于分析光学、电磁学等领域的问题,例如研究透镜成像、电场分布等。

六、结论本文介绍了中心反演在三维空间中的变换矩阵及其应用。

中心反演作为一种重要的几何变换,在数学和物理学领域中具有广泛的应用价值。

希望通过本文的介绍,读者能对中心反演有更深入的理解,并能将其应用到实际问题中去。

七、中心反演的数学性质除了上文提到的性质,中心反演还有一些重要的数学性质,这些性质在研究中心反演的变换矩阵和应用中起着重要作用。

6-2拉普拉斯变换的反演

[ p 2 y( p) py(0) y(0)] 2[ py( p) y(0)] y( p) 0
( p 2 2 p 1) y( p) y(0) 0 (0) y 解得 y ( p) ( p 1) 2
反演
y(t ) y(0)tet
将t=1,y=2代入
再由位移定理
et f (t )≒ f ( p )
p t t cos t e sin t e ≓ ≓ ( p )2 2 ( p )2 2 e ap 例4:求 的原函数。 p ( p b) e ap e ap 1 p( p b) p pb 1 e ap ∵ ≓ H (t a) ≓ e bt pb p t e ap b ( t ) d ∴ ≓ 0 H ( a)e p ( p b)
ey(0) 2 y(0) 2e1

y(t ) 2tet 1
三、黎曼—梅林反演公式:
1 a i pt f (t ) f ( p ) e dp a i 2i Re s[ f ( p)e pt ]
全平面
p=σ+iω在p平 面上应用留 数定理
§6.2 拉普拉斯变换的反演
求拉普拉斯变换的反演即为在已知像函数情况下 求原函数(即为求反演积分)。我们分不同情况按 下述方法来求。 一、 有理分式反演法 若像函数是有理分式,只要把有理分式分解为分 项分式之和,然后利用拉氏变换的基本公式,就 能得到相应的原函数。
p 3 2 p 2 9 p 36 例1 :(P96)求 f ( p) 的原函数。 4 p 81
解:(分解成分项分式,再利用典型结果) ∵p4-81=(p2+9)(p+3)(p-3)

【2-平几】1. 配极与反演变换 1【学生版】

课程类型数学
“平面几何配极与反演变换1”
讲义编号:
配极与反演一般在难度较高的竞赛中才会涉及,但了解其特性对于理解平面几何最基本两种元素:直线与圆的关系非常有帮助。

所以仍然希望学生能有所涉猎。

1.调和线束:
定义1.1:设A、B、C、D是同一直线上一次排列的四个点,若AC AD
CB DB
,则称A、B、C、D为调和点列,或称
点C、D调和分割线段AB(易知这和“点A、B调和分割线段CD”是等价的)。

由定义容易得出如下结论:第四调和点唯一
由定义我们有两个基本图形:
图 1 基本图形1
基本图形1:若已知E、B调和分割线段AR,F、P调和分割线段BC。

连接AC、PE交于D。

则有结论EC、BD、
AF 、PR 共点。

证明:设EC 与PR 交于O ,我们证明BOD 共线即可:
已知 BA BR AE RE
= 又PE 截ABC ,有
1EA BC PD AB CP DE
⋅⋅= PR 截EBC ,有1CP BR EO PB RE OC
⋅⋅= 将以上三式带入,整理有1CB PD EO BP DE OC ⋅⋅=,为直线DB 截ECP ,所以BOD 共线
基本图形2:若AD 平分∠BAC ,AE 为∠BAC 外角平分线,则有结论B 、D 、C 、E 为调和点列
图 2 基本图形2
定义1.2:若从直线外一点P 引射线P A 、PB 、PC 、PD ,则称他们为调和线束。

我们有结论任意一条直线与调和线束相交则交点四点组成调和点列。

给出证明:设APB α∠=,BPC β∠=,CPD γ∠=。

拉普拉斯变换性质及反演


b p a
p f( ) a
数学物理方法
(7)卷积定理
若 f1 ( p) L[ f1 (t )] , f 2 ( p) L[ f 2 (t )]
t
则 L[ f1 (t )* f 2 (t )] f1 ( p) f 2 ( p) ,其中 积。 在傅里叶变换中我们定义了两个函数的卷积: f1 (t ) * f 2 (t ) f1 ( ) f 2 (t )d
a y ( p) y ( p) 2 2 p p 1
1 1 解得 y ( p ) a ( 2 4 ) p p
1 3 从而 y (t ) a (t t ) 6
数学物理方法
(三)黎曼-梅林反演公式* 在 上两种方 法都不能 求出原函 数 时 , 原 则 上 总 是 可 以 采 用
n
数学物理方法
(4)相似性定理
1 p L[ f (at )] f ( ) a a
(5)位移定理 L[ e t f( t) f ( ] p 请大家仿照傅里叶积分变换验证。
)
计算 eat cos t , e at sin t , eat cht , eat sht 的拉普拉斯变换函数。 解:略。 例 6.2.6
e ap 1 解:由于 的原函数为 H (t ) ,应用延迟定理有 p p 1 的原函数为 H (t a) ,又由位移定理有 的原函 pb bt 数为 e 。应用卷积定理,有
t e ap 1 L [ ] H ( a)e b (t ) d 0 p ( p b)
t 1 1 L [ 2 ] ( )et d t 1 et 0 p p 1 1
6.3 拉普拉斯变换的反演
数学物理方法

反演原理及公式介绍

反演原理及公式介绍反演原理是数学中的一种重要方法,广泛应用于物理学、工程学、金融数学、计算机科学等领域。

它主要是通过将问题的解嵌套在另外一个问题的解中,从而通过求解后者来得到前者的解。

反演原理最早由法国数学家阿贝尔于1826年引入,后来经过多位数学家的发展和推广,逐渐形成了相对成熟的理论体系。

在物理学中,反演原理常被用于求解各种物理系统中的未知量,如电磁场分布、物理介质的性质等。

反演原理的应用中,最重要的是识别出一对具有对偶关系的微分方程。

一般来说,这对微分方程的形式会有所差异,它们在一方面描述了问题中未知量的演化规律,另一方面则描述了待求解未知量的变换规律。

通过将这两个方程进行适当的组合,就能够得到一个只与待求解未知量有关的微分方程,从而简化了问题的求解过程。

反演原理的核心思想是通过将问题转化为一个新的问题,从而实现问题的求解。

而这个新的问题往往具有较为简单的形式,这样就可以通过已有的数学技巧来求解。

在实际应用中,反演原理可以大大简化问题的求解过程,提高了问题的可解性。

在具体的数学表述中,反演原理可以用如下的公式来表示:设一般微分方程为F(x,y,y',y'',...)=0其对应的反演微分方程为G(x,u,u',u'',...)=0其中,y是未知函数,u是待求解函数。

反演微分方程是通过对y施加变换得到的。

具体的变换过程依赖于具体问题的性质以及反演原理的选择。

反演微分方程通常具有更简单的形式,并且可以通过已有的数学方法来求解。

将反演微分方程的解转化回原方程的解,就可以得到问题的真实解。

反演原理还有一个重要的应用是在数值方法中。

由于一些问题难以直接求解,可以通过反演原理将其转化为一个可以求解的问题,然后再通过数值方法对其进行求解。

总而言之,反演原理是一种重要的数学方法,可以将复杂的问题转化为简单的问题,从而方便求解。

它的应用广泛,不仅是物理学和数学,还包括其他科学领域和工程实践中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反演变换
定义:设在平面内给定一点O和常数k(k不等于零),对于平面内任意一点A,确定A′,使A′在直线OA上一点,并且有向线段OA与OA′满足OA·OA′=k,我们称这种变换是以O 为的反演中心,以k为反演幂的反演变换,简称反演。

称A′为A关于O(r)的互为反演点.
当k>0时,有向线段OA与OA′同向,A与A′在反演极同侧,这种反演变换称为正幂反演,亦叫双曲线式反演变换·
当k<0时,有向线段OA与OA′反向,A与A′在反演极异侧,这种反演变换称为负幂反演,亦叫椭圆式反演变换。

在某一反演变换中相互对应的两个图形互为反演图形或反象。

1数学反演变换(inversion)
正幂反演的性质:
1、反演中心不存在反演点。

不共线的两对反演点共圆,且此圆与反演基圆
正交。

与反演基圆正交的圆,其反象为原圆。

2、反演变换φ把通过反演中心O的任一条直线变成自身。

即通过反演中心
的任何直线都是该反演变换下的不变图形。

(直线→直线)
3、反演变换φ把任一条不通过反演中心O的直线变成一个通过反演中心O
的一个圆,而且这个圆周在点O的切线平行于该直线。

(直线→圆)
4、反演变换φ把任一个通过反演中心O的圆周变成一个不通过反演中心O
的一条直线,而且这条直线平行于该圆的过点O的切线。

(圆→直线)注:性质3和4互为逆命题。

5、反演变换φ把任一个不通过反演中心O的圆周变成不能过反演中心O
的圆周。

(圆→圆)
由于可以把直线看成圆周,上述性质2—5可经综合为
定理一
反演变换把(广义)圆周变成(广义)圆周。

这个定理常称为反演变换的保圆性。

6、任何两条直线在它们的交点A的夹角,等于它们的反演图形在相应点A′
的夹角,但方向相反。

7、两个相交圆周在交点A的夹角等于它们的反演图形在相应点A′的夹角,
但方向相反。

8、一条直线和一个圆周在交点A的夹角等于它们的反演图形在相应点A′
的夹角,但方向相反。

上述性质6—8可经综合为
定理二
两相交(广义)圆周在交点A的夹角,等于它们的反演象(广义)圆周在相应点A′的夹角,但方向相反。

定理二称为反演变换的反向保角性。

因反演变换具有保圆性和反向保角性而成为证题和作图中的重要工具。

由定理一、二易得:
9、正交两圆其反象仍正交。

9、相切两圆的反象仍相切,若切点恰是反演中心,则其反象为两平行线。

负幂变换可以转化为一次正幂变换和一次关于反演极反射的积来代替。

2作已知点的反演点的方法
给出反演极O和反演幂k>0,作点A的反演点A′。

令k=r^2,作出反演基圆⊙O(r),
1)若点A在⊙O(r)外,则过点A作圆的切线(两条),两个切点相连与OA 连线交点就是点A′。

2)若点A在⊙O(r)内,则把上述过程逆过来:连结OA,过点A作直线垂直于OA,直线与⊙O(r)的交点处的切线的交点就是点A′。

3)若点A在⊙O(r)上,反演点A′就是点A自身。

相关文档
最新文档