二次函数概念优秀课件
合集下载
二次函数ppt课件

想一想 自变量的取值范围是 x>6 .
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,
《二次函数》PPT课件 图文

此式表示了两年后的产
即
y 20x2 40x 20
量y与计划增产的倍数x 之间的关系,对于x的 每一个值,y都有唯一 的一个对应值,即y是x
的函数。
式子①②③④有什么共同点?
y=6x2
d
1 2
n2
1 2
n
d
1 2
n
2
3n 2
y 20x2 40x 20
函数都是用自 变量的二次整
式表示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的 函数叫做二次函数。其中a为二次项系数,b 为一次项系数,c为常数项。
解答过程
3、若函数y=x2m+n - 2xm-n+3是以x为自变量的二次 函数,求m、n的值。
解:根据题意得
①∵
2m+n=2②∵
2m+n=1
③∵
2m+n=2
④∵
2m+n=2
⑤∵
2m+n=0
m-n=1 m-n=2
m-n=2 m-n=0 m-n=2
∴ m=1
m=1
∴
n=0
n=-1
m=4/3
∴
n=-2/3
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
数学沪教版(上海)九年级第一学期2二次函数的概念课件

【思索归纳】
定义: 一般地,解析式形如
y=ax²+bx+c (其中a、b、c是常数,且 a≠ 0)
的函数叫做二次函数.
二次函数y=ax²+bx+c 的定义域为一切实数. 遇到实际问题,具角线数 d 与边数 n 有什么关系? n边形有__n 个顶点,从一
个顶点出发,连接与这点不相 邻的各顶点,可作__(n-_3) 条对 角线.因此,n边形的对角线总 数 d =___1 n_(n-_3) _.
2
即:
➢ 通过研究函数可以帮助我们解决生活中的 问题
➢ 分享曾经用函数解决的生活问题
正比例函数 反比例函数 一次函数
函数: 在一个变化过程中,如果有两个变 量x与y, 并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么就说y 是x的函数, x是自变量.
一次函数 y=kx+b (k≠0)
函 数
(正比例函数) y=kx (k≠0)
反比例函数
y=
k x
(k≠0)
问题1: 正方体六个面 是全等的正方形,设正 方形棱长为 x,表面积为 y ,则 y 关于x 的关系式 为____. y=6x2
3、把一根 40 cm 长的铁丝分成两段,再分 别将每一段弯折成一个正方形,设其中一段 铁丝为 x cm,两个正方形的面积和为y cm 2,
则y =__4x__2_____4_0_4___x___2___y____18_x2 5x 100
4、农机厂第一个月水泵的产量为50(台)第三 个月的产量 y (台)与月平均增长率 x 之间的
26.1二次函数的概念
教学目标 :
对二次函数概念的理解。
由实际问题确定函数解析式和确定自变量的 取值范围。
二次函数(复习课)课件

详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
二次函数图ppt课件

02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。
二次函数 ppt课件

面积是 S ( 单位:m2 ). BC 是(45 - 3x)cm
0<45 - 3x≤20
(1) 求 S 与 x 的函数关系式及x的取值范围;
-45<- 3x ≤ -25
S =AB ·BC
解:(1) S = x(45 - 3x) = -3x2 + 45x
(
≤ x < 15 ).
≤ x < 15
(2) 当AB的长为5m时,围成的面积是多少?
⑦ y=(x+3)²-x²
⑤ y
x2
2x
二次项系数:-1
一次项系数:-2
常数项:0
不是,x的最
高次数是3.
不是、化简以
后是一次函数
1
④ y 2
x
不是,等式右
边是分式.
二次函数关系式 二次项系数 一次项系数 常数项
b=0时,二次函数
为y=ax²+c (a≠ 0 )
y=3-2x²
-2
0
3
y=x2
1
0
0
∴ m = 3.
∴当 m = 3 时,该函数是二次函数,
解析式为:y = (32+3)x3
5)x+32,
2-2×3-1
+(3-
即y = 12x2-2x+9.
例3 如图,用长为 45 m 的篱笆,一面利用墙 ( 墙的最大可用长度是 20 m ),
围成中间有一道篱笆的矩形花圃,设花圃的一边长 AB 是 x ( 单位:m ),
比较
关系式
y=6x2
1
2
1
2
m= n2- n
y=20x2+40x+20
相同点
是
都是函数
二次函数PPT课件

典题精讲
3.某商场以每件30元的价格购进一种商品,试销中 发现:这种商品的销售量m(件)与每件商品的销 售价x(元)满足一次函数关系m=162-3x,试写出 商场销售这种商品的日销售利润y(元)与每件商 品的销售价x(元)之间的函数关系式,y是x的二 次函数吗?
解:由题意分析可知,该商品每件的利润为(x-30)元。 则依题意可得: y=(162-3x )(x-30),即y=-3x²+252x-4860 由此可知y是x的二次函数
典题精讲
4.如图,用同样规格的正方形白色瓷砖铺设矩形地面, 请视察下列图形并解答有关问题:
n=1
n=2
n=3
(1)在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖
列共有(n+2)块瓷砖(均用含n的代数式表示);
(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中 的n的函数关系式 y=(n+3)(n+2),即y=n²+5n+6 .
y是x的函数吗?
举例讲授
问题2
n个球队参加比赛,每两对之间进行一场比赛。
比赛的场次数m与球队n有什么关系?这就是说,每个
队要与其他 n个-1球队各比赛一场,整个比赛场次
为
,这里m是n的函数吗?
举例讲授
问题3 某种产品现在的年产量为20t,计划今后两年
增加产量.如果每年都比上一年的产量增加x倍,那 么两年后这种产品的年产量y将随计划所定的x值而 确定,y与x之间的关系应怎样表示?
22.1.1 二次函数
学习目标
1.结合具体情境体会二次函数的意义,理 解二次函数的有关概念.
2.能够表示简单变量之间的二次函数关系.
复习导入
《二次函数》优质课件

02
知识讲解
二次函数的概念
01
定义
形如$y = ax^2 + bx + c$($a \neq 0$)的函数称为二次函数。
02
理解
二次函数是包含一次项、二次项和常数项的函数,其一般形式为$y =
ax^2 + bx + c$,其中$a$、$b$和$c$是系数,$a \neq 0$。
03
重点
理解二次函数的定义和一般形式,知道二次项系数$a$的作用和限制
针对学生容易出错的难点 和重点进行再次讲解和强 调,帮助学生攻克难点。
互评互学
分组讨论
将学生分成若干小组,进行组内讨论和交流,互相评价和纠正答 案。
展示分享
每组选派一名代表,将讨论的结果和答案展示出来,与其他小组 进行分享和交流。
点拨提升
教师根据学生的展示和分享,进行点评和点拨,肯定学生的优点 和指出不足,帮助学生提升解题能力和思维水平。
拓展提升题
总结词:能力提升
详细描述:设计一些难度相对较大的题目,注重考查学 生的综合运用能力和解题思维,促进学生的能力提升。
07
自测自评
复习自测
01
02
03
总结回顾
回顾二次函数的基本概念 、表达式和图像等知识。
基础测试
通过选择题、填空题等形 式,检验学生对二次函数 基础知识的掌握程度。
疑难突破
《二次函数》优质课件
2023-11-06
contents
目录
• 导入新课 • 知识讲解 • 范例精讲 • 课堂练习 • 归纳小结 • 作业布置 • 自测ቤተ መጻሕፍቲ ባይዱ评
01
导入新课
复习回顾
回顾已学知识