第九章 方程与微分方程
理论力学第9章

重点:求解质点和平动刚体的两类动力学问题 难点:理解惯性坐标系与非惯性坐标系
§ 9-1 动力学的基本定律
质点动力学的基础是牛顿三大定律 第一定律 (惯性定律) 不受力作用的质点,将保持静止或作匀速直线运动。 ——惯性 第二定律(力与加速度之间关系定律) d (mv ) F dt 在经典力学范围内,质点的质量是守恒的,因此有:
例9-3 已知:一圆锥摆,如图所示。质量m=0.1kg 的小球系 于长 l=0.3 m 的绳上,绳的另一端系在固定点O,并与 60 铅直线成 角。 求:如小球在水平面内作匀速圆周运动,小球 的速度与绳的张力。
解: 以小球为研究的质点
选取在自然轴上投影的运动微 分方程,得: v2 m F sin θ F cos mg 0 ρ 其中:ρ l sin θ mg F 1.96 N cos
动力学
导言
动力学:研究物体的机械运动与作用力之间的关系 动力学的基本问题大致分为两类: 1.已知运动求力; 2.已知力求运动。 具体学习以下内容: 质点动力学基本方程; 普遍定理:动量定理、动量矩定理、动能定理; 达朗贝尔原理; 虚位移原理
力学模型
1. 质点:具有一定质量而几何形状和尺寸大小可以 忽略不计的物体。 例如:研究卫星的轨道时,卫星 —— 质点 刚体作平动时,刚体 —— 质点
1.已知质点的运动规律,求作用于质点上的力
求两次导数得到质点的加速度,代入质点的 运动微分方程中,即可求解——求微分问题 2.已知质点上所受的力,求质点的运动规律 按作用力的函数规律进行积分,并根据具体 问题的运动条件确定积分常数——求积分问题
3.混合问题:第一类与第二类问题的混合.
例9-1 已知:曲柄连杆机构如图所示.曲柄OA以匀角速度
微分方程

#
例 例 求解微分方程 解 分离变量 dy dy 2 xy , 2 xdx , dx y
dy 两端积分 2 xdx , y
ln y x 2 C ,
#
例
例: 1 y 2 3 x 2 y dy 求通解 dx 解: y dy dx 分离变量 2 1 y2 3 x y dy dx 1 1 2 C 两端积分 2 2 1 y 2 2 3x 3x 1 y 得通解 注意
特别的,若n 0,即对任意的t R使得f ( tx,ty ) f ( x, y ), 则称f ( x, y )为变量x, y的0次齐次函数。
xy - y 2 例如,对于函数f ( x, y ) 2 ,因为f ( tx,ty ) f ( x, y ), x 2 xy xy - y 2 所以f ( x, y ) 2 为0次齐次函数。 x 2 xy
2
, C2
2
,
于是 C1 1.
§9.2最简单的微分方程 一阶微分方程的一般形式为 F(x,y,y)=0
若可解出y,则可写成显式方程 可分离变量方程 齐次微分方程 一阶线性微分方程
y=f(x,y)
#
可分离变量方程
( g ( y )和 f ( x ) 连续)
分离变量方程: g( y )dy f ( x )dx
2
练习
2 : 在下列各题中,确定函 数关系式中所含的参数 , 使函数满足所给的初始 条件:
(1) y (C1 C2 x)e 2 x , y x0 0, y x0 1;
( 2) y C1 sin( x C 2 ), y
解
x
1, y
微分方程罗兆富等编第九章非线性偏微分方程Adomian分解法全篇

学者们已证明, 无论是从算子方程Lxu还是从Lyu开始
都可得到解
u
un
并且这样得到的解都是等价的并且都
收敛于精确解. n0
然而, 在Lx 和Ly 选用哪一个来求解定解问题则依赖 于下列两个基点:
具(1体)能而使言计之算, 量我达们最考小虑;算子形式的非线性微分方程 (2)具有L使xu解 L级yu数具Ru有加F (速u)收 敛g 的附加条件. (9.2.01)
y
),
Lx
4 x4
.
(9.2.04)
(9.2.01)
14
机动 目录 上页 下页 返回 结束
un
0
Lx1g
Lx1
Ly
un
Lx1
R
un
Lx1
An
n0
n0
n0
n0
(9.2.04)
Adomian分解法指出, 通项un的递推公式是
也就是
u0 0 Lx1g,
uun
0LxL1Lx1ygun1Lx1LLyx1uR(uLnx11R)uLxL1xA1nF1(,un)
t xt2dt 0
0
u(x,t) un (x,t)
n0
uu32.((..xx.,,.tt.)).......LL.ntt.11.0.AA.u12.n..(.x.,..t00.t)t00tddtxtt0013
xt
3
x
Lt 1
(
n0
An
)
xt ■
18
机动 目录 上页 下页 返回 结束
例2. 求解非齐次偏微分方程
机动 目录 上页 下页 返回 结束
例3. 计算F(u)=uux的Adomian多项式.
第九章 动力学基本方程

Qb B
N
a x r
mb cos aA g (m A mb ) sin m A cos / tan
7
物块B的加速度: 物块B的加速度在坐标轴上的投影:
y
aA
A x
B
ar
m A cos a Bx a A ar cos g (m A mb ) sin m A cos / tan (m A mb ) sin a By ar sin g (m A mb ) sin m A cos / tan
[例4] 质量为 ma 倾角为 的三角块A放在光滑的水平面上,其 斜面上放有质量为 mb 的物块B,不计斜面摩擦,求A、 B两物 体的加速度。 解:1研究:三角块A (抽象为质点) 受力分析如图所示 A y B
N
mA a A N sin 2研究:物块B 受力分析如图
运动分析,三角块为动系, 物块B 为动点。 aA Qb B a
mb (ar cos a A ) N sin
mb aBy Y :
mb ar sin N cos Qb
mA a A N sin
m A mb ar g (m A mb ) sin m A cos / tan
aA
大小: aB aBx aBy
2
2
(m A ) 2 cos 2 (m A mb ) 2 sin 2 g (m A mb ) sin m A cos / tan
方向: arctan aBy m A mb tan aBx mA
8
[例7] 质量为1kg的重物M, 系于长度l=0.3m的线上,线的
第九章 偏微分方程差分方法

第9章 偏微分方程的差分方法含有偏导数的微分方程称为偏微分方程。
由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。
偏微分方程的数值方法种类较多,最常用的方法是差分方法。
差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。
本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。
9.1椭圆型方程边值问题的差分方法9.1.1 差分方程的建立最典型的椭圆型方程是Poisson (泊松)方程G y x y x f yux u u ∈=∂∂+∂∂-≡∆-),(),,()(2222 (9.1)G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。
当f (x ,y )≡0时,方程(9.1)称为Laplace(拉普拉斯)方程。
椭圆型方程的定解条件主要有如下三种边界条件第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件),(y x nuβ=∂∂Γ (9.3) 第三边值条件 ),()(y x ku nuγ=+∂∂Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。
满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。
用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。
差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。
设G ={0<x <a , 0<y <b }为矩形区域,在x ,y 平面上用两组平行直线x =ih 1, i =0,1,…,N 1, h 1=a /N 1 y =jh 2, j =0,1,…,N 2, h 2=b /N 2将G 剖分为网格区域,见图9-1。
常微分方程的数值解法

主要内容
§1、引言 §2、初值问题的数值解法--单步法 §3、龙格-库塔方法 §4、收敛性与稳定性 §5、初值问题的数值解法―多步法 §6、方程组和刚性方程 §7、习题和总结
§1、 引 言 主要内容 ➢研究的问题 ➢数值解法的意义
1.什么是微分方程 ? 现实世界中大多数事物
使得对任意的x [a,b]及y1, y2都成立
则称 f (x,y) 对y 满足李普希兹条件,L 称为 Lipschitz常数.
就可保证方程解的存在唯一性
若 f (x,y) 在区域 G连续,关于y
满足李普希兹 条件
一阶常微分方程的初值问题的解存在且唯一. 我们以下的讨论,都在满足上述条件下进行.
一阶常微分方程组常表述为:
y(x0
)
y0
(1.2)
种 数 值 解
法
其中f (x,y)是已知函数,(1.2)是定解条件也称为 初值条件。
常微分方程的理论指出:
当 f (x,y) 定义在区域 G=(a≤x≤b,|y|<∞)
若存在正的常数 L 使:
(Lipschitz)条件
| f (x, y1) f (x, y2) | L | y1 y2 | (1.3)
节点 xi a ihi,一般取hi h( (b a) / n)即等距
要计算出解函数 y(x) 在一系列节点
a x0 x1 xn b
处的近似值 yi y(xi )
y f (x, y)
y
(
x0
)
y0
a xb
(1.1) (1.2)
对微分方程(1.1)两端从 xn到xn1 进行积分
内部联系非常复杂
其状态随着 时间、地点、条件 的不同而不同
第9章 常微分方程初值问题数值解法
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )
宽
9
高
实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率
常微分方程数值解法
ρ ρ
n+1 n
≤1
三、梯形公式
由 分 径 y ( xn+1) = y ( xn) + 积 途 : xn+1
∫
f ( x, y)dt
(
积分 梯形 式 且令:yn+1 = y( xn+1), yn = y( xn) 用 公 , h 则 yn+1 = yn + ( f (xn , yn) + f (xn+1 , yn+1)) 得: 2
第九章 常微分方程数值解法
§1 、引言
一 常 分 程 初 问 : 阶 微 方 的 值 题 dy dx = f (x, y) y( x0) = y0
'
a ≤ x ≤b
2 y 例 : 方 程 xy -2 y = 4 x ⇒ y = + 4 x 2 y 令 :f ( x , y ) = + 4 且 给 出 初 值 y (1 )= -3 x 就 得 到 一 阶 常 微 分 方 程 的 初 值 问 题 : 2 y dy = f (x, y) = + 4 dx x y(1) = − 3
n n n n n 2 // n n+1
~
y
n+1
= yn + hf ( xn, yn ) = y(xn) + hf
n+1
~
y
n+1
( x , y( x ))
n n
则 T = y( x ) − = h y (ξ ) x y 2 ~
// n+1 n+1
2
n
< ξ < xn+1
令
第9章 质量传递概论与传质微分方程2011
一、传质微分方程的推导
以双组分为例对传质微分方程进行推导。 (一)质量守恒定律表达式 据欧拉观点,在流体中取边长分别为 dx,dy, dz 的流体微元,该流体微元的体积为dxdydz。 以该流体微元为物系,周围流体为环境,进行 组分A 的微分质量衡算。 根据质量守恒定律,可得出组分A的衡算式为
(输入流体微元的质量流率)+(反应生成的质量流率)= (输出流体微元的质量流率)+(流体微元内积累的质量流率) 即 (输出-输入)+(积累)-(生成)= 0
2.费克第一定律(Fick’s first law) 对于组分 A 和组分 B 组成的混合物,如不考虑主体流动的影响 ,则根据费克第一定律,由浓度梯度所引起的扩散通量可表示为 d A j A DAB .......... ...9 13 dz jA—组分A 的扩散质量通量(即在单位时间内,组分 A 通过与扩散 方向相垂直的单位面积的质量); dρA/dz —组分 A 在扩散方向的质量浓度梯度; DAB —组分 A 在组分 B 中的扩散系数。分子扩散系数DAB 仅是分 子 种类、温度与压力的函数。 式(9-13) 表示在总质量浓度ρ 不变的情况下,由于组分 A 的 质量浓度梯度 dρA/dz 引起的分子传质通量。“ - ” 号表明扩散 方向与浓度梯度方向相反,即分子扩散是朝着浓度降低的方向进 行。
Bu aB nA nB .......... .9 29
ρAu —组分A的主体流动质量通量; ρBu —组分B的主体流动质量通量;
1 cAum c A cAuA cBuB xA N A N B ........ 9 30 C
cBum xB N A N B .......... 9 31
第9章 常微分方程初值问题数值解法
oa
b
a f ( x)dx (b a) f (b)
中矩形公式
b
ab
a f ( x)dx (b a) f ( 2 )
计算方法
梯形公式
bx
右矩形公式 中矩形公式 左矩形公式
§ 欧拉方法几何意义
y y y(x)
y0 y1 y2 0 x0 x1 x2
计算方法
x
§ 隐式欧拉方法
➢隐式欧拉法 /* implicit Euler method */
初 值 问 题 的 解 必 存 在 且唯 一 。
计算方法
§9.1 引言
三. 数值解法含义
所谓数值解法, 就是设法将常微分方程离散化, 建 立差分方程, 给出解在一些离散点上的近似值。
微分方程的数值解: 设方程问题的解y(x)的存在区 间是[a,b], 令a= x0< x1<…< xn =b, 其中hk=xk+1-xk, 如是等距节点h=(b-a)/n, h称为步长。
yi1 yi1 2h f ( xi , yi ) i 1, ... , n 1
计算方法
预估-校正法
三. 预估 — 校正法
/* predictor-corrector method */
方法 显式欧拉 隐式欧拉 梯形公式
中点公式
简单
稳定性最好
精度提高
精度低
精度低, 计算量大
计算量大
精度提高, 显式
在x0 x X上的数值解法。
四. 误差估计、收敛性
和稳定性
计算方法
§9.2 简单的数值方法与基本概念
一. 欧拉(Euler)格式
设 节 点 为xi a ih (i 0,1,2 , n) 方 法 一 :Taylor展 开 法