8.1_2 向量及其线性运算

合集下载

2015高考总复习数学(文)课件:8.1 平面向量及其线性运算

2015高考总复习数学(文)课件:8.1 平面向量及其线性运算

→ |=|OB → |=|OC → |知,O 为△ABC 的外心; 解析:由|OA → +NB → +NC → =0 知,O 为△ABC 的重心; 由NA →· → =PB →· → ,∴(PA → -PC → )· → =0.∴CA →· → =0.∴CA →⊥ ∵PA PB PC PB PB → ,同理,PA⊥BC,∴P 为△ABC 的垂心. PB
考点 1 平面向量的基本概念
例 1:已知 O 是平面上一定点,A,B,C 是平面上不共线 → =OA → +λ(AB → +AC → ),λ∈[0,+∞),则 的三点,动点 P 满足OP
点 P 的轨迹一定通过△ABC 的(
) C.内心 D.重心
A.外心
B.垂心
→ +AC → =AD → ,则可知四边形 BACD 是平行四边 解析:设AB → =λAD → 表明 A,P,D 三点共线.又 D 在边 BC 的中线 形,而AP 所在直线上,于是点 P 的轨迹一定通过△ABC 的重心.
∵{an}为等差数列,
2013×a1+a2013 2013×a2+a2012 2013 = = ∴S2013= . 2 2 2
答案:B
【方法与技巧】(1)用坐标给出的两个向量平行或共线问题 的处理方法:设 a=(x1,y1),b=(x2,y2),则 a∥b⇔x1y2-x2y1 =0. (2)一般的两个向量平行或共线问题的处理方法:向量b 与 非零向量 a 共线的充要条件是有且仅有一个实数λ,使得b=λa, 即 b∥a⇔b=λa(a≠0).
3 答案: 1+ 2 3 2
易错、易混、易漏 ⊙利用方程的思想求解平面向量问题
1→ → 1→ → 例题:如图 814,在△ABO 中,OC=4OA,OD=2OB, → =a,OB → =b,试用 a 和 b 表示向 AD 与 BC 相交于点 M,设OA →. 量OM

同济大学 高数 第八章

同济大学 高数 第八章



1 1 2 解. AB 1,1, 2 , AB 2 , cos , cos , cos ,故 2 2 2 3 2 , , . 4 3 3 例.在第一卦限求点 A ,使得 OA 与 x , y 轴的夹角分别为 , ,且 OA 6 . 3 4 1 2 1 2 1 1 解. cos , cos cos , OA 6 2, 2 ,2 3,3 2,3 ,故 2 2 2 来自A 3,3 2,3 .


小兵整理
3
老姚高数笔记
第八章 空间解析几何与向量代数 第 8.1 节 向量及其线性运算 一.基本概念
1.向量:既有大小,又有方向的量,一般记为 a , b , .
我们的向量均为自由向量.
2.模:向量的长度也称为模,记为 a . 4.零向量:模为 0 的向量,记为 0 ,规定它的方向是任意的. 5.共线:若向量 a , b 的方向相同或相反,则称它们平行,记为 a // b ,也称为共线.
互相垂直的数轴,分别称为 x 轴,y 轴,z 轴,这样就构成了 Oxyz 坐标系,也可称为 O, i , j , k 坐标系;习惯上,我们采用右手系,即 i , j , k 的方向满足右手法则.
x 轴与 y 轴确定的平面称为 xOy 面,类似地,有 yOz 面, xOz 面,统称为坐标平面,
x, y, z 为点 M 的空间直角坐标,记 M x, y, z .
定理. M x, y, z OM xi yj zk .
3.向量的坐标 设 r 为空间向量,记 x r cos Prji r , y r cos Prj j r , z r cos Prjk r , 则称有序数组 x, y, z 为向量 r 的坐标,记 r x, y, z . 定理.设 r AB ,若 A x1 , y1 , z1 , B x2 , y2 , z2 ,则 r x2 x1 , y2 y1 , z2 z1 . 定理. r x, y, z r xi yj zk ,称为 r 的坐标分解式. 注. xi , yj , zk 分别称为 r 沿三根坐标轴方向的分向量. 四.坐标的应用 定理.设 a ax , a y , az , b bx , by , bz , ,则 (1) a b ax bx , a y by , az bz ;(2) a a x , a y , az .

8第八章空间解析几何答案

8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。

4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。

《向量的线性运算》课件

《向量的线性运算》课件

02 向量的线性运算
向量的加法
总结词
向量加法是向量运算中的基本运算之一,它遵循平行四边形法则。
详细描述
向量加法是将两个向量首尾相连,然后由第一个向量的起点指向第二个向量的终 点的向量。这个新的向量称为原来两个向量的和。在几何上,向量加法可以由平 行四边形的对角线向量得出。
向量的数乘
总结词
数乘是向量的一种线性运算,它通过 乘以一个标量来改变向量的长度和方 向。
《向量的线性运算》 ppt课件
目录
Contents
• 向量的基本概念 • 向量的线性运算 • 向量的数量积 • 向量的向量积 • 向量的外积
01 向量的基本概念
向量的定义
总结词
向量是一个既有大小又有方向的量,通常用有向线段表示。
详细描述
向量是物理学、工程学和数学中常用的概念,它表示一个既有大小又有方向的 量。在二维或三维空间中,向量通常用有向线段表示,起点为原点,终点为任 意点。
详细描述
数乘是将一个向量与一个标量相乘, 得到的结果是原向量的长度按比例缩 放,同时方向可能改变。数乘满足结 合律和分配律,但不满足交换律。
向量的减法
总结词
向量减法是通过将一个向量的起点与另一个向量的终点相连,得到的结果向量就是两个向量的差。
详细描述
向量减法是将两个向量首尾相连,由第一个向量的起点指向第二个向量的起点,这个新的向量称为原 来两个向量的差。在几何上,向量减法可以由三角形法则得出。
向量积不满足交换律,即a×b≠b×a;向量积也不满足结合 律,即(a+b)×c≠a×c+b×c。
05 向量的外积
外积的定义
总结词
基于向量的坐标表示
详细描述

向量的线性运算

向量的线性运算

向量的线性运算向量是线性代数中的重要概念,线性运算是对向量进行数学操作的方法。

本文将介绍向量的线性运算包括加法、减法、数乘,以及向量的线性组合。

一、向量的加法向量的加法是指将两个向量相加得到一个新的向量,符号为“+”。

设有向量A和向量B,记作A+B=C,其中C是向量A和向量B的和向量。

向量的加法满足以下几个性质:1. 交换律:A+B=B+A2. 结合律:(A+B)+C=A+(B+C)3. 零向量:对于任意向量A,有A+0=A,其中0是零向量,即所有分量都为0的向量。

二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量,符号为“-”。

设有向量A和向量B,记作A-B=C,其中C是向量A和向量B的差向量。

向量的减法可以转化为向量的加法,即A-B=A+(-B),其中-表示取反操作。

三、向量的数乘向量的数乘是指将一个向量乘以一个实数得到一个新的向量。

设有向量A和实数k,记作kA=B,其中B是向量A的数乘结果。

向量的数乘满足以下性质:1. 分配律:k(A+B)=kA+kB2. 结合律:(kl)A=k(lA),其中k和l为实数四、向量的线性组合向量的线性组合是指将若干个向量按照一定的权重进行相加得到一个新的向量。

设有向量A1、A2、...、An和实数k1、k2、...、kn,向量的线性组合记作k1A1+k2A2+...+knAn。

向量的线性组合可以看作是向量的加法和数乘运算的组合。

向量的线性运算在向量空间中有着重要的应用。

通过向量的线性组合,我们可以表示出向量空间中的各种线性关系,诸如线性相关性、线性无关性、生成子空间等概念。

在实际问题中,向量的线性运算也有广泛的应用。

例如,物理学中常用向量的线性组合来表示力、速度、加速度等物理量;经济学中则常用向量的线性组合来表示商品的组合、市场的供求关系等。

综上所述,向量的线性运算包括加法、减法、数乘和线性组合。

通过这些运算,我们可以对向量进行各种数学操作,方便地进行向量的运算和分析,也为解决实际问题提供了有力的工具。

向量的线性运算及其性质

向量的线性运算及其性质

向量的线性运算及其性质向量是线性代数中的重要概念,是指由一组数按照一定规律排列而成的有序数列。

向量的线性运算是指在向量空间中,对两个或多个向量进行数学运算的过程,其中包括向量加法和数量乘法等两种基本运算。

一、向量加法向量加法是向量运算中最基本的一种运算方式。

在向量空间中,向量加法的定义是两个向量相同位置上的数值相加。

例如,对于向量a=(a1,a2,a3)和b=(b1,b2,b3),它们的加法定义为:a+b=(a1+b1,a2+b2,a3+b3)在向量加法中,满足加法交换律和结合律。

即对于任意向量a,b,c,有:a+b=b+a(a+b)+c=a+(b+c)此外,零向量也是一个特殊的向量,它的各个分量都为0,记为0。

对于任意向量a,都有:a+0=a二、数量乘法数量乘法是指一个向量乘以一个常数。

常数也称为标量,表示为k。

例如,对于向量a=(a1,a2,a3),其数量乘法定义为:ka=(ka1,ka2,ka3)在数量乘法中,也满足交换律和结合律。

即对于任意向量a,b 和任意实数k,有:k(a+b)=ka+kb(k1k2)a=k1(k2a)此外,特别地,当k=0时,有:0a=0这个公式表示了任何向量与零向量相乘结果都是零向量。

三、线性组合如果给定一个向量集合,可以通过线性组合的方式来构造出一个新的向量。

线性组合的形式是将每个向量分别与对应的系数相乘后相加,例如:k1a1+k2a2+k3a3其中k1,k2,k3为实数,a1,a2,a3为向量。

线性组合可以看作是向量加法和数量乘法的叠加,它有着很多重要的性质。

线性组合是向量空间中的重要概念,它可以用于描述向量之间的关系。

四、向量空间向量空间是指一组向量所组成的空间,其中的向量可以进行向量加法和数量乘法等线性运算。

向量空间必须满足以下条件:1. 零向量存在并唯一。

2. 加法和数量乘法满足交换律、结合律和分配律。

3. 对于任意向量a,都有它的相反向量-b,使得a+b=0。

高等数学A-8.1向量及其线性运算


, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且

b
故b =a
再证数 的唯一性 . 设又有 b= a , 则 ( ) a 0
故 0, 即 .
8-1 向量及其线性运算
“ ” 已知 b= a , 则 b=0 a , b 同向
8-1 向量及其线性运算
第一节 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
8-1 向量及其线性运算
一、向量的概念
1.向量: 既有大小, 又有方向的量称为向量 (又称矢量).
2.表示法: 有向线段 M1 M2 , 或 a ,
cos 1 , cos 2
2
2
2 ,
,
3
3
3
4
8-1 向量及其线性运算
例8 设点A 位于第一卦限,向径 OA 与 x 轴 y 轴的夹
角依次为

3
,

4
,

OA
6, 求点A
的坐标
.
解:
已知


3
,


4
,

cos2 1 cos2 cos2
8-1 向量及其线性运算
杂诗 (东晋)陶渊明
盛年不再来,一日难再晨. 及时当勉励,岁月不待人. 日月掷人去,有志不获聘. 眷眷往昔时,忆此断人肠.
8-1 向量及其线性运算
第八章 向量代数与空间解析几何
向量,也称为矢量,在几何、物理、力学和工程技术中 有着广泛的应用.
本章内容分为两部分: 1.向量代数 2.空间解析几何:把代数方程与空间几何图形对应起来, 从而可以用代数的方法研究几何问题. 空间解析几何的知识为多元函数微积分的学习作了准备.

微积分同步练习

3.平面 的位置是.
(A)、平行 标面。 (B)、平行 轴
(C)、垂直于 轴 (D)、通过 轴
4.以下平面中通过坐标原点的平面是.
(A)、 (B)、 (C)、 (D)、
三、化曲线 为参数方程.
画出以下曲线在第一卦限内的图形:
1. ;2. .
四、求通过三点 、 和 的平面方程.
§8.5平面及其方程(2)(3)§8.6空间直线及其方程
3.设直线 与 ,那么 与 的夹角为.
(A) /6(B) /4(C) /3(D) /2
4.两平行线 与 之间的距离是.
(A) (B) (C) (D)
三、设直线 通过 ,且与 相交,又与 垂直,求直线 的方程.
四、求通过 轴,且与平面 的夹角为 的平面方程.
三、设 ,求 在 轴上的投影及在 轴上的分向量.
四、已知 为三个模为1的单位向量,且 ,求 之值.
五、已知 ,计算:
; ; .
六、设 ,问 知足何关系时,可使 与 轴垂直?
七、已知 , ,求△ 的面积.
§8.3曲面及其方程
一、一动点与两定点 等距离,求这动点的轨迹方程.
二、方程 表示什么曲面?
三、将 平面上的双曲线 别离绕 轴及 轴旋转一周,求所生成的旋转曲面的方程.
一、填空题:
1.过点 且平行于直线 的直线方程为.
2.过点 且与直线 垂直的平面方程为.
3.过点 且与二平面 和 平行的直线方程是.
4.当 时,直线 与平面 平行.
二、选择题:
1.以下直线中平行与 坐标面的是.
(A) (C) (B) (D)
2.直线 与平面 的关系是.
(A)平行(B)垂直相交(C) 在 上(D)相交但不垂直

新教材人教B版高中数学必修3精品课件:第八章 向量数量积的概念 向量数量积的运算律


如 图(1 ), 当〈 a, b 〉 <π2 时,������′������′的 方向与b的方向相同,而且
| ������′������′|=|a|cos〈a,b〉;
图(1)

图(2)
,当〈a
,b〉
=π时
2

������′������′为零向量,即| ������′������′|=0;



3

另外,我们还能得到数量积的如下性质. (3)a,b垂直的充要条件是它们的数量积为0,即
������ ⊥ ������ ⇔ ������ · ������=0.
(4)如果a,b都是非零向量,则
cos〈a,b〉=
������∙������ ������ ������
.
点拨 1.性质(1)中,当且仅当������ ∥ ������时,等号成立,此性质 可用来解决不等式的相关问题. 2.性质(2)用数量积来求向量的模.实现了实数运算与 向量运算的相互转化. 3.性质(3)可用来证明向量垂直或由向量垂直推出等 量关系. 4.性质(4)是数量积定义的变形,又称为夹角公式, 建立了向量与三角函数的联系.
π
例如,下图中向量a与b的夹角为π4,即〈a,b〉= 4 .
类似地,上图中, 向量a与c的夹角为π2,即〈a,c〉=π2; 向量a与d的夹角为0,即〈a,d〉=0; 向量a与e的夹角为π,即〈a,e〉= π .
根据向量夹角的定义可知,两个非零向量的夹角是唯一 确定的,而且
0≤〈a,b〉≤π, 〈a,b〉=〈b,a〉. 当〈a,b〉=π2时,称向量a与向量b垂直,记作a⊥b. 由于零向量方向是不确定的,在讨论垂直问题时, 规定零向量与任意向量垂直.

向量及其线性运算ppt课件

ax
az )
ay
az
bx by bz
22
例5 求解以向量为未知元的线性方程组

5
x

3
y

a,
其中
a

(2,1,2),
3x 2 y b, b (1,1,2).
解 如同解以实数为未知元的线性方程组一样,
可解得 x 2a 3b, y 3a 5b.
向量的模 26
例 7 求证以M1(4,3,1)、 M 2 (7,1,2)、 M3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6, M2M3 M3M1 , 原结论成立.
两式相减,得
(


)a

0,




a 0,
a 0, 故 0, 即 .
8
此定理是建立数轴的理论依据
数轴:点、方向、单位长度
. 1 .x
O i Px
点P 向量 OP = xi 实数 x
轴上点P的坐标为x的充分必要条件是 OP = xi . 另外 设a0表示与非零向量a 同方向的单位向量,
zR
M1
P o
d M1M2 ?
M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
x
d 2 M1P 2 PN 2 NM 2 2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当 a 0 时,
bx a x by a y
bx b y bz ax a y az
bz a z
3x 2 y b 其中 a 2, 2 , b 1, 2 . ( 1, ) ( 1, )
解: 2×① -3×② , 得
例2. 求解以向量为未知元的线性方程组 ① 5x 3y a
的模 、方向余弦和方向角 .
解:
M 1M 2 ( 1 2 , 3 2 , 0 2 )
(1, 1, 2 )
(1) 2 12 ( 2 ) 2 2
1 cos , 2 2 , 3
2 cos 2 3 4

3
,
例8. 设点 A 位于第一卦限,向径 OA 与 x 轴 y 轴的夹
思考: (1) 如何求在 xoy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
提示:
(1) 设动点为 M ( x , y , 0) , 利用 M A M B , 得 且 (2) 设动点为 M ( x , y , z ) , 利用 M A M B , 得
中点公式:
x1 x2 , 2
y1 y2 , 2
z1 z 2 2
B M
定理2.1 三向量a={ax,ax,ax}, b={bx,bx,bx}, c={cx,cx,cx},
共面的充分必要条件是:
ax bx cx ay by cy az bz 0 cz
向量的模、方向角
设 r ( x , y , z ), 作 OM r , 则有 r OM OP OQ OR
即 M1M 2 M 3 为等腰三角形 .
M1 M2
M3
例5. 在 z 轴上求与两点
离的点 .

等距
解: 设该点为 M (0 , 0 , z ) , 因为 M A M B ,
(4) 2 12 (7 z ) 2
解得
(2 z ) 2 3 5
2 2
9
故所求点为 M (0 , 0 , 14 ) .
表示法: 有向线段 M1 M2 , 或 a ,
向量的模 : 向量的大小,
向径 (矢径): 起点为原点的向量. 自由向量: 与起点无关的向量.
单位向量: 模为 1 的向量,记作 a 或 a .
零向量: 模为 0 的向量,
M2 M1
若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等,
例6. 已知两点
解: A B



AB

AB 3 1 2 , , 14 14 14
1 (3 ,1, 2) 14

2. 方向角与方向余弦
设有两非零向量 记作 类似可定义向量与轴, 轴与轴的夹角 . 与三坐标轴的夹角 , , 为其方向角. 方向角的余弦称为其方向余弦. x x cos 2 2 2 r x y z 任取空间一点 O , 称 =∠AOB (0≤ ≤ ) 为向量

A
A

B
B
Pr ju AB Pr ju AB
B
u u
| AB | cos
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个) Pr j (a1 a2 ) Pr ja1 Pr ja2 .
由勾股定理得 1. 向量的模与两点间的距离公式
R
z
M Q y
N
2 2 2
o
P x
r OM
对两点 与 因
x y z
得两点间的距离公式:
( x2 x1 ) 2 ( y2 y1 ) 2 ( z2 z1 ) 2
例4. 求证以
为顶点
的三角形是等腰三角形 .
证:
M 1M 2 (7 4) 2 (1 3) 2 (2 1) 2 14 M 2 M 3 (5 7) 2 (2 1) 2 (3 2) 2 6 M 1M 3 (5 4) 2 (2 3) 2 (3 1) 2 6 M 2 M 3 M 1M 3
z
z 轴(竖轴)
• 坐标原点
Ⅲ Ⅳ

• 坐标轴 • 坐标面
yoz 面
o xoy面

• 卦限(八个) Ⅶ
y
y轴(纵轴)

x
x轴(横轴)


在直角坐标系下
点 M 有序数组 ( x, y, z ) 向径 r (称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ; 坐标面上的点 A , B , C
记作 a=b ;
若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行, 记作
a∥b ; 规定: 零向量与任何向量平行 ;
与 a 的模相同, 但方向相反的向量称为 a 的负向量,
记作-a ; 因平行向量可平移到同一直线上, 故两向量平行又称
两向量共线 .
若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .

2 1 , ) 2 2
(3 , 3 2 , 3)
故点 A 的坐标为 (3 , 3 2 , 3) .
向量在轴上的投影
设有一轴 u,AB 是轴 u 上的有向线段 .
A
B
u
如果数 满足 AB,且当 AB 与 u 轴同 向时 是正的,当 AB 与 u 轴反向时 是负的, 那末数 叫做轴 u 上有向线段 AB 的值,记作 AB,即 AB.
证明: 充分性。 不妨设c =a+b,任取一点M, 作MA a, MB b 则 c 就是以MA,MB为邻边的 平行四边形的对角线多对应的向量 MC
显然a , b ,c 共面,但a//a , b //b,
故a ,b ,c 共面。
必要性。 设a ,b ,c 共面。任取一点M,
作MA a, MB b, MC c, 使得c =a+b。
设 a ( a x , a y , a z ), b (bx , b y , bz ) , 为实数 , 则 a b (a x bx , a y by , a z bz ) ( a , a , a ) a x y z
平行向量对应坐标成比例:

b
故 b a.
再证数 的唯一性 . 设又有 b= a , 则 ( ) a 0
故 0 , 即 .

” 已知 b= a , 则 b=0 a , b 同向
a∥b
a , b 反向
例1. 设 M 为 解: ABCD 对角线的交点,
试用 a 与 b 表示 MA , MB , MC , MD .
角依次为 , , 且 O A 6 , 求点 A 的坐标 . 3 4
, , 则 解: 已知 3 4 cos 2 1 cos 2 cos 2 1 4 因点 A 在第一卦限 , 故 cos 1 , 于是 2
OA O A OA 6 ( 1 , 2
的夹角. a ,b
z
r
o


y
x
x x cos r x2 y2 z 2 y y cos r x2 y2 z 2 z z cos r x2 y2 z 2
方向余弦的性质:
z
r
o


y
x
例7. 已知两点

计算向量
第8章
空间解析几何与向量代数
第一部分 向量代数
第二部分
空间解析几何
在三维空间中: 空间形式 — 点, 线, 面 数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
第一节 向量及其线性运算
一、向量的概念
第七章
二、向量的线性运算
一、向量的概念
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
1 1
1 1
z
R(0,0, z )
B(0, y, z )
C ( x, o, z )
o
r
M
y
Q(0, y,0)
x P(x,0,0)
A( x, y,0)
z
坐标轴 :
o
y
x
坐标面 :
向量的坐标表示
以 i , j , k 分别表示 x , y , z 轴上的单位向量 , 设点 M
的坐标为 M ( x , y , z ) , 则
二、向量的线性ቤተ መጻሕፍቲ ባይዱ算
1. 向量的加法 平行四边形法则:
(a b) c a (b c)
c
bc
b
b ab
三角形法则:
a
ab b
ab
a
运算规律 : 交换律
ab ba 结合律 ( a b ) c a ( b c ) a b c
a
三角形法则可推广到多个向量相加 .
s a1 a2 a3 a4 a5 a4 a3 a5
s
a2 a1
2. 向量的减法
a
三角不等式
3. 向量与数的乘法 规定 :
是一个数 , 与 a 的乘积是一个新向量, 记作 a .
可见 总之: a a 1a a ; 运算律 : 结合律 ( a ) ( a ) a 1 a a ;
推论 三向量a,b,c共面的充分必要条件存在不全为零 的数k1,k2,k3,使得 k1a+k2b+k3c=0
相关文档
最新文档