高三理科数学复习教案:数列总复习

合集下载

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。

熟练运用数列的通项公式、求和公式。

能够解决数列的综合应用题。

2.能力目标提高学生分析问题和解决问题的能力。

培养学生的逻辑思维能力和创新意识。

二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。

2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。

(2)数列的项:数列中的每一个数叫做数列的项。

(3)数列的项数:数列中项的个数。

(4)数列的通项公式:表示数列中任意一项的公式。

(5)数列的分类:等差数列、等比数列、斐波那契数列等。

3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。

(2)周期性:数列中某些项的值呈周期性变化。

(3)界限性:数列的项有最大值或最小值。

4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。

5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。

(2)数列与方程:利用数列的性质解决方程问题。

(3)数列与不等式:利用数列的性质解决不等式问题。

6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。

(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。

高三一轮数列复习教案

高三一轮数列复习教案

数列第一课时 等差数列【重要知识】1.等差数列的概念:(1)一个数列{}n a :若满足1(n na a d d +-=为常数),则数列{}n a 叫做等差数列(2)等差数列的证明方法:定义法1(n n a a d d +-=为常数) 或112(2)n n n a a a n -+=+≥。

(3)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。

2.等差数列主要公式:(1)等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈; (2)两项之间的关系式:d m n a a m n )(-+= (3)前n 项和公式为:1()2n n n a a S +=1(1)2n n na d -=+3.等差数列主要性质:(1)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(2)当m n p q +=+时,则有q p nm a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=(3)若{}n a 是等差数列,232,,n n n n n S S S S S -- ,…也成等差数列,公差D=dn2。

(4)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );)1(:-=n n S S 偶奇:。

(()n n a n S 1212-=- )(5)若等差数列{}n a 、{}n b 的前n 和分别为nA ,n B ,且()nnA f nB =,则2121(21)(21)n n n n n n a n a A b n b B ---==-(21)f n =-. (6)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。

数列复习课的教案

数列复习课的教案

数列复习课的教案一、教学目标:1. 理解数列的概念和特征;2. 掌握数列的常见表示方法;3. 能够求解数列的通项公式;4. 能够应用数列解决问题。

二、教学内容:1. 数列的定义和性质;2. 数列的表示方法;3. 数列的通项公式;4. 数列的求和公式;5. 数列的应用。

三、教学过程:1. 导入(5分钟)通过提问和讲解,复习数列的概念,引导学生回忆数列的定义和性质。

2. 知识讲解(15分钟)a) 数列的表示方法:递推公式和通项公式;b) 数列的通项公式的推导方法和步骤;c) 数列的求和公式的推导方法和应用;d) 数列在实际问题中的应用。

3. 讲解例题(15分钟)通过讲解一些典型的数列例题,引导学生掌握数列的解题方法和技巧。

4. 练习巩固(20分钟)学生自主完成一些练习题,巩固数列的相关知识和解题方法。

5. 拓展延伸(10分钟)引导学生思考更复杂的数列问题,并提供一些拓展题目,激发学生的兴趣和思维。

6. 总结归纳(5分钟)对数列的相关知识点进行总结和归纳,帮助学生梳理思路,加深对数列的理解。

四、教学手段:1. 板书:列举数列的定义、性质、表示方法、通项公式和求和公式等重要概念和公式。

2. 多媒体教学:通过投影仪展示例题、解题步骤和相关应用,提高学生的理解和兴趣。

3. 互动讨论:通过提问、回答和讨论,激发学生思维,培养学生的问题解决能力。

五、教学评价:1. 课堂表现:观察学生的听讲、思考和回答问题的情况,评价学生的积极性和参与度。

2. 练习评价:对学生完成的练习题进行批改,评价学生对数列的掌握情况。

3. 问题解决能力评价:观察学生解决复杂数列问题的能力,评价学生的问题解决能力和思维发展。

六、教学反思:通过数列复习课的教学,学生对数列的概念、性质、表示方法、通项公式和求和公式等知识有了更深入的理解。

课堂中的讲解和练习巩固相结合,有效提高了学生的学习兴趣和解题能力。

但是,还需要进一步加强数列的应用训练,培养学生解决实际问题的能力。

高三数学一轮复习教案:数列

高三数学一轮复习教案:数列

数列1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和的公式,并能解决简单的实际问题.3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题.纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列与函数、三角、解析几何、组合数的综合应用问题是命题热点.从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的“知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 第1课时 数列的概念1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N*或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a1,a2,…,an…,简记为{an},其中an 是数列{an}的第 项. 2.数列的通项公式一个数列{an}的 与 之间的函数关系,如果可用一个公式an =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3.在数列{an}中,前n 项和Sn 与通项an 的关系为:数列基础知识定义项,通项数列表示法数列分类等差数列等比数列定义通项公式前n 项和公式性质特殊数列其他特殊数列求和数列4.求数列的通项公式的其它方法⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明.⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式.⑴ -,,-,…;⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3,解: ⑴ an =(-1)n ⑵ an =(提示:a2-a1=1,a3-a2=4,a4-a3=7,a5-a4=10,…,an -an -1=1+3(n -2)=3n -5.各式相加得⑶ 将1,1,2,2,3,3,…变形为∴变式训练1.某数列{an}的前四项为0,,0,,则以下各式:① an =[1+(-1)n] ② an =③ an =其中可作为{an}的通项公式的是 ( )A .①B .①②C .②③D .①②③=n a ⎪⎩⎪⎨⎧≥==21n n a n 312⨯534⨯758⨯9716⨯)12)(12(12+--n n n )673(212+-n n )673(21)43)(1(211)]53(10741[12+-=--+=-++++++=n n n n n a n Λ,213,202,211+++,,206,215,204Λ+++4)1(1222)1(111++-++=-++=n n n n n a 2222n )(11-+⎩⎨⎧)(0)(2为奇数为偶数n n解:D例2. 已知数列{an}的前n 项和Sn ,求通项. ⑴ Sn =3n -2⑵ Sn =n2+3n +1解 ⑴ an =Sn -Sn -1 (n≥2) a1=S1解得:an =⑵ an =变式训练2:已知数列{an}的前n 项的和Sn 满足关系式lg(Sn -1)=n ,(n ∈N*),则数列{an}的通项公式为 . 解:当n =1时,a1=S1=11;当n≥2时,an =Sn -Sn -1=10n -10n -1=9·10 n -1.故an =例3. 根据下面数列{an}的首项和递推关系,探求其通项公式. ⑴ a1=1,an =2an -1+1 (n≥2) ⑵ a1=1,an =(n≥2)⑶ a1=1,an = (n≥2)解:⑴ an =2an -1+1(an +1)=2(an -1+1)(n≥2),a1+1=2.故:a1+1=2n ,∴an =2n-1.⑵an =(an -an -1)+(an -1-an -2)+…+(a3-a2)+(a2-a1)+a1=3n -1+3n-2+…+33+3+1=.(3)∵∴an =变式训练3.已知数列{an}中,a1=1,an +1=(n ∈N*),求该数列的通项公式.解:方法一:由an +1=得,∴{}是以为首项,为公差的等差数列.∴=1+(n -1)·,即an =⎩⎨⎧=≥⋅-)1(1)2(321n n n ⎩⎨⎧≥+=)2(22)1(5n n n ,110101)1lg(+=⇒=-⇒=-n n n n n S S n S ⎪⎩⎪⎨⎧≥⋅=-)2(109)1(111n n n 113--+n n a 11--n a n n ⇒)13(21-nnn a a n n 11-=-⋅--⋅-=⋅⋅⋅⋅⋅-----12111232211n n n n a a a a a a a a a n n n n n n Λn n n 112123=⋅⋅⋅--Λ22+n n a a 22+n n a a 21111=-+n n a a na 1111=a 21na 12112+n方法二:求出前5项,归纳猜想出an =,然后用数学归纳证明.例4. 已知函数=2x -2-x ,数列{an}满足=-2n ,求数列{an}通项公式.解:得变式训练4.知数列{an}的首项a1=5.前n 项和为Sn 且Sn +1=2Sn +n +5(n ∈N*). (1) 证明数列{an +1}是等比数列;(2) 令f (x)=a1x +a2x2+…+anxn ,求函数f (x)在点x =1处导数f 1 (1).解:(1) 由已知Sn +1=2Sn +n +5,∴ n≥2时,Sn =2Sn -1+n +4,两式相减,得: Sn +1-Sn =2(Sn -Sn -1)+1,即an +1=2an +1 从而an +1+1=2(an +1)当n =1时,S2=2S1+1+5,∴ a1+a2=2a1+6, 又a1=5,∴ a2=11∴ =2,即{an +1}是以a1+1=6为首项,2为公比的等比数列. (2) 由(1)知an =3×2n -1 ∵ =a1x +a2x2+…+anxn ∴ =a1+2a2x +…+nanxn -1 从而=a1+2a2+…+nan=(3×2-1)+2(3×22-1)+…+n(3×2n -1) =3(2+2×22+…+n×2n)-(1+2+…+n)=3[n×2n +1-(2+…+2n)]- =3(n -1)·2n +1-+61.根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与项数之间的关系,常用的方法有观察法、通项法,转化为特殊数列法等.2.由Sn 求an 时,用公式an =Sn -Sn -1要注意n≥2这个条件,a1应由a1=S1来确定,最后看二者能否统一.3.由递推公式求通项公式的常见形式有:an +1-an =f(n),=f(n),an +1=pan +q ,分别用累加法、累乘法、迭代法(或换元法). 第2课时 等差数列1.等差数列的定义: - =d (d 为常数).12+n )(x f )(log 2n a f na f n a na n 222)(log 2log 2log 2-=-=-n a a nn 21-=-n n a n -+=12111+++n n a a )(x f )('x f )1('f 2)1(+n n 2)1(+n n nn a a 1+2.等差数列的通项公式: ⑴ an =a1+ ×d ⑵ an =am + ×d3.等差数列的前n 项和公式: Sn = = .4.等差中项:如果a 、b 、c 成等差数列,则b 叫做a 与c 的等差中项,即b = . 5.数列{an}是等差数列的两个充要条件是:⑴ 数列{an}的通项公式可写成an =pn +q(p, q ∈R) ⑵ 数列{an}的前n 项和公式可写成Sn =an2+bn (a, b ∈R)6.等差数列{an}的两个重要性质:⑴ m, n, p, q ∈N*,若m +n =p +q ,则 .⑵ 数列{an}的前n 项和为Sn ,S2n -Sn ,S3n -S2n 成 数列.例1. 在等差数列{an}中,(1)已知a15=10,a45=90,求a60; (2)已知S12=84,S20=460,求S28; (3)已知a6=10,S5=5,求a8和S8.解:(1)方法一:∴a60=a1+59d =130. 方法二:,由an =am +(n -m)d a60=a45+(60-45)d =90+15×=130.(2)不妨设Sn =An2+Bn ,∴∴Sn =2n2-17n∴S28=2×282-17×28=1092 (3)∵S6=S5+a6=5+10=15,又S6= ∴15=即a1=-5 而d =∴a8=a6+2 d =16S8=变式训练1.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10= .⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧=+==+=38382904410141145115d a d a a d a a 3815451545=--=--=a a m n a a d m n ⇒38⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A 2)10(62)(6161+=+a a a 2)10(61+a 31616=--a a 442)(881=+a a解:∵d =a6-a5=-5,∴a4+a5+…+a10=例2. 已知数列{an}满足a1=2a ,an =2a -(n≥2).其中a 是不为0的常数,令bn =.⑴ 求证:数列{bn}是等差数列.⑵ 求数列{an}的通项公式.解:∵ ⑴ an =2a -(n≥2)∴ bn = (n≥2)∴ bn -bn -1=(n≥2)∴ 数列{bn}是公差为的等差数列.⑵ ∵ b1==故由⑴得:bn =+(n -1)×=即:= 得:an =a(1+)变式训练2.已知公比为3的等比数列与数列满足,且,(1)判断是何种数列,并给出证明;(2)若,求数列的前n 项和解:1),即为等差数列。

《数列》一轮复习教学设计(理科)

《数列》一轮复习教学设计(理科)

sn
三、专题知识体系构建的方法与总体构思
1.知识结构
黄冈市 2019 届高三年级第一轮复习备考 《数列》专题复习设计
数列的概念 数列的概念与 简单表示法 数列的分类 数列的简单表示 等差数列的概念 等差数列 数 列 通项公式 前 n 项和公式 等差数列的应用 等比数列的概念 通项公式 前 n 项和公式 等比数列的应用 公式求和 分组求和 特殊数列求和 倒序相加 并项求和 裂项相消求和 错位相减求和 通项公式 列表法 图像法 递推公式
数列作为高中数学中一个独立的学习单元,其重地 位不言而喻。根据最近几年的高考命题方向来看,一直是 高考考查的重点和热点。
一、高考透视
2018 考试说明及要求 知识要求 内容 了解( A) 理解 (B) 掌握( C) 数列的概念和几种简单的表示 √ 方法(列表、图像、通项公式) 数列的概念和简单表示法 数列是自变量为正整数的一类 √ 特殊函数 等差数列、等比数列的概念 等差数列、等比数列的通项公 √ 式与前 n 项和公式 在具体的问题情境中识别数列 √ 等差数列、等比数列 的等差关系或等比关系 用等差数列、等比数列有关知 √ 识解决相应的问题 等差数列与一次函数、等比数 √ 列与指数函数的关系 √
• 读纲研题,把握主干 • 通法为主,变法为辅 回归课本,夯实基础 适度训练,巩固提高
四. 重难点知识强化
五、训练题设计与落实 具体措施
• 组题要求
• 具体措施
第二部分 微专题设计《数列求和(第二课时)》
一.教材分析
二.学情分析 三.教学目标 四.教学重难点 五.教法和学法 六.教学过程 七.教学反思
sn
近三年考试特点与命题规律
1.考查题型:一般为 2 道小题,分值为 10 分,从近几 年的考查来看,除 2017 年的第 12 题, 其它均属于中档难度

高三数学总复习数列综合题应用教案设计

高三数学总复习数列综合题应用教案设计

高三数学总复习《数列》综合题应用教案设计一、设计思想1、设计理念利用信息技术手段优化教学过程,改善教学效果。

2、设计背景在数学的教学过程中,利用传统的媒体(如黑板、粉笔等)教学已经不能适应新课改的要求,需要新的技术手段来促进教学。

3、教材的地位与作用本节教材在学生学习过数列的相关概念与公式的基础上,学习利用数列的公式解答高考题中有关数列的题。

本设计是高一下册最后一章的教学内容。

二、学习目标⑴知识与技能掌握等差数列和等比数列的通项公式和前n项和公式,能用等差数列和等比数列的通项公式和前n项和公式解答高考题中有关数列的题。

⑵过程与方法通过教师总结的一般解题方法——“六步法”,体会一般的解题过程,正确解题。

⑶情感、态度与价值观通过对数列的学习,发展数学思维。

教学重点掌握4个有关数列的公式教学难点掌握一般解题方法,正确解题。

三、教学设想:本节课采用以教为主的课堂教学模式,利用PPT讲解。

四、教学过程(一)直接导入通过说明数列在高考题中所占分值17分左右,来说明其重要性。

直接导入教学(二)复习重点四个公式(三)提出一般解题方法——六步法1.审题(注意点要标注)2.分析求什么?3.分析已知条件4.把所有已知条件化成a1、d或a1、q的形式5.解方程组,得a1、d和a1、q6.作答(四)重难点突破——09年高考试题文科数学(全国一)例题:(17)(本小题满分10分)设等差数列{an }的前项和为Sn,公比是正数的等比数列{bn}的前项和为Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an},{bn}的通项公式。

解:设{an}的公差为d,数列{bn}的公比为q>0,由题得:1+2d+q2=17 (1) q2+q+1-(3+3d)=12 (2) q>0 (3)解(1) (2) (3)得:q=2,d=2.所以,an =2n-1,bn=2n-1(五) 课堂小结利用正确的解题步骤解题。

高三数学数列知识点复习 等差数列一教案

城东蜊市阳光实验学校第三课时等差数列一、复习目的:1、理解等差数列的概念,掌握等差数列的通项公式、前n项和公式并能解决实际问题;2、理解等差中项的概念,掌握等差数列的性质并能灵敏运用。

二、重难点:理解等差数列的概念,掌握等差数列的通项公式、前n项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质,灵敏运用等差数列的性质解题.会求等差数列的公差、求项、求值、求S最值等通常运用等差数列的有关公式及其性质.和、求n三、教学方法:讲练结合,归纳总结,稳固强化。

四、教学过程〔一〕、谈最新考纲要求及高考命题考察情况,促使积极参与。

数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。

对于本节来讲,客观性题目主要考察数列、等差数列及等比数列的概念、性质、通项公式、前n项和公式等根本知识和根本性质的灵敏应用,对根本的计算技能要求比较高。

〔1〕题型以等差数列及等比数列的公式、性质的灵敏应用为主的1~2道客观题目;〔2〕关于等差数列,等比数列的实际应用问题或者者知识交汇题的解答题也是重点;〔二〕、知识梳理,方法定位〔学生完成以下填空,教师准对问题讲解〕1.等差数列的概念:假设一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d称为等差数列的公差.2.通项公式与前n项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n na a n S +=或者者d n n na S n )1(211-+=. 3.等差中项:假设b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的断定方法: ⑴定义法:d a a n n =-+1〔+∈N n ,d 是常数〕⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质: ⑴数列{}n a 是等差数列,那么数列{}p a n +、{}n pa 〔p 是常数〕都是等差数列;⑵在等差数列{}n a 中,等间隔取出假设干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷假设),,,(+∈+=+N q p n m q p nm ,那么q p n m a a a a +=+;⑸假设等差数列{}n a 的前n 项和n S ,那么⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,那么nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n,那么nn S S a S S n 1,-==-奇偶偶奇. 6.等差数列中求n S 最值的方法:〔1〕、不等式组法;〔2〕、性质法;〔3〕、二次函数配方法。

高三理科数学复习教案:数列总复习

高三理科数学复习教案:数列总复习】】欢迎来到高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:高三理科数学复习教案:数列总复习希望能为您的提供到帮助。

本文题目:高三理科数学复习教案:数列总复习高考导航考试要求重难点击命题展望1.数列的概念和简单表示法?(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);? (2)了解数列是自变量为正整数的一类函数.? 2.等差数列、等比数列?(1)理解等差数列、等比数列的概念;?(2)掌握等差数列、等比数列的通项公式与前n项和公式;?(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?(4)了解等差数列与一次函数、等比数列与指数函数的关系. 本章重点:1.等差数列、等比数列的定义、通项公式和前n 项和公式及有关性质;2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用. 仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.知识网络6.1 数列的概念与简单表示法典例精析题型一归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式:(1)7,77,777,7 777,(2)23,-415,635,-863,(3)1,3,3,5,5,7,7,9,9,【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),,79(10n-1),故an=79(10n-1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是13,35,57,,(2n-1)(2n+1),故数列的通项公式可写成an =(-1)n+1 .(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.故数列的通项公式为an=n+ .【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f(x):x 1 2 3 4 5f(x) 5 4 3 1 2对于数列{an},a1=4,an=f(an-1),n=2,3,4,,则a2 008的值是()A.1B.2C.3D.4【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an. 所以a2 008=a4=2,故选B.题型二应用an= 求数列通项【例2】已知数列{an}的前n项和Sn,分别求其通项公式:(1)Sn=3n-2;(2)Sn=18(an+2)2 (an0).【解析】(1)当n=1时,a1=S1=31-2=1,当n2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,又a1=1不适合上式,故an=(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,当n2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,又an0,所以an-an-1=4,可知{an}为等差数列,公差为4,所以an=a1+(n-1)d=2+(n-1)4=4n-2,a1=2也适合上式,故an=4n-2.【点拨】本例的关键是应用an= 求数列的通项,特别要注意验证a1的值是否满足2的一般性通项公式.【变式训练2】已知a1=1,an=n(an+1-an)(nN*),则数列{an}的通项公式是()A.2n-1B.(n+1n)n-1C.n2D.n【解析】由an=n(an+1-an)an+1an=n+1n.所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故选D. 题型三利用递推关系求数列的通项【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:(1)an+1=an1+2an;(2)an+1=2an+2n+1.【解析】(1)因为对于一切nN*,an0,因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1. 所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.【解析】因为数列{an}是首项为1的正项数列,所以anan+10,所以(n+1)an+1an-nanan+1+1=0,令an+1an=t,所以(n+1)t2+t-n=0,所以[(n+1)t-n](t+1)=0,得t=nn+1或t=-1(舍去),即an+1an=nn+1.所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n. 总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由Sn求an时,要分n=1和n2两种情况.3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.6.2 等差数列典例精析题型一等差数列的判定与基本运算【例1】已知数列{an}前n项和Sn=n2-9n.(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求 Tn的表达式.【解析】(1)证明:n=1时,a1=S1=-8,当n2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,当n=1时,也适合该式,所以an=2n-10 (nN*).当n2时,an-an-1=2,所以{an}为等差数列.(2)因为n5时,an0,n6时,an0.所以当n5时,Tn=-Sn=9n-n2,当n6时,Tn=a1+a2++a5+a6++an=-a1-a2--a5+a6+a7++an=Sn-2S5=n2-9n-2(-20)=n2-9n+40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn= ,则数列{bn}()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21202d=42.所以a1+10d=2,即a11=2.所以bn= =22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.题型二公式的应用【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.(1)求公差d的取值范围;(2)指出S1,S2,,S12中哪一个值最大,并说明理由.【解析】(1)依题意,有S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,即由a3=12,得a1=12-2d.③将③分别代入①②式,得所以-247(2)方法一:由d0可知a1a3a13,因此,若在112中存在自然数n,使得an0,an+10,则Sn就是S1,S2,,S12中的最大值.由于S12=6(a6+a7)0,S13=13a70,即a6+a70,a70,因此a60,a70,故在S1,S2,,S12中,S6的值最大.方法二:由d0可知a1a3a13,因此,若在112中存在自然数n,使得an0,an+10,则Sn就是S1,S2,,S12中的最大值.故在S1,S2,,S12中,S6的值最大.【变式训练2】在等差数列{an}中,公差d0,a2 008,a2 009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn0的最大自然数n=.【解析】由题意知又因为公差d0,所以a2 0080,a2 0090. 当n=4 015时,S4 015=a1+a4 01524 015=a2 0084 015当n=4 016时,S4 016=a1+a4 01624 016=a2 008+a2 00924 0160.所以满足条件Sn0的最大自然数n=4 015.题型三性质的应用【例3】某地区2019年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;(2)该地区9月份(共30天)该病毒新感染者共有多少人? 【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列. 所以9月10日的新感染者人数为40+(10-1)40=400(人).所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.所以后20天新感染者的人数和为T20=20390+20(20-1)2(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{an}的前n项和为Sn,若S410,S515,则a4的最大值为【解析】因为等差数列{an}的前n项和为Sn,且S410,S515,所以5+3d23+d,即5+3d6+2d,所以d1,所以a43+1=4,故a4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a +d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一等比数列的基本运算与判定【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,).求证:(1)数列{Snn}是等比数列;(2)Sn+1=4an.【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,所以(n+2)Sn=n(Sn+1-Sn).整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,故{Snn}是以2为公比的等比数列.(2)由(1)知Sn+1n+1=4Sn-1n-1 =4ann+1(n2),于是Sn+1=4(n+1)Sn-1n-1=4an(n2).又a2=3S1=3,故S2=a1+a2=4.因此对于任意正整数n1,都有Sn+1=4an.【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1 =anan+2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2an,则当f(n)最大时,n的值为()A.7B.8C.9D.10【解析】an=317(-12)n-1,易知a9=31712561,a100,00,故f(9)=a1a2a9的值最大,此时n=9.故选C.题型二性质运用【例2】在等比数列{an}中,a1+a6=33,a3a4=32,anan+1(nN*).(1)求an;(2)若Tn=lg a1+lg a2++lg an,求Tn.【解析】(1)由等比数列的性质可知a1a6=a3a4=32,又a1+a6=33,a1a6,解得a1=32,a6=1,所以a6a1=132,即q5=132,所以q=12,所以an=32(12)n-1=26-n .(2)由等比数列的性质可知,{lg an}是等差数列,因为lg an=lg 26-n=(6-n)lg 2,lg a1=5lg 2,所以Tn=(lg a1+lg an)n2=n(11-n)2lg 2.【点拨】历年高考对性质考查较多,主要是利用等积性,题目小而巧且背景不断更新,要熟练掌握.【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2++an=a1+a2++a29-n(n29,nN*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式? 【解析】由题设可知,如果am=0,在等差数列中有a1+a2++an=a1+a2++a2m-1-n(n2m-1,nN*)成立,我们知道,如果m+n=p+q,则am+an=ap+aq,而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,所以可以得出结论:若bm=1,则有b1b2bn=b1b2b2m-1-n(n2m-1,nN*)成立.在本题中则有b1b2bn=b1b2b37-n(n37,nN*).题型三综合运用【例3】设数列{an}的前n 项和为Sn,其中an0,a1为常数,且-a1,Sn,an+1成等差数列.(1)求{an}的通项公式;(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.【解析】(1)由题意可得2Sn=an+1-a1.所以当n2时,有两式相减得an+1=3an(n2).又a2=2S1+a1=3a1,an0,所以{an}是以首项为a1,公比为q=3的等比数列.所以an=a13n-1.(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.所以{bn}是首项为3,公比为q=3的等比数列.所以{bn}能为等比数列,此时a1=-2.【变式训练3】已知命题:若{an}为等差数列,且am=a,an=b(m0,nN*)为等比数列,且bm=a,bn=b(m【解析】n-mbnam.总结提高1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可知三求二,通过求和与通项两公式列方程组求解.2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a10,q1或a10,00,01时,{an}为递减数列;q0时,{an}为摆动数列;q=1时,{an}为常数列.6.4 数列求和典例精析题型一错位相减法求和【例1】求和:Sn=1a+2a2+3a3++nan.【解析】(1)a=1时,Sn=1+2+3++n=n(n+1)2.(2)a1时,因为a0,Sn=1a+2a2+3a3++nan,①1aSn=1a2+2a3++n-1an+nan+1.②由①-②得(1-1a)Sn=1a+1a2++1an-nan+1=1a(1-1an)1-1a-nan+1,所以Sn=a(an-1)-n(a-1)an(a-1)2.综上所述,Sn=【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n-32n-3}的前n项和为()A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1 【解析】取n=1,2n-32n-3=-4.故选C.题型二分组并项求和法【例2】求和Sn=1+(1+12)+(1+12+14)++(1+12+14++12n-1). 【解析】和式中第k项为ak=1+12+14++12k-1=1-(12)k1-12=2(1-12k).所以Sn=2[(1-12)+(1-122)++(1-12n)]= -(12+122++12n)]=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,,1+2+22++2n-1,的前n项和为()A.2n-1B.n2n-nC.2n+1-nD.2n+1-n-2【解析】an=1+2+22++2n-1=2n-1,Sn=(21-1)+(22-1)++(2n-1)=2n+1-n-2.故选D.题型三裂项相消法求和【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0 (nN*).(1)求数列{an}的通项公式;(2)设bn=1n(14-an)(nN*),Tn=b1+b2++bn(nN*),若对任意非零自然数n,Tnm32恒成立,求m的最大整数值.【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,所以an=8+(n-1)(-2)=10-2n.(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),所以Tn=b1+b2++bn=14[(11-13)+(12-14)++(1n-1n+2)]=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)m32 ,上式对一切nN*恒成立.所以m12-8n+1-8n+2对一切nN*恒成立.对nN*,(12-8n+1-8n+2)min=12-81+1-81+2=163,所以m163,故m的最大整数值为5.【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(nN*),则数列{cn}的前10项和为() A.A10+B10 B.A10+B102 C.A10B10 D.A10B10【解析】n=1,c1=A1B1;n2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一函数与数列的综合问题【例1】已知f(x)=logax(a0且a1),设f(a1),f(a2),,f(an)(nN*)是首项为4,公差为2的等差数列.(1)设a是常数,求证:{an}成等比数列;(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn. 【解析】(1)f(an)=4+(n-1)2=2n+2,即logaan=2n+2,所以an=a2n+2,所以anan-1=a2n+2a2n=a2(n2)为定值,所以{an}为等比数列.(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,当a=2时,bn=(2n+2) (2)2n+2=(n+1) 2n+2,Sn=223+324+425++(n+1 ) 2n+2,2Sn=224+325++n2n+2+(n+1)2n+3,两式相减得-Sn=223+24+25++2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,所以Sn=n2n+3.【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f(x)=xm+ax的导函数f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()A.nn+1B.n+2n+1C.nn+1D.n+1n【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.所以Sn=1-12+12-13+13-14++1n-1n+1=1-1n+1=nn+1.故选C. 题型二数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2019年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化. (1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,即an+1=80%an+16%=45an+425.(2)由an+1=45an+425有,an+1-45=45(an-45),又a1-45=-120,所以an+1-45=-12(45)n,即an+1=45-12(45)n,若an+135,则有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,(n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,所以n1+lg 21-3lg 24,nN*,所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以前进3步,然后再后退2步的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是() A.P(2 006)=402 B.P(2 007)= 403C.P(2 008)=404D.P(2 009)=405【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+ 3=404,P(2 009)=404-1=403.故D错.题型三数列中的探索性问题【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.(1)对nN*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;(2)若数列{bn}满足log2Cn=a1b1+a2b2++anbna1+a2++an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),,(n,bn)在同一直线上,并求此直线方程. 【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.(2)由已知有Cn=22n-3,由log2Cn的表达式可知:2(b1+2b2++nbn)=n(n+1)(2n-3),①所以2[b1+2b2++(n-1)bn-1]=(n-1)n(2n-5).②①-②得bn=3n-4,所以{bn}为等差数列.故点列(1,b1),(2,b2),,(n,bn)共线,直线方程为y=3x-4. 【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(nN*).若a11,a43,S39,则通项公式an=. 【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a11,a43,S39得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。

高三数学《数列》复习教案

1、芯衣州星海市涌泉学校等差、等比数列的概念一、 考纲要求1、理解数列的概念和几种简单的表示方法〔列表、图象、通项公式〕,理解数列是一种特殊函数。

理解通项公式的意义,理解通项公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

2、理解等差数列的概念,掌握等差数列的通项公式。

3、理解等比数列的概念,掌握等比数列的通项公式。

二、知识梳理1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N*或者者其子集{1,2,3,……n}的函数f(n).数列的一般形式为a1,a2,…,an…,简记为{an},其中an 是数列{an}的第项. 2.数列的通项公式一个数列{an}的与之间的函数关系,假设可用一个公式an =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3、数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥二、等差数列与等比数列三、 课前小题训练1、在等差数列{an}中,〔1〕假设12,3a d ==,那么10a =______,〔2〕假设 71,8,3d a =-=那么1_____a =。

2、 数列{an}为等比数列,2418,8,a a ==那么5____a =。

3、 等差数列{an}中,1251,4,33,_____3n a a a a n =+===则。

4、 在等差数列{an}中,假设345672850,_____a a a a a a a ++++=+=则。

5、 在等比数列{an}中,假设12345630,120,______a a a a a a +=+=+=则。

6、 {an}是等比数列且15,a a =23540_____x x a -+==是方程的两个根,则。

四、例题分析题型一、等差、等比数列的断定1、数列{an}满足以下条件,问数列{an}能否构成等差数列。

〔1〕na knb =+〔k,b 为常数〕〔2〕n s 为数列{an}的前n 项和,2ns an bn =+〔a,b 是常数〕。

高三数列汇编教案

高三数列汇编教案教案标题:高三数列汇编教案教学目标:1. 理解数列的概念以及数列的分类;2. 掌握数列的通项公式的推导和应用;3. 能够解决与数列相关的问题,包括数列的求和、数列的极限等;4. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 数列的概念和分类;2. 数列的通项公式的推导和应用;3. 数列求和的方法;4. 数列的极限。

教学难点:1. 数列通项公式的推导和应用;2. 数列的极限的理解和计算。

教学准备:1. 教师准备:教案、教学课件、教学素材、黑板、粉笔等;2. 学生准备:课本、笔记、计算器等。

教学过程:一、导入(5分钟)1. 教师通过提问引导学生回顾数列的概念和分类,激发学生对数列的兴趣。

二、知识讲解与展示(20分钟)1. 教师通过教学课件,详细讲解数列的概念和分类,并给出生活中的实例;2. 教师讲解数列的通项公式的推导方法,并通过例题演示;3. 教师讲解数列求和的方法,并通过例题演示;4. 教师讲解数列的极限的概念和计算方法,并通过例题演示。

三、课堂练习(15分钟)1. 学生个人或小组完成教师提供的练习题,巩固所学知识;2. 教师引导学生思考和讨论,解决练习题中的问题。

四、拓展应用(10分钟)1. 教师提供更复杂的数列问题,引导学生运用所学知识解决问题;2. 学生个人或小组完成拓展应用题,展示解题思路和结果。

五、归纳总结(5分钟)1. 教师引导学生总结本节课所学的数列相关知识;2. 教师强调数列的重要性和应用领域,并激发学生对数学的兴趣。

六、作业布置(5分钟)1. 教师布置课后作业,要求学生巩固所学知识;2. 教师提醒学生及时复习,并准备下节课的内容。

教学反思:本节课通过讲解数列的概念、分类、通项公式、求和方法和极限,引导学生理解数列的重要性和应用,培养学生的逻辑思维和问题解决能力。

同时,通过课堂练习和拓展应用,加深学生对数列的理解和掌握。

在教学过程中,教师要注重启发式教学,引导学生主动思考和解决问题,激发学生的学习兴趣和积极性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学复习教案:数列总复习】】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:高三理科数学复习教案:数列总复习希望能为您的提供到帮助。

本文题目:高三理科数学复习教案:数列总复习高考导航考试要求重难点击命题展望1.数列的概念和简单表示法?(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);? (2)了解数列是自变量为正整数的一类函数.? 2.等差数列、等比数列?(1)理解等差数列、等比数列的概念;?(2)掌握等差数列、等比数列的通项公式与前n项和公式;?(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?(4)了解等差数列与一次函数、等比数列与指数函数的关系. 本章重点:1.等差数列、等比数列的定义、通项公式和前n 项和公式及有关性质;2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用. 仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.知识网络6.1 数列的概念与简单表示法典例精析题型一归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式:(1)7,77,777,7 777,(2)23,-415,635,-863,(3)1,3,3,5,5,7,7,9,9,【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),,79(10n-1),故an=79(10n-1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是13,35,57,,(2n-1)(2n+1),故数列的通项公式可写成an =(-1)n+1 .(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.故数列的通项公式为an=n+ .【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f(x):x 1 2 3 4 5f(x) 5 4 3 1 2对于数列{an},a1=4,an=f(an-1),n=2,3,4,,则a2 008的值是()A.1B.2C.3D.4【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an. 所以a2 008=a4=2,故选B.题型二应用an= 求数列通项【例2】已知数列{an}的前n项和Sn,分别求其通项公式:(1)Sn=3n-2;(2)Sn=18(an+2)2 (an0).【解析】(1)当n=1时,a1=S1=31-2=1,当n2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,又a1=1不适合上式,故an=(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,当n2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,又an0,所以an-an-1=4,可知{an}为等差数列,公差为4,所以an=a1+(n-1)d=2+(n-1)4=4n-2,a1=2也适合上式,故an=4n-2.【点拨】本例的关键是应用an= 求数列的通项,特别要注意验证a1的值是否满足2的一般性通项公式.【变式训练2】已知a1=1,an=n(an+1-an)(nN*),则数列{an}的通项公式是()A.2n-1B.(n+1n)n-1C.n2D.n【解析】由an=n(an+1-an)an+1an=n+1n.所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故选D. 题型三利用递推关系求数列的通项【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:(1)an+1=an1+2an;(2)an+1=2an+2n+1.【解析】(1)因为对于一切nN*,an0,因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1. 所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.【解析】因为数列{an}是首项为1的正项数列,所以anan+10,所以(n+1)an+1an-nanan+1+1=0,令an+1an=t,所以(n+1)t2+t-n=0,所以[(n+1)t-n](t+1)=0,得t=nn+1或t=-1(舍去),即an+1an=nn+1.所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n. 总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由Sn求an时,要分n=1和n2两种情况.3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.6.2 等差数列典例精析题型一等差数列的判定与基本运算【例1】已知数列{an}前n项和Sn=n2-9n.(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求 Tn的表达式.【解析】(1)证明:n=1时,a1=S1=-8,当n2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,当n=1时,也适合该式,所以an=2n-10 (nN*).当n2时,an-an-1=2,所以{an}为等差数列.(2)因为n5时,an0,n6时,an0.所以当n5时,Tn=-Sn=9n-n2,当n6时,Tn=a1+a2++a5+a6++an=-a1-a2--a5+a6+a7++an=Sn-2S5=n2-9n-2(-20)=n2-9n+40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn= ,则数列{bn}()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21202d=42.所以a1+10d=2,即a11=2.所以bn= =22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.题型二公式的应用【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.(1)求公差d的取值范围;(2)指出S1,S2,,S12中哪一个值最大,并说明理由.【解析】(1)依题意,有S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,即由a3=12,得a1=12-2d.③将③分别代入①②式,得所以-247(2)方法一:由d0可知a1a3a13,因此,若在112中存在自然数n,使得an0,an+10,则Sn就是S1,S2,,S12中的最大值.由于S12=6(a6+a7)0,S13=13a70,即a6+a70,a70,因此a60,a70,故在S1,S2,,S12中,S6的值最大.方法二:由d0可知a1a3a13,因此,若在112中存在自然数n,使得an0,an+10,则Sn就是S1,S2,,S12中的最大值.故在S1,S2,,S12中,S6的值最大.【变式训练2】在等差数列{an}中,公差d0,a2 008,a2 009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn0的最大自然数n=.【解析】由题意知又因为公差d0,所以a2 0080,a2 0090. 当n=4 015时,S4 015=a1+a4 01524 015=a2 0084 015当n=4 016时,S4 016=a1+a4 01624 016=a2 008+a2 00924 0160.所以满足条件Sn0的最大自然数n=4 015.题型三性质的应用【例3】某地区2019年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;(2)该地区9月份(共30天)该病毒新感染者共有多少人? 【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列. 所以9月10日的新感染者人数为40+(10-1)40=400(人).所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.所以后20天新感染者的人数和为T20=20390+20(20-1)2(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{an}的前n项和为Sn,若S410,S515,则a4的最大值为【解析】因为等差数列{an}的前n项和为Sn,且S410,S515,所以5+3d23+d,即5+3d6+2d,所以d1,所以a43+1=4,故a4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a +d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一等比数列的基本运算与判定【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,).求证:(1)数列{Snn}是等比数列;(2)Sn+1=4an.【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,所以(n+2)Sn=n(Sn+1-Sn).整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,故{Snn}是以2为公比的等比数列.(2)由(1)知Sn+1n+1=4Sn-1n-1 =4ann+1(n2),于是Sn+1=4(n+1)Sn-1n-1=4an(n2).又a2=3S1=3,故S2=a1+a2=4.因此对于任意正整数n1,都有Sn+1=4an.【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1 =anan+2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2an,则当f(n)最大时,n的值为()A.7B.8C.9D.10【解析】an=317(-12)n-1,易知a9=31712561,a100,00,故f(9)=a1a2a9的值最大,此时n=9.故选C.题型二性质运用【例2】在等比数列{an}中,a1+a6=33,a3a4=32,anan+1(nN*).(1)求an;(2)若Tn=lg a1+lg a2++lg an,求Tn.【解析】(1)由等比数列的性质可知a1a6=a3a4=32,又a1+a6=33,a1a6,解得a1=32,a6=1,所以a6a1=132,即q5=132,所以q=12,所以an=32(12)n-1=26-n .(2)由等比数列的性质可知,{lg an}是等差数列,因为lg an=lg 26-n=(6-n)lg 2,lg a1=5lg 2,所以Tn=(lg a1+lg an)n2=n(11-n)2lg 2.【点拨】历年高考对性质考查较多,主要是利用等积性,题目小而巧且背景不断更新,要熟练掌握.【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2++an=a1+a2++a29-n(n29,nN*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式? 【解析】由题设可知,如果am=0,在等差数列中有a1+a2++an=a1+a2++a2m-1-n(n2m-1,nN*)成立,我们知道,如果m+n=p+q,则am+an=ap+aq,而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,所以可以得出结论:若bm=1,则有b1b2bn=b1b2b2m-1-n(n2m-1,nN*)成立.在本题中则有b1b2bn=b1b2b37-n(n37,nN*).题型三综合运用【例3】设数列{an}的前n 项和为Sn,其中an0,a1为常数,且-a1,Sn,an+1成等差数列.(1)求{an}的通项公式;(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.【解析】(1)由题意可得2Sn=an+1-a1.所以当n2时,有两式相减得an+1=3an(n2).又a2=2S1+a1=3a1,an0,所以{an}是以首项为a1,公比为q=3的等比数列.所以an=a13n-1.(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.所以{bn}是首项为3,公比为q=3的等比数列.所以{bn}能为等比数列,此时a1=-2.【变式训练3】已知命题:若{an}为等差数列,且am=a,an=b(m0,nN*)为等比数列,且bm=a,bn=b(m【解析】n-mbnam.总结提高1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可知三求二,通过求和与通项两公式列方程组求解.2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a10,q1或a10,00,01时,{an}为递减数列;q0时,{an}为摆动数列;q=1时,{an}为常数列.6.4 数列求和典例精析题型一错位相减法求和【例1】求和:Sn=1a+2a2+3a3++nan.【解析】(1)a=1时,Sn=1+2+3++n=n(n+1)2.(2)a1时,因为a0,Sn=1a+2a2+3a3++nan,①1aSn=1a2+2a3++n-1an+nan+1.②由①-②得(1-1a)Sn=1a+1a2++1an-nan+1=1a(1-1an)1-1a-nan+1,所以Sn=a(an-1)-n(a-1)an(a-1)2.综上所述,Sn=【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n-32n-3}的前n项和为()A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1 【解析】取n=1,2n-32n-3=-4.故选C.题型二分组并项求和法【例2】求和Sn=1+(1+12)+(1+12+14)++(1+12+14++12n-1). 【解析】和式中第k项为ak=1+12+14++12k-1=1-(12)k1-12=2(1-12k).所以Sn=2[(1-12)+(1-122)++(1-12n)]= -(12+122++12n)]=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,,1+2+22++2n-1,的前n项和为()A.2n-1B.n2n-nC.2n+1-nD.2n+1-n-2【解析】an=1+2+22++2n-1=2n-1,Sn=(21-1)+(22-1)++(2n-1)=2n+1-n-2.故选D.题型三裂项相消法求和【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0 (nN*).(1)求数列{an}的通项公式;(2)设bn=1n(14-an)(nN*),Tn=b1+b2++bn(nN*),若对任意非零自然数n,Tnm32恒成立,求m的最大整数值.【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,所以an=8+(n-1)(-2)=10-2n.(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),所以Tn=b1+b2++bn=14[(11-13)+(12-14)++(1n-1n+2)]=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)m32 ,上式对一切nN*恒成立.所以m12-8n+1-8n+2对一切nN*恒成立.对nN*,(12-8n+1-8n+2)min=12-81+1-81+2=163,所以m163,故m的最大整数值为5.【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(nN*),则数列{cn}的前10项和为() A.A10+B10 B.A10+B102 C.A10B10 D.A10B10【解析】n=1,c1=A1B1;n2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一函数与数列的综合问题【例1】已知f(x)=logax(a0且a1),设f(a1),f(a2),,f(an)(nN*)是首项为4,公差为2的等差数列.(1)设a是常数,求证:{an}成等比数列;(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn. 【解析】(1)f(an)=4+(n-1)2=2n+2,即logaan=2n+2,所以an=a2n+2,所以anan-1=a2n+2a2n=a2(n2)为定值,所以{an}为等比数列.(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,当a=2时,bn=(2n+2) (2)2n+2=(n+1) 2n+2,Sn=223+324+425++(n+1 ) 2n+2,2Sn=224+325++n2n+2+(n+1)2n+3,两式相减得-Sn=223+24+25++2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,所以Sn=n2n+3.【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f(x)=xm+ax的导函数f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()A.nn+1B.n+2n+1C.nn+1D.n+1n【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.所以Sn=1-12+12-13+13-14++1n-1n+1=1-1n+1=nn+1.故选C. 题型二数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2019年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化. (1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,即an+1=80%an+16%=45an+425.(2)由an+1=45an+425有,an+1-45=45(an-45),又a1-45=-120,所以an+1-45=-12(45)n,即an+1=45-12(45)n,若an+135,则有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,(n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,所以n1+lg 21-3lg 24,nN*,所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以前进3步,然后再后退2步的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是() A.P(2 006)=402 B.P(2 007)= 403C.P(2 008)=404D.P(2 009)=405【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+ 3=404,P(2 009)=404-1=403.故D错.题型三数列中的探索性问题【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.(1)对nN*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;(2)若数列{bn}满足log2Cn=a1b1+a2b2++anbna1+a2++an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),,(n,bn)在同一直线上,并求此直线方程. 【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.(2)由已知有Cn=22n-3,由log2Cn的表达式可知:2(b1+2b2++nbn)=n(n+1)(2n-3),①所以2[b1+2b2++(n-1)bn-1]=(n-1)n(2n-5).②①-②得bn=3n-4,所以{bn}为等差数列.故点列(1,b1),(2,b2),,(n,bn)共线,直线方程为y=3x-4. 【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(nN*).若a11,a43,S39,则通项公式an=. 【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a11,a43,S39得令x=a1,y=d得高三理科数学复习教案:数列总复习在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.21 / 21第 21 页。

相关文档
最新文档