第九章 常微分方程5-7分析
合集下载
数值分析第九章常微分方程数值解法

高斯-赛德尔迭代法
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。
常微分方程的解法及应用(常见解法及举实例)

华北水利水电大学
常微分方程的解法及应用 (常见解法及举实例)
课 程 名 称: 高等数学(2) 专 业 班 级: 成 员 组 成:
联 系 方 式:
2012 05月25 年日
摘要
常微分方程是微积分学的重要组成部分,广泛用于具体问题的 研究中。求解常微分的问题,常常通过变量分离、两边积分, 如果是高阶的则通过适当的变量代换,达到降阶的目的来解决 问题。本文就是对不同类型的常微分方程的解法的系统总结: 先对常微分方程
解法:
若得其解为则 原方程通解为
2.4二阶线性微分方程解的结构
形如: 若时,(方程一)称为:二阶线性齐次微分方程。
若时,(方程二)称为:二阶非齐次微分方程
2.4.1 二阶线性齐次微分方程解的结构
定理1 :如果函数与是方程(5.2)的两个解, 则
也是(方程一)的解,其中是任意常数.
定理2 : 如果与是方程(5.2)的两个线性无关的特解,则
2.1.4 伯努利方程
形如:
当时, 一阶线性微分方程(公式法) 当时, 可分离变量微分方程 求通解过程: 作变量代换
(积分因子公式法)
2.2 一阶微分方程的应用举例
例1细菌的增长率与总数成正比。如果培养的细菌总数在24h内 由100增长为400、那么前12h后总数是多少? 分析:
例2。。某人的食量是2500 cal/天,其中1200 cal用于基本的 新陈代谢(即自动消耗)。在健身训练中,他所消耗的大约是16 cal/kg/天,乘以他的体重(kg)。假设以脂肪形式贮藏的热量 100%的有效,而1kg脂肪含热量10,000 cal。求出这人的体重是 怎样随时间变化的。 输入率=2500 cal/天
定义及一般解法做简单阐述,然后应用变量替换法解齐次性微 分方程,降阶法求高阶微分方程,讨论特殊的二阶微分方程, 并且用具体的实例分析常微分方程的应用。
常微分方程的解法及应用 (常见解法及举实例)
课 程 名 称: 高等数学(2) 专 业 班 级: 成 员 组 成:
联 系 方 式:
2012 05月25 年日
摘要
常微分方程是微积分学的重要组成部分,广泛用于具体问题的 研究中。求解常微分的问题,常常通过变量分离、两边积分, 如果是高阶的则通过适当的变量代换,达到降阶的目的来解决 问题。本文就是对不同类型的常微分方程的解法的系统总结: 先对常微分方程
解法:
若得其解为则 原方程通解为
2.4二阶线性微分方程解的结构
形如: 若时,(方程一)称为:二阶线性齐次微分方程。
若时,(方程二)称为:二阶非齐次微分方程
2.4.1 二阶线性齐次微分方程解的结构
定理1 :如果函数与是方程(5.2)的两个解, 则
也是(方程一)的解,其中是任意常数.
定理2 : 如果与是方程(5.2)的两个线性无关的特解,则
2.1.4 伯努利方程
形如:
当时, 一阶线性微分方程(公式法) 当时, 可分离变量微分方程 求通解过程: 作变量代换
(积分因子公式法)
2.2 一阶微分方程的应用举例
例1细菌的增长率与总数成正比。如果培养的细菌总数在24h内 由100增长为400、那么前12h后总数是多少? 分析:
例2。。某人的食量是2500 cal/天,其中1200 cal用于基本的 新陈代谢(即自动消耗)。在健身训练中,他所消耗的大约是16 cal/kg/天,乘以他的体重(kg)。假设以脂肪形式贮藏的热量 100%的有效,而1kg脂肪含热量10,000 cal。求出这人的体重是 怎样随时间变化的。 输入率=2500 cal/天
定义及一般解法做简单阐述,然后应用变量替换法解齐次性微 分方程,降阶法求高阶微分方程,讨论特殊的二阶微分方程, 并且用具体的实例分析常微分方程的应用。
常微分方程及其应用全文

件y x x0
y0
的特解这样一个问题,称为一阶微
分方程的初值问题。
记为
F x, y, y 0
y x x0
y0
例1 验证函数 x C1 cos kt C2 sin kt
是微分方程
d2x dt 2
k2x
0(k
0)
的通解。
例2 求例1中 满足初始条件
x A ,dx t 0
0 的特解。
dt t 0
直到t=T 时, F T 。若0 开始时质点位于原点,且
初速度为0,求这质点的运动规律。
F(t)
F
F0
0
x
Tt
y f x, y
设
y
p
,则 y
dp dx
p
方程可化为 p f x, p
通解为 p x,C1
得到微分方程
dy dx
x, C1
分离变量或者直接积分得到通解
y x,C1 dx C2
判断下列方程是否为微分方程:
x2 xy y2 0 否
x y 0 是
3y c 是
二、微分方程的阶
微分方程中所出现的未知函数的最高阶导 数的阶数。
dy 2x
一阶
dx
x2 y xy 4 y 3x 三阶
y4 2 y 12 y 5y sin 2x 三阶
三、微分方程的一般形式
1、一阶微分方程
y f y, y 设 y p ,则
y dp dp dy p dp dx dy dx dy
原方程化为 又得微分方程 dy
dx
分离变量,得通解
y,C1
dy
y,C1
x
C2
例 求方程 y 3 y 满足 y x0 1 的特解。
常微分方程的常见解法

曲线(称为积分曲线),且 fx,x就是该曲线上
的点 x,x处的切线斜率,特别在 x0, y0切线斜率 就是 f x0,y0 尽管我们不一定能求出方程 1.3.1 的 解,但我们知道它的解曲线在区域D中任意点 x, y
的切线斜率是 f x, y。 如果我们在区域D内每一点 x, y 处,都画上一个
可化为齐次方程的方程
形如
dyf(a xb yc) dx a1b1yc1
的方程可化为齐次方程.
其中 a,b,c,a1,b1,c1都是常数.
1. 当 cc10时, 此方程就是齐次方程.
2. 当 c2c120 时, 并且
ab
(1)
a1
0 b1
此时二元方程组 axbyc0 a1xb1yc0
有惟一解 x,y.
例,且融化过程中它始终为球体,该雪球在
开始时的半径为6cm ,经过2小时后,其半径缩
小为3cm。求雪球的体积随时间变化的关系。
解:设t时刻雪球的体积为 V ( t ) ,表面积为 S ( t ) ,
由题得
dV(t) kS(t)
dt
12 2
球体与表面积的关系为 S(t)(4)333V3
12
引入新常数r (4)333k 再利用题中的条件得
或
x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
《常微分方程》全套课件(完整版)

捕捉到这种联系,而这种联系,用数学语言表达出来,其结 果往往形成一个微分方程.一旦求出这个方程的解,其运动规 律将一目了然.下面的例子,将会使你看到微分方程是表达自 然规律的一种最为自然的数学语言.
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
常微分方程数值解法5262115页PPT文档

x 1 ( t ) 表示时刻 t 食饵的密度,x 2 ( t ) 表示捕食者的密度;
r 表示食饵独立生存时的增长率;
d 表示捕食者独立生存时的死亡率;
a 表示捕食者的存在对食饵增长的影响系数,反映捕
食者对食饵的捕获能力;
b 表示食饵的存在对捕食者增长的促进系数,反映食
饵对捕食者的喂养能力
150 100
令 y 1 y ,y 2 y ',y 3 y '', ,y n y ( n 1 )
可以将以上高阶微分方程化为如下一阶常微分方程组
y1 ' y2 y2 ' y3 yn ' an(x)y1
a1(x)yn f (x)
例:P120,1(a),Bessel方程
常微分方程的数值解
一般地,凡表示未知函数,未知函数的导 数与自变量之间的关系的方程叫做微分方 程.未知函数是一元函数的,叫常微分方 程;未知函数是多元函数的,叫做偏微分方 程.
如
y ' x y'x2y2 y''y'xy
Matlab实现 [t,x]=ode45(f,ts,x0,options,p1,p2,......)
50 0 0
30 20 10
0 0
10
20
50
30
20
10
0
30
0
10
8
6
4
2
100
0
50
100
150
50
100
高阶常微分方程的解法
高阶常微分方程
y ( n ) a 1 ( x ) y ( n 1 ) a ( n 1 ) ( x ) y ' a n ( x ) y f( x )
r 表示食饵独立生存时的增长率;
d 表示捕食者独立生存时的死亡率;
a 表示捕食者的存在对食饵增长的影响系数,反映捕
食者对食饵的捕获能力;
b 表示食饵的存在对捕食者增长的促进系数,反映食
饵对捕食者的喂养能力
150 100
令 y 1 y ,y 2 y ',y 3 y '', ,y n y ( n 1 )
可以将以上高阶微分方程化为如下一阶常微分方程组
y1 ' y2 y2 ' y3 yn ' an(x)y1
a1(x)yn f (x)
例:P120,1(a),Bessel方程
常微分方程的数值解
一般地,凡表示未知函数,未知函数的导 数与自变量之间的关系的方程叫做微分方 程.未知函数是一元函数的,叫常微分方 程;未知函数是多元函数的,叫做偏微分方 程.
如
y ' x y'x2y2 y''y'xy
Matlab实现 [t,x]=ode45(f,ts,x0,options,p1,p2,......)
50 0 0
30 20 10
0 0
10
20
50
30
20
10
0
30
0
10
8
6
4
2
100
0
50
100
150
50
100
高阶常微分方程的解法
高阶常微分方程
y ( n ) a 1 ( x ) y ( n 1 ) a ( n 1 ) ( x ) y ' a n ( x ) y f( x )
高等数学 常微分方程PPT课件

第12页/共35页
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项
系
数
法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项
系
数
法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx
高等数学D第9章常微分方程

g( y )dy f ( x )dx
分离变量法
G( y ) F ( x ) C
称为微分方程的隐式通解.
10
例
求方程 x y y ln y 的通解 .
1 1 dy dx 解 y ln y x 1 1 ln yd ln y x dx
ln ln y ln x ln C ln Cx
2
9.1 微分方程的基本概念
例 几何问题 平面上一条曲线,任意一点切线的斜率等于
这点的纵坐标, 求这曲线的方程.
解 设所求曲线为 y y( x )
dy y dx
可以验证
y ce
x
满足这个方程, 其中C为任意常数.
3
例 自由落体运动 一个物体在没有空气阻力的情况下, 从某一高处放手下落时的速度与下落时间成正比,求该物 体下落距离与时间的函数关系.
2x
f ( x) f ( x ) Ce 2 x 两边积分 ln f ( x ) 2 x ln C 由原关系式 f (0) ln 2 C ln 2, 得 f ( x ) e 2 x ln 2.
15
9.3
一阶线性微分方程
一阶线性微分方程的标准形式 一阶 线性
dy p( x ) y q( x ) 自由项 dx 当q( x ) 0, 上面方程称为齐次的; 当q( x ) 0, 上面方程称为非齐次的.
P ( x ) dx d x C ] [ Q( x )e
解一阶线性微分方程,可以直接利用这个公式,
也可以用常数变易法.
21
一阶微分方程
ye
P ( x ) dx
P ( x ) dx d x C ] [ Q( x )e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则得特征方程和特征根
2 p q 0,
1
1 2
( p
p2
4q ),2
1 2
( p
p2 4q ).
y'' py'qy 0,p, q为常数。
2 p q 0,
1
1 2
( p
p2
4q ),2
1 2
( p
p2 4q ).
(1). λ1,λ2为相异实根,则方程通解为
y(x) C1e1x C2e2x,C1, C2为任意常数.
y e3x (C1 cos 2x C2 sin 2x)
例1 求通解 y 2 y 3 y 0
特征根 两个不等的实根r1, r2
两个相等的实根r1=r2=r
一对共轭复根r1,2= i ( 0)
方程的通解 y C1er1x C2er2x
y (C1 C2 x)erx
y (C1 cos x C2 sin x)ex
定义 由常系数齐次线性方程的特征方程的根 确定其通解的方法称为特征方程法.
x)都是方程的解, x)
y1 (
x)
y2
(
x)
1 2
(
y1* (x)
Байду номын сангаас
y2* (x))
ex
cos
1 2i
(
y1* (x)
y2* (x))
ex
sin
x
也是方程的解.
x
从而y(x) C1y1(x) C2 y2 (x)也是方程的解。
y1(x)和y2 (x)的朗斯基行列式说明它 们线性无关.
三种情况所对应的情况的形式列表
首先 y1(x) e1x和y2 (x) e2x都是方程的解, y(x) C1e1x C2e2x也是方程的解, C1, C2为任意常数.
其次 y1(x)和y2 (x)的朗斯基行列式说明它 们线性无关.
w(x) y1(x) y'1 (x)
y2 (x)
e1x
y'2 (x)
e1x 1
e 2 x
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
y C1er1 x C2er2 x y (C1 C2 x)er2 x
y ex (C1 cos x C2 sin x)
例3:已知y1 xex e2x , y2 xex , y3 xex e2x ex 是二阶常系数线性非齐次微分方程
例7. 求解方程 y''y' 6y = 0 的通解.
解:特征方程是 r2 r 6 = 0
其根r1=3, r2= 2是两个相异实根, 故所求通解为
y = C1e3x + C2e2x.
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
y C1e r1 x C2e r2 x y (C1 C2 x)e r2 x
(3). λ1,λ2为共轭复根,即λ1=α+iβ, λ2=α-iβ, 则方程通解为
y(x) (C1 cos x C2 sin x)ex,C1,C2为任意常数.
y1* y2*
( (
x) x)
e( i ) x e( i ) x
ex (cosx i sin ex (cosx i sin
x)都是方程的解. x)
y C1er1 x C2er2 x y (C1 C2 x)er2 x
y ex (C1 cos x C2 sin x)
例2 求方程 y 2 y 5 y 0的通解. 解 特征方程为 r 2 2r 5 0 ,
解得 r1,2 1 2 j ,
故所求通解为
y ex (C1 cos2x C2 sin 2x).
(3). λ1,λ2为共轭复根,即λ1=α+iβ, λ2=α-iβ, 则方程通解为
y(x) (C1 cos x C2 sin x)ex,C1, C2为任意常数 .
y1* y2*
( x) (x)
e( i ) x e( i ) x
ex (cos ex (cos
x x
i sin i sin
y py qy ex 2xex 的三个特解,求此微分方程。
解:y1 y3 ex , 特征根r1 1 y1 y2 e2x , 特征根r2 2
特征方程为:(r 1)(r 2) 0 r2 r 2 0
齐次方程为y y 2 y 0
微分方程为y y 2 y e x 2xex
y1(x)和y2 (x)的朗斯基行列式说明它 们线性无关 .
w(x) y1(x) y'1 (x)
y2 (x) y'2 (x)
e1x
e1x 1
xe1x
e1x 1xe1x
e21x
0.
y'' py'qy 0,p, q为常数。
2 p q 0,
1
1 2
( p
p2
4q ),2
1 2
( p
p2 4q ).
y ex (C1 cos x C2 sin x)
例1 求方程 y 4 y 4 y 0的通解.
解 特征方程为 r 2 4r 4 0 , 解得 r1 r2 2 ,
故所求通解为 y (C1 C2 x)e2x .
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
例8. 求解方程 4y'' + 12y' + 9y = 0. 解:特征方程是
4r2 +12r + 9 = 0.
此方程有二重实根
r1
r2
3. 2
故所求通解为
3x
y (C1 C2 x)e 2 .
例9. 求解方程 y''6y'+13y=0. 解:特征方程是
r2 6r + 13 = 0. 其根 r1,2=32i为一对共轭复根, 故所求通解为
e2x 2
e ( (12 ) x 2
1 )
0.
y'' py'qy 0,p, q为常数。
2 p q 0,
1, 2
1 2
p
(2). λ1 =λ2,即特征方程有二重特征根,则方程通解为
y(x) C1e1x C2 xe1x,C1, C2为任意常数.
y1(x) e1x和y2 (x) xe1x都是方程的解, y(x) C1e1x C2 xe1x也是方程的解, C1, C2为任意常数.
§5 二阶线性常系数微分方程
1. 线性常系数齐次方程 y'' py'qy 0,p, q为常数。
设方程的解为 y ex
则得 2ex pex qex 0,
(2 p q)ex 0,
2 p q 0.
特征方程
1. 线性常系数齐次方程 y'' py'qy 0,p, q为常数。
设方程的解为 y ex