第九章微分方程
合集下载
常微分方程

dy y
P(
x)dx,
ln | y | P( x)dx lnC1 ,(C1为任意常数)
齐次方程的通解为 y Ce P( x)dx (C eC1 )
17
2. 线性非齐次方程 dy P( x) y Q( x) dx
线性齐次方程是线性非齐次方程的特殊情况.
线性齐次方程的通解是 Ce P( x)dx ,
(3)检验改进模型, 观察所得的解能够在多大程度或范围上反映实际问题,
用实际问题检验该模型, 如果存在问题,则需研究, 改进模型.
27
例 冷却问题 将一个温度为50º的物体,放在20º的恒温 环境中冷却,求物体温度变化的规律.
解 冷却定律:“温度为T的物体,在温度为 T0 的环境中 冷却的速率与温差T T0成正比.” 设物体的温度T与时间 t的函数关系为 T T (t),
(t2 x)dt xdx 0 一阶 z x y 一阶
x
未知函数是一元函数的方程为 常微分方程;
未知函数是多元函数的方程为 偏微分方程.
方程中所出现的导数的最高阶数称为 微分方程的阶.
一般的n阶微分方程为 F ( x, y, y,, y(n) ) 0,
或已解出最高阶导数 y(n) f ( x, y, y,, y(n1) ).
9.4 微分方程的应用问题
例 把“大气压随高度变化而降低的速率与所在高度 处的气压成正比”所含关系表示出来.
解:第一步,设未知函数:
设大气压P和高度x之间的函数关系为 P P(x),
大气压随高度变化的速率为 dP
dx
第二步,根据条件写出方程 dP P, 为比例系数,
dx
第三步,取比例系数为正:因 dP 0, 故 0,
第九章 常微分方程
微分方程与差分方程

λ = −1± i, 则齐次方程的通解为 y = e−x (C1 cos x + C2 sin x). 因 −1+ i 是单特征根,故设原非齐次方程的特解为
y* = xe−x[( A0 x + A1) cos x + (B0 x + B1) sin x].
402
把它代入原非齐次方程得
4B0 x cos x + 2(A0+B1) cos x − 4A0 x sin x + 2(B0−A1) sin x = x cos x + 3sin x,
解 将特解 y = e2x + (1+ x)ex 代入原非齐次微分方程得 (4 + 2 p + q)e2x + (3 + 2 p + q)ex + (1+ p + q)xex = rex.
比较系数,得方程组
⎧2 p + q = −4, ⎧ p = −3;
⎪⎨2 p + q − r = −3,⇒ ⎪⎨q = 2;
tan y
tan x
∫
1 tan
y
d
tan
y
=
−∫
1 tan
x
d
tan
x,
ln(tan y) = − ln(tan x) + ln C, 故通解为 tan x tan y = C. 例3 求微方程 cos ydx + (1+ e−x ) sin ydy 在 y(0) = π 下的特解.
4
解 原方程变形为 (1+ e−x ) sin ydy = − cos ydx, 分离变量,得
过程,只要对所给通解求若干次导数,以消去所有任意常数即可.
第九章 常微方程数值解法

第9章 常微分方程数值解法 8-2
第8章 序
许多科学技术问题,例如天文学中的星体运动, 许多科学技术问题,例如天文学中的星体运动,空间 技术中的物体飞行,自动控制中的系统分析, 技术中的物体飞行,自动控制中的系统分析,力学中的振 动,工程问题中的电路分析等,都可归结为常微分方程的 工程问题中的电路分析等, 初值问题。 初值问题。 所谓初值问题, 所谓初值问题,是函数及其必要的导数在积分的起始 点为已知的一类问题,一般形式为: 点为已知的一类问题,一般形式为:
⇒ y n +1 = y n −1 + 2hf ( xn , y n )
第9章 常微分方程数值解法
(8 - 4)
8-10
Euler公式的推导( Euler公式的推导(续5) 公式的推导
上对y )=f 四、利用数值积分公式:在[xn,xn+1]上对y′(x)=f (x,y(x)) 积分 利用数值积分公式:
x0 < x1 < L < xn < L
(i=1,2,…,n)构造插值函数作为近似函数。上述离散点 i=1,2,…,n)构造插值函数作为近似函数。 相 邻两点间的距离h 称为步长, 邻两点间的距离hi=xi-1-xi 称为步长,若hi 都相等为一定数 h, 则称为定步长,否则为变步长。( x, y ( x)) 则称为定步长,否则为变步长。 a≤ x≤b y ′( x) = f 本章重点讨论如下 y (a ) = y0 一阶微分方程: 一阶微分方程: 在此基础上介绍一阶微分方程组与 8-5 第9章 常微分方程数值解法 高阶微分方程的数值解法。 高阶微分方程的数值解法。
⇒ yn +1 = yn + hf ( xn , yn ) + E ( xn , h) ⇒ yn +1 = yn + hf ( xn , yn )
第8章 序
许多科学技术问题,例如天文学中的星体运动, 许多科学技术问题,例如天文学中的星体运动,空间 技术中的物体飞行,自动控制中的系统分析, 技术中的物体飞行,自动控制中的系统分析,力学中的振 动,工程问题中的电路分析等,都可归结为常微分方程的 工程问题中的电路分析等, 初值问题。 初值问题。 所谓初值问题, 所谓初值问题,是函数及其必要的导数在积分的起始 点为已知的一类问题,一般形式为: 点为已知的一类问题,一般形式为:
⇒ y n +1 = y n −1 + 2hf ( xn , y n )
第9章 常微分方程数值解法
(8 - 4)
8-10
Euler公式的推导( Euler公式的推导(续5) 公式的推导
上对y )=f 四、利用数值积分公式:在[xn,xn+1]上对y′(x)=f (x,y(x)) 积分 利用数值积分公式:
x0 < x1 < L < xn < L
(i=1,2,…,n)构造插值函数作为近似函数。上述离散点 i=1,2,…,n)构造插值函数作为近似函数。 相 邻两点间的距离h 称为步长, 邻两点间的距离hi=xi-1-xi 称为步长,若hi 都相等为一定数 h, 则称为定步长,否则为变步长。( x, y ( x)) 则称为定步长,否则为变步长。 a≤ x≤b y ′( x) = f 本章重点讨论如下 y (a ) = y0 一阶微分方程: 一阶微分方程: 在此基础上介绍一阶微分方程组与 8-5 第9章 常微分方程数值解法 高阶微分方程的数值解法。 高阶微分方程的数值解法。
⇒ yn +1 = yn + hf ( xn , yn ) + E ( xn , h) ⇒ yn +1 = yn + hf ( xn , yn )
30第九章 连续时间:微分方程

• 索罗—斯旺新古典增长模型 新古典生产函数 Y Y (K, L) 边际产品为正但递减
Y K
2Y 0, K 2
0
Y L
0,
2Y L2
0
一次齐次(规模报酬不变)性
Y (K,L) Y (K, L)
人均项目表示为
y (k)
净投资:
K I K S K sY K
同除 L可得
K / L sy k s(k) k
yk a
该非齐次方程的通解为 y(x) y y(0)eax
定义
• y(x) y,y 收敛于y ,y 的时间路径是稳定的
在上例中,当且仅当 a 0时,y(x) y
• 伯努利方程
dy ay cym dx
m 其中a 和 c为常数或者 x 的函数, 为任意除0和1之外的
实数,两边同除 ym 可得
形式 P(D)y 0的通解则非齐次方程 P(D) y f (x) 的通解
为 y yc yp 。
第3节 一阶常系数线性微分方程
最简单形式
dy ay f (x) dx
定理 其非齐次方程的特解为
y(x) eax x eas f (s)ds 0
特殊情形 dy ay k dx
其一个特解(潜在均衡点)为
dt
为常系数的一阶线性微分方程,一特解(潜在均衡点)为
通解为
P
ab
P(t) P cegt
其中c为任意常数而g (b a)
当且仅当 g 0时P(t) P ,因 0条件即为b a
在正常商品时,供给曲线不后仰,条件满足
• 马歇尔供求函数:
PD
a
Q a
PS
b
Q b
动态调整过程:
dQ dt
数值分析第九章常微分方程数值解法

高斯-赛德尔迭代法
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。
第九章-微分方程与差分方程简介市公开课一等奖省赛课获奖课件

x
C2
例3.求解微分方程
y
y2 ,y(0) 1,y(0) 1. y
解: 设
y
p( y) ,则
y
p
dp dy
代入方程得
p dp p2 , dy y
p(
dp dy
p y
)
0
p0
27
第27页
(三)不显含自变量 x 二阶微分方程
2
第2页
第一节 微分方程普通概念
例2.设 s=s(t) 为作自由落体运动物体在 t 时刻
下落距离, 则有
d 2s dt 2 g
s(t) g
s g
ds dt
g
ds dt
gt
C1
s(0) 0
s(0)
0
ds gdt
ds gdt
s gt C1
ds ( gt C1 )dt
ds (gt C1 )dt
于价格P线性函数: QS a bP , QD c dP ,
且 a, b, c, d 都是已知正常数. 当 QS = QD 时, 得
均衡价格 P
ac .
当 QS
> QD 时, 价格将下降,
bd
当 QS < QD 时, 价格将上涨,故价格是时间t 函数.
假设在时刻t价格P(t)改变率与这时过剩需求量
x
因
P(
x)dx
1 x
dx
ln
x
ln
1 x
,
Q(
x)e
P
(
x )dx
dx
1
x 2eln x dx
xdx x2 ,
2
故 y ( x2 C )e(ln x) ( x2 C ) x Cx x3 .
第九章--微分方程与差分方程简介

19
于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx
yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f
于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx
yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f
第9章 常微分方程初值问题数值解法

2
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )
宽
9
高
实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )
宽
9
高
实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首页
上页
返回
下页
结束
铃
将方程(9.14)和(9.15b)两端分别对x和对y积 分,得
f (x)dx g( y)dy C
和
( x)dx
1 (y)
dy
C
(9.16) (9.17)
式(9.16)和(9.17)分别为(9.14)和(9.15)的通解.
首页
上页
返回
下页
结束
铃
例 求方程 y’= 2xy 的通解. 解 分离变量, 得 1 dy 2xdx
首页
上页
返回
下页
结束
铃
其中C为任意正的常数. 将y(1)=2代入通解,可得C=10.于是,所求特解为
(1+x2)(1+y2)=10x2
首页
上页
返回
下页
结束
铃
二、齐次微分方程
1.齐次微分方程
形如 dy f ( y ) dx x
(9.18)
的一阶微分方程,称为齐次微分方程,简称为齐次
方程. 求解齐次方程(9.18)的常用方法是变量变换
x0
x0
y = cos2x
首页
上页
返回
下页
结束
铃
第二节 最简单的微分方程
一、可分离变量方程 二、齐次微分方程
首页
上页
返回
下页
结束
铃
最基本的微分方程是一阶微分方程,一阶微 分方程的一般形式为
F (x, y, y') 0 y' f (x, y) (9.13) 其中F (x, y, y') 为x,y和 y' 的已知函数;f(x,y)为x、y 的已知函数.
分离变量得
1 x
dx
3 2u2 u(1 u2
)
du
( 1
u u
2
3)du u
首页
上页
返回
下页
结束
铃
积分得 ln | x | 1 ln(1 u2) 3ln | u | ln | C | 2
由此得
| Cxu3 | 1 u2 于是,将u y 代入上式,得原方程的通解为
x Cy3 x x2 y2
于是原方程的通解为 cos y ccos x
首页
上页
返回
下页
结束
铃
又将初始条件
y
x0 4
代入通解中, 得 c 2
2
故满足初始条件的特解为 cos y 2 cos x
2
首页
上页
返回
下页
结束
铃
例9.1 求方程ye2xdx+(5+e2x)dy=0的通解.
解 分离变量得
e2x dx 1 dy 0
在自然科学、生物科学以及经济与管理科学的许多领 域中, 反映变量之间内在联系的函数关系, 往往都不能直接 得到,而必须通过建立实际问题的数学模型—— 微分方程, 并求解这个微分方程才能得到.
什么是微分方程呢? 下面通过具体的实例来引入微分 方程的概念.
首页
上页
返回
下页
结束
铃
§9.1 微分方程的基本概念
dx y
y(4) 2x 0等都是常微分方程.
首页
上页
返回
下页
结束
铃
而方程
2u x 2
2u y2
2u z 2
0,
2u x 2
4
u y
等都是偏微分方程.
定义9.2 微分方程中出现的未知函数的最高阶导数
的阶数, 称为微分方程的阶.
例如, 方程 dy x , y ' p( x) y q( x) 都是一阶微分方程,
(2)
将(1)式整理积分,得 Q ce1.5 p (3)
再将(2)式代入(3) 式,得 c = 800
又将c = 800代入(3) 式,即得所求函数关系为
Q 800e1.5 p
首页
上页
返回
下页
结束
铃
上述两个例子, 有一个共同特点:
它们都是把一个实际问题归结为一个含有未知函数 导数的方程的求解问题. 数学上, 人们把这种方程称为 微分方程.
第九章 微分方程
§9.1 微分方程的基本概念 §9.2 最简单的微分方程 §9.3 线性微分方程解的基本性质与结构定理 §9.4 一阶线性微分方程 §9.5 二阶常系数线性微分方程
首页
上页
返回
下页
结束
铃
第九章 微分方程
微积分研究的主要对象是函数. 因此, 如何寻找函数 关系, 这在实践中具有十分重要的意义.
例1 求过点 (1, 3 ) 且斜率为2 x的曲线方程.
解 设所求曲线的方程为 y = y (x) 则由题意可知,方程应满足
dy
dx
2x
(1)
y(1) 3
(2)
将方程(1)两端积分,得 y 2xdx x2 c (3)
再将(2)式代入(3) 式,得 c = 2
又将c = 2代入(3) 式,即得所求曲线方程为 y = x 2 + 2
通常将确定微分方程任意常数的条件称为初始条件.
n阶微分方程确定任意常数的附加条件为
y x x0
y0 , y ' x x0
y1 ,
, y(n1) x x0 yn1
其中x0 , y0 , y1 , , yn1是待定的n+1个常数.
首页
上页
返回
下页
结束
铃
我们称这些条件为微分方程的初始条件. 微分方程 满足初始条件的求解问题称为初值问题. n阶微分方程 的初值问题通常记作
dx y
方程 y" 2 y ' 3 y x2 都是二阶微分方程.
一般地, n阶微分方程的形式为 F ( x, y, y ', , y(n) ) 0
其中 F 是 x, y , y ’, … , y (n) 的已知函数, x 为自变量, y 为未知函数, 且方程中一定含有 y(n).
首页
上页
返回
下页
于是函数 y = c1cos 2x + c2 sin 2x 是给定方程的解
首页
上页
返回
下页
结束
铃
又因为解中含有两个独立的任意常数,所以函数
y = c1cos2x + c2sin2x 是给定方程的通解.
将初始条件
y 1, y ' 0
x0
x0
代入通解中, 求得 c1 = 1, c2 = 0
所以满足初始条件 y 1, y ' 0 的特解为
y(n) f ( x, y, y ', , y(n1) )
y
x0
y0 , y ' x0
y1 ,
, y(n1) x0 yn1
微分方程解的图形是一条曲线,叫做微分方程的积分
曲线. 初值问题的几何意义, 就是求微分方程的通过点
( x0 , y0 ) 的那条积分曲线.
首页
上页
返回
下页
结束
铃
例1 验证 函数 y = c1cos2x + c2 sin2x是微分方程
y(n) a1 ( x) y(n1) an ( x) y f ( x) 其中 a1(x) 、…、a n-1 (x)、 a n (x), f (x) 都是 x 的已 知函数 . 不是线性方程的微分方程, 统称为非线性微分方程.
首页
上页
返回
下页
结束
铃
例如, 方程 y ' x3 y sin x, y " 2 y ' 3 y x2是线性微分方程 方程 ( y")3 y ' 2 y 0, y" y ' y2 0 是非线性微分方程.
结束
铃
n阶微分方程的另一种形式为 y(n) f ( x, y, y ', , y(n1) )
其中f 是 x , y , y’, … , y ( n - 1) 的已知函数. 这种已就 最高阶导数解出的方程,称为正规形微分方程.
如果微分方程中所含的未知函数和未知函数的各阶导 数都是一次的,则称方程为线性微分方程. 线性微分方程 的一般形式为:
一. 微分方程及其阶的定义 定义9.1 含有未知函数的导数(或偏导数)的方程, 称为
微分方程. 当未知函数是一元函数时, 称为常微分方程; 当未 知函数是多元函数时, 称为偏微分方程. 微分方程有时也简称 方程.
例如, 方程 dy x , y ' x2 y sin x, y " 2 y ' 3 y 0,
y
两边积分,得 ln y x2 lnc
于是原方程的通解为 y cex2
例 求方程 cos xsin ydy cos ysin xdx 满足初始条件
y
x0
4
的特解.
解 分离变量, 得 sin y dy sin x dx
cos y cos x
两边积分,得 lncos y lncos x lnc
二. 微分方程的解
定义9.3 设函数 y =φ(x) 在区间D上有连续的n阶导 数, 并且对任意的 x∈D, 均有
F ( x, ( x), '( x), , (n) ( x)) 0 则称函数 y = φ(x) 为微分方程在区间D上的解.
如可以验证函数 y e2x 是方程 y ' 2 y 0 的解
1 du ln | x | C f (u) u
(9.20)
首页
上页
返回
下页
结束
铃
例9.4
求方程
dy dx
y3 2x2y 3x3 2xy2
的通解.
解 将所给方程改写为其次方程