拉普拉斯变换ppt课件

合集下载

高数第10章 拉普拉斯变换PPT课件

高数第10章 拉普拉斯变换PPT课件

L [sit]n dtarc t t an arc stan
t s t2 1
s2

L [stit]n s t2 d 1 令 tt u 11 s 0 1 d u 2u 0 1 s1 d u 2u aru c0 1 s ta arnc 1 st
第三节 拉氏逆变换的运算
❖ 重点:拉氏逆变换的求法 ❖难点:拉氏逆变换的求法
5. 积分性质: L[f(t)]F(s) ,( s 0 ) ,且 f ( t ) 连续,则
L[1f(x)dx]L[f(t)]F(s)
0
s
s
性质5表明,一个函数积分后取拉氏变换,等于这个函数
的拉氏变换除以参数 s .
性质5可以推广到有限次积分的情形:
n次
t t
L[ dt dt 00
t 0
f(t)dt]Fs(ns)
(s1)2 3
(s1)2 3
24
24
f(t)e2 t co3 st3e2 t sin 3t
2
2
例2

F(s)s2
s3 3ss
的拉氏逆变换。
解: 先将F (s) 分解为两个简单分式之和,
s 3 s 3 AB s2 3 ss (s 1 )s( 2 ) s 1s 2
其中AB为待定的常数,上式两边同乘以(s1)s(2),得
1 s
1 ss
e as
1 s
n!
(s ) n1
13
et sin t
14
et cost
15
tet sint
16
tet cost
17
sht
(s )2 2
s (s )2 2
2(s ) [(s )2 2 ]2

第6章拉普拉斯变换.ppt

第6章拉普拉斯变换.ppt
Re{s} 0 而求得X(jw)
例2: x(t) eatu(t) 求拉氏变换
解:
X (s) 0 eat est dt e(sa)t

sa
0

1 sa
Re{s} 0
可见,不同的x(t)可能有相同的X(s),关键在于 收敛域不同。
收敛域(简称ROC):使拉普拉斯变换收敛 的S值的范围。ROC的图示——复平面(S平 面)。
T1
T1
T1
Re{s} 1位于ROC内 即
Re{
s}


的全部
1
s值位于
ROC

右边信号 对应 右半平面的ROC
• 性质5:如果x(t)是左边信号,且若 Re{s} 0 位于ROC内,则 Re{s} 0 的全部S值都位于 ROC内。
左边信号 : t T2 时x(t)=0, 对应 左半平面的ROC
Re{s} 1
6.1.2 零极点图
上述各X(s)称为有理的,
只要x(t)是实指数或复指数的线性组合,
N (s)
X(s)就一定是有理的
ቤተ መጻሕፍቲ ባይዱ
D(s)
对有理拉普拉斯变换,可用零极点图来形象地表示:分子
多项式的根——零点
分母多项式的根——极点
除常数因子外,零极点图+ROC就是有理拉普拉斯变换的S 平面表示。
Re{s}>-a
得所以
teatu(t) L d ds
eatu(t) L (s
(1 1s a a)2
)

1 -
(s a)2
Re{s}>-a
一般式:(当x(s)有多重极点时有用)
t n-1 eatu(t)L 1

复变函数与积分变换———拉普拉斯变换ppt

复变函数与积分变换———拉普拉斯变换ppt

对并返回结果 F ( s )。
(2) f = ilaplace (F ) 对函数 F ( s ) 进行 Laplace 逆变换, 对并返回结果 f ( t )。
22
3t 例 求函数 f ( t ) t e sin 2t
的 Laplace 变换。
解 Matlab 程序
clear; syms t; f = t*exp(3*t)*sin(2*t); F = laplace(f);
若L[f(t)]=F(s), 则有
F (s) L t f (t ) (2.6)
一般地有
F ( n ) (s) L [(t )n f (t )] (2.7)
利用(2.6) 式
【例2.3】求L[tsinkt]
2ks (答案: 2 2 2 ) (s k )
目录 上页 下页 返回 结束
2 a 2 s 【例3.5】求 L s( s2 a2 )2 t cos at
1
1 【例3.6】求 L1 ( s1)( s2)( s 3)
1 1 1 1 t 1 2t 1 3t 1 6 15 10 L s 1 s 2 s 3 e e e 6 15 10
注:书上对例4,例5,例6的计算是用“查表”的方法作 的.
目录 上页 下页 返回 结束
* 三、利用 Matlab 实现 Laplace 变换
在数学软件 Matlab 的符号演算工具箱中,提供了专用函数 来进行 Laplace 变换与 Laplace 逆变换。 (1) F = laplace (f ) 对函数 f ( t ) 进行 Laplace 变换,
输出 F=atan(1/s)
其中, atan 为反正切函数。

工程控制理论-拉普拉斯变换ppt

工程控制理论-拉普拉斯变换ppt

L
df (t) dt
sF (s)
f
(0)
证明:
L
df (t) dt
df (t) estdt 0 dt
estdf (t)
0
est f (t) s f (t)estdt sF (s) f (0)
0
0
同理,对于二阶导数的拉普拉斯变换:
L
d2 f dt
(t)
2
s2F
(s)
t
s0
2.2.4 拉普拉斯变换的基本性质
(6) 初值定理
若: L f (t) F(s)
则:
lim f (t) lim sF (s)
t 0
s
证明:根据拉普拉斯变换的微分定理,有
lim
s
0
df (t dt
拉普拉斯变换简表 (续3)
序号
原函数 f(t) (t >0)
象函数 F(s) = L[f(t)]
13
1 a
(1-e -at )
1 s(s+a)
14
1
b-a
(e -at -e -bt )
1 (s+a) (s+b)
15
1
b-a
(be
-bt
-ae
–at
)
s (s+a) (s+b)
16
sin(t + )
cos + s sin s2+2
L eat eatestdt e(sa)tdt 1
0
0
sa
2.2.3 典型时间函数的拉普拉斯变换
(5) 正弦信号函数
正弦信号函数定义:
两 e jt cost jsin t

《拉普拉斯变换 》课件

《拉普拉斯变换 》课件
详细描述
对于线性时不变控制系统,通过拉普拉斯变换分析其极点和零点,可以判断系 统的稳定性。如果所有极点都位于复平面的左半部分,则系统稳定;否则系统 不稳定。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
总结与展望
拉普拉斯变换的重要性和应用前景
拉普拉斯变换在数学、物理和工程领域中具有广泛的应用,是解决线性常微分方程 、积分方程、偏微分方程等数学问题的有力工具。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
拉普拉斯变换的运算技 巧
积分性质的运用
积分性质
如果函数f(t)的拉普拉斯变换为F(s), 那么对于任意常数a,函数f(at)的拉普 拉斯变换为aF(as)。
应用场景
在求解某些物理问题时,可能需要将 时间变量乘以常数,此时可以利用积 分性质简化拉普拉斯变换的运算。
REPORT
《拉普拉斯变换》 PPT课件
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 拉普拉斯变换的基本概念 • 拉普拉斯变换的应用 • 拉普拉斯变换的运算技巧 • 拉普拉斯变换的实例分析 • 总结与展望
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
随着科学技术的发展,拉普拉斯变换的应用 领域也在不断拓展,例如在人工智能、机器 学习、数据科学等领域中的应用前景值得关 注。
未来需要进一步加强拉普拉斯变换 的理论研究,提高其在实际问题中 的应用效果,同时探索新的应用领 域,推动科学技术的发展。

电路原理-拉普拉斯变换PPT课件

电路原理-拉普拉斯变换PPT课件

收敛域为s平面的右半平面
[ (t)] 1
s
7
例2 求单位冲激函数 (t)的拉普拉斯象函数。
解:
[ (t)] (t)estdt 0

0

(t
)e
st
dt

(t)estdt
0
0
est t0 1
收敛域包括整个s平面。
[ (t)] 1

[sint (t)] s2 2
10
2. 微分定理 (differentiation theorem)
d dt
f (t)

s
f (t) f (0 )
*证明:
d
dt
f (t)
e st d f (t )dt
0
dt
e stdf (t )
f (t)
0

f ()
f (0 )

lim sF(s)
s0
f
(0 )
lim f (t) limsF(s)
t
s0
利用初值定理和终值定理,根据已知的象函数
F(s)可直接在复频域中确定其对应原函数f(t)的初值
和终值。
21
例8 设 f (t) (1 et ) (t) 验证初值定理和终值定理。
2!
t (t)
1 s3

t (n
n1
1)!

(
t
)

1 sn
1
1 sn


t n1 (n 1)!
(t )
16
4. 时域位移定理 (time-shift theorem)

第3章 拉普拉斯变换 128页 6.1M ppt版

第3章 拉普拉斯变换 128页 6.1M ppt版

6.3 拉氏变换的性质:
揭示信号时域特性与复频域描述的关系,主要讨论 ROC
1、 线性。
ax1(t) bx2 (t) aX1(s) bX 2 (s)
ROC:包括 R1 R2
若 R1 与R2 无公共部分,则表明ax1(t) bx2 (t) 的拉氏变换不存在。
当 aX1(s) bX 2 (s) 中有零极点抵消时,ROC 可能会扩大。
第三章 拉普拉斯变换
本章要点 拉氏变换的定义——从傅立叶变换到拉 氏变换 拉氏变换与傅氏变换的关系 拉氏变换的性质,收敛域 卷积定理(S域) 系统函数和单位冲激响应
1
第六章 拉普拉斯变换
6.0 引言
第四章已经讨论过复指数信号est 是 LTI 系统的特征函数 s j ,并对
s j 的情况进行了研究,即傅立叶分析。本章对更一般的情况( s j )
7
例三: x(t) ea t eatu(t) eatu(t)
j
X (s) 0 eatestdt eatestdt
0
1 1 sa sa
( a, a)
-a
a
当 a>0 时,这两部分地收敛域有共同部分
a a
此时
X (s)
1 sa
1 sa
2a s2 a2
存在
当 a<0 时这两个 ROC 无公共区域 x(s)不存在。
立叶变换地推广。
3
如果Xx(s) 在 s j 收敛,则 即 s 可以取j
X ( j) Xx(t))eejjtdt tdt
是x(t) 的拉付氏里变叶换变换
X ( j) X (s) 表明傅立叶变换氏是拉氏变换在j 轴上的特例 s j
由傅立叶反变换得到拉斯反变换

拉普拉斯积分变换 PPT课件

拉普拉斯积分变换 PPT课件

记为 F(s) L f (t)
F(s)称为 f (t)的拉氏变换(或称为象函数)。
2
若F(s)是f (t) 的拉氏变换,则称 f (t) 为F(s)的拉 氏逆变换(或称为象原函数),记为
f (t) L1F(s)
可以看出,f (t) (t 0)的拉氏变换,实际上就是 f (t)u(t)e t 的傅氏变换。
解 Lsin kt sin ktestdt 0
e st s2 k2
(s sin
kt
k
cos kt)
0
s2
k
k2
(Re(s) 0)
同样可得余弦函数的拉氏变换:
Lcoskt
s2
s
k2
(Re(s) 0)
9
例6 求单位脉冲函数 (t) 的拉氏变换。

利用性质: f (t) (t)dt f (0) ,有

L
t 0
f
(t )dt
1 s
L
f
(t)
1 s
F (s)
这个性质表明:一个函数积分后再取拉氏 变换等于这个函数的拉氏变换除以复参数s。
20
重复应用积分性质可得:
L
t
dt
t
dt
0
0
n次
t 0
f
(t)dt
1 sn
F (s)
此外,由拉氏变换存在定理,还可以得到象函数 的积分性质:
L
7
则 f (t) 的拉氏变换
F (s) f (t) est dt 0
在半平面 Re(s) c上一定存在,右端的积分在 Re(s) c1 c 上绝对收敛而且一致收敛,并且在 Re(s) c 的半平面内,F(s)为解析函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
满足傅立叶变换的要求:
f (t)et 1 F ()eitd
2
F () 1 [ f (t)u(t)et ]eitdt
2
1
[
f
(t )e t
]eit
dt
2 0
令s i,则d ds F (s) f (t)est dt
i
0
f (t) 1 i f (s)est ds
2i i 6
1 e(sa)td[(s a)t] sa 0
1 sa
de(sa)t 1 e(sa)t
0
sa
0
1 sa
(Re s Re a)
13
例2 Heaviside阶跃 函数:
u(t)
1,
0,
t 0 t0
L [ f (t)] 1 est dt 1
0
s
(Re s 0)
14
例3 线性函数 f (t) = t (t > 0):
1
i
s2
2
(Re s 0)

[cos t] 1 ℒ [eit ] ℒ
2
[eit ]
s
s2 2
(Re s 0)
23
二 原函数导数定理:
ℒ [ f '(t)] sF (s) f (0)
ℒ [ f (n) (t)] snF (s) sn1 f (0) sn2 f '(0)
0+i
解 析 区 域
0-i
22
一 线性定理:与 Fourier 变换一样。
ℒ[c1 f1(t) c2 f2 (t)] c1F1(s) c2F2 (s)
例 ℒ [sin t] 1 ℒ [eit ] ℒ [eit ]
ℒ[est ]
1 ps
2i
(Re p Re s)
1 2i
s
1
i
s
a) t<0时,f(t)=0
b) t=0时,f(t)右侧连续,lim f (t) f (0) t 0
f (t) f (t)
t 0, f (t)为t的实变函数
0 t0
2f)(t设),单研位究阶函跃数函为数f(,tu)(ut() t)。10
t0 t0
则原函数
5
3 从傅里叶变换推导拉普拉斯变换
当 f (t)et dt为有限值时,函数f (t)u(t)et 0
的下界称为收敛横标,以0 表示。
大多数函数都满足这个充分条件。
10
s 平面
0+i
o
i s
收敛横标
0-i
11
2 定理:若f(t)满足上述条件,则像函数 F(s)在半平面Res>δ上有意义,而且是一 个解析函数。
12
三 例题 例1 指数函数 eat (a为复常数)
L [eat ] e(sa)tdt 0
第六章 拉普拉斯变换
1
本章基本要求
• 理解和掌握导数和积分的拉普拉斯变换
• 掌握有理分式反演法
• 掌握延迟定理,位移定理和卷积定理
• 理解黎曼-梅林反演公式;运算微积方法 求解微积分方程。
2
6.1 拉普拉斯变换的概念
3
一 Laplace 变换的定义
1 傅里叶变换的限制:1)函数满足狄利克雷条件
9
二 Laplace变换的存在条件 1 Laplace 变换存在的充分条件是:
(1)在 0 t < 的任一有限区间上, 除了有限个第一类间断点外,函数f(t)
及其导数是处处连续的。
(2) 存在常数 M > 0 和 0,使对 于任何t (0 t < ), 有
f (t) Met即 f (t)et M
18
一 单位阶跃函数
二 δ(t)函数
L[ (t t0 )]
0
est
(t
t0
)dt
est0
当t0 0,L[ (t)] 1
19
三 函数tn(n>-1)的拉氏变换
L[t n ] t nest dt 0
令x st,则
L[tn ]
( x)nex 0s
dx s
1 s n1
0
xnexdx
0
sa 0
1 sa
t e(sa)t
|
0
e (sa)t
0
dt
s
1 a
0
s
1
a
e (sa)t
0
d[(s
a)t]
(s
1 a)2
e(sa)t
|
0
(s
1 a)2
(Re s Re a)
同理
L [t neat
]
(s
n! a)n1
(Re s Re a)
16
例5 求 ℒ[t f (t)]
从上面推导可知,函数f(t)(t≥0)拉普 拉斯变换,实际上就是函数f(t)u(t)e-δt 的傅里叶变换。
7
4 Laplace变换的定义
设f(t)为定义在[0,∞)上的实变函数或复
值函数,若含 s i( ,为实数)( 0)
复变量的积分
f (t)est dt f (t)et dt为有限值
(n 1) s n1
20
6.3 Laplace 变换的基本性质
21
Laplace 变换F(s) 的特性:
(1) F(s) 在 Re(s)>0 的半
平面代表一个解析函数。
(2)当 | s | ,
s 平面
|Arg s| /2 - ε (ε > 0) 时:
o
F(s) 存在,
பைடு நூலகம்
且满足 lim F(s) 0 s
L [ f (t)] test dt 1 t d(est )
0
s0
1 test s
|
0
1 s
e st dt
0
1 s2
e st
0
d( st )
1 s2
est
|
0
1 s2
(Res 0)
15
例4 f (t) t eat
L[teat ]
t
e(sa)t
dt
1
t d e(sa)t
2)在(-∞,+∞)上满足
绝对可积的条件
| f (x) | dx
3)在整个数轴上有定义
实际应用中,绝对可积的条件比较强,许多 函数都不满足该条件,如正弦,余弦,阶跃, 线性函数等;另外,在无线电技术中,函数 往往以t作为自变量,t<0无意义。
4
2 拉普拉斯变换研究的对象函数
1)函数满足这样的条件:
解: dF(s) d e-st f (t)dt e-st (t) f (t)dt
ds ds 0
0
e-st t f (t)dt 0
从而 ℒ [t f (t)] (1) dF(s) ds
类推 ℒ [t n f (t)] (1)n dnF (s) ds n
17
6.2 基本函数的拉普拉斯变换
0
0
在s的某个区域内存在,则由此积分定义的
复函数
F (s) f (t)est dt 0
称为函数f(t)的Laplace变换或像函数, 记作F(s)=L[f(t)],
8
f (t) 1 i f (s)est ds
2i i
而f(t)称为F(s)的拉氏逆变换或原函数, 记作f(t)=L-[F(s)],上式也称作黎曼-梅林 反演公式。
相关文档
最新文档