甲醇制烯烃

甲醇制烯烃
甲醇制烯烃

大连化物所DMTO工艺与工程

发布日期:[11-07-20]

1. 概况

中国科学院大连化学物理研究所DMTO技术是以甲醇和/二甲醚为原料,经催化转化制取基本化工原料乙烯、丙烯等低碳烯烃,最终生产聚烯烃等高附加值化工品。新兴能源科技有限公司(简称新兴公司,或SYN)是由中国科学院大连化学物理研究所(以下简称“大连化学物理研究所”,或“大连化物所”)控股、与陕西煤业集团及泰国正大能源化工集团共同出资组建的一家中外合资企业。新兴公司与中国石化集团洛阳石油化工工程公司(简称洛阳石化工程公司,或LPEC)合作形成了完整的具有商业化能力的DMTO技术,是目前国内外在煤制烯烃及其相关专业领域的权威的专利技术供应商之一。

中国的石化产品中,乙烯、丙烯及其衍生物自给率一直在50%上下徘徊,供需矛盾长期存在,市场发展空间巨大。国际油价持续高位运行,石化原料成本大幅上涨,赢利空间受挤压;发展替代生产路线的经济拉动力增强。中国的甲醇生产能力快速增长,市场出现过剩局面,为以甲醇为中间体的C1化工的发展提供可靠的原料来源。单系列甲醇装置规模大型化,使单位生产能力的投资和成本大幅降低,有利于提高下游产品的经济竞争力。综上因素,在今后十数年内,将给以煤炭(或天然气)为原料、经由甲醇生产低炭烯烃产业的快速发展带来前所未有的机遇。

DMTO技术的研发具有很长的历史。七十年代石油危机的冲击,引发了利用非石油资源生产低碳烯烃的技术研究。国家有关部委和中科院立足于对国情的深刻认识,早在“六五”期间就把非石油路线制取低碳烯烃列为重大项目,给予了重点和连续的支持。中科院大连化学物理研究所于八十年代初在国内外率先开展了天然气(或煤)制取低碳烯烃的研究工作,主要围绕其关键的中间反应环节甲醇制烯烃过程(MTO)进行了连续攻关。在“六五”期间完成了实验室小试,在此基础上,“七五”期间,采用中孔ZSM-5沸石催化剂、固定床工艺完成了300吨/年(甲醇处理量)的中试,其结果达到了同期国际先进水平。

随着新型合成材料SAPO分子筛的发明,中国科学院大连化学物理研究所基于对SAPO-34分子筛结构的深刻认识,开展了用SAPO-34分子筛为催化剂进行甲醇制烯烃的探索研究,并在世界上首次报道了以小孔SAPO分子筛为催化剂的MTO试验结果。上世纪九十年代初大连化学物理研究所对以小孔SAPO分子筛为催化剂的流化反应技术进行了重点研究与开发,被列为国家“八五”重点科技攻关课题(85-513-02)。这期间完成了流化反应工艺的中试放大试验。于1995年底在北京通过了国家计委的项目验收和由中科院主持的技术鉴定,确认在总体上达到了国际领先水平,并于1996年获得中国科学院科技进步特等奖。

DMTO工业化技术开发项目是在大连化学物理研究所达到世界先进水平并拥有自主知识产权的MTO技术研究成果的基础上,利用国内一流的“流化催化裂化”工程技术,建设一套年加工1.5万吨甲醇的工业化试验装置,为在我国建设百万吨级/年的甲醇加工能力的大型DMTO工业化示范项目奠定坚实的工业技术基础。2004年,中国科学院大连化学物理研究所与陕西新兴煤化工科技发展有限责任公司、中国石化集团洛阳石油化工工程公司(LPEC)三方合作,利用中国科学院大连化学物理研究所的前期研究成果,建成了世界上第一套万吨级工业性试验装置。项目总投资8610万元。2005年7月,完成试验装置的建设、安装工作,2005年底完成了试验设备的调整工作,2005年12月正式投入试验运行。

2006年6月完成了50吨甲醇/天的工业性试验。2006年8月通过了由国家发展改革委委托中国石油和化学工业协会组织的技术鉴定。

DMTO工业性试验,利用大型的试验装置,不仅验证了批量生产的催化剂的优异性能,验证和优化了甲醇制低碳烯烃工艺技术,为大型化工业装置的设计、建设和运行奠定了技术基础;同时也发现,工业性试验结果与实验室中试结果存在着一定的差异,验证了这样一个原则,即甲醇制烯烃低碳技术大型化的过程中,一定规模的工业性试验是必须的或不可缺少的。通过工业性试验,验证了DMTO工艺和催化剂技术已基本成熟。在工程技术方面,DMTO 的核心技术-反应再生部分应用的流化工程技术可借鉴已很成熟的FCC流化工程技术。大连化学物理研究所的合作伙伴LPEC具有40多年的FCC工程设计和运行经验,关键的工程技术可针对DMTO的工程技术特点借鉴FCC工程设计经验。

DMTO过程的研究与发展经历了漫长的过程,大连化学物理研究所从研究的初期就注重知识产权的保护,在今后的工作中将持续加强这方面的工作。目前,DMTO已经申请和被授权了60余件专利,其中包括7国际专利。在DMTO技术方面,已经构成了完整的知识产权保护体系。

DMTO成套技术的开发与应用对我国发展新型煤化工产业,实现“以煤代油”的能源战略,无论从经济上还是战略上都具有极高的意义,也是保证我国二十一世纪能源安全的必由之路。

2. 已许可项目

目前已经签订的技术许可合同已超过10家,总烯烃生产规模超过600万吨。其中神华煤制油化工有限公司包头煤化工分公司头60万吨烯烃/年甲醇制取低碳烯烃项目已经投产并正式商业化运营。该项目于2010年5月31日中交,2010年7月DMTO装置惰性剂流化试运工作顺利完成,2010年8月8日10时48分,神华集团包头煤化工分公司甲醇制烯烃装置顺利投料试车,至12时生产出乙烯、丙烯和C4+产品混合气。至8月16日生产出聚丙烯粒料,8月21日生产出聚乙烯粒料,目前装置正处于满负荷平稳运行中。

图1 神华包头DMTO装置

3. 甲醇转化为烯烃的反应特征

(1)酸性催化特征

甲醇转化为烯烃的反应包含甲醇转化为二甲醚和甲醇或二甲醚转化为烯烃两个反应。前一个反应在较低的温度(150-350oC)即可发生,生成烃类的反应在较高的反应温度(>300oC)下发生。两个转化反应均需要酸性催化剂。通常的无定形固体酸可以即作为甲醇转化的催化剂,容易使甲醇转化为二甲醚,但生成低碳烯烃的选择性较低。

(2)高转化率

以分子筛为催化剂时,在高于400oC的温度条件下,甲醇或二甲醚很容易完全转化(转化率100%)。

(3)低压反应

原理上,甲醇转化为低碳烯烃反应是分子数量增加的反应,因此低压有利于提高低碳烯烃尤其是乙烯的选择性。

(4)强放热

在200-300oC,甲醇转化为二甲醚和甲醇转化为低碳烯烃均为强放热反应,反应的热效应显著。

(5)快速反应

甲醇转化为烃类的反应速度非常快。根据大连化物所的实验研究,在反应接触时间短至0.04s便可以达到100%的甲醇转化率。从反应机理推测,短的反应接触时间,可以有效地避免烯烃进行二次反应,提高低碳烯烃的选择性。

(6)分子筛催化的形状选择性效应

原理上,低碳烯烃的高选择性是通过分子筛的酸性催化作用结合分子筛骨架结构中孔口的限制作用共同实现的。结焦的产生将造成催化剂活性的降低,同时又反过来对产物的选择性产生影响。

DMTO工艺的开发过程中已经充分考虑了上述MTO反应的特征。DMTO工艺的设计中,也应时刻牢记这些特征,将这些反应的原理性的特征融入其中。

4. DMTO工艺的工艺特点

根据甲醇转化反应的特征、催化剂的性能和前期中试研究工作特别是工业性试验阶段的研究和验证,甲醇制烯烃的DMTO工艺具有如下特点:

(1)连续反应-再生的密相循环流化反应

甲醇制烯烃专用催化剂基于小孔SAPO分子筛的酸催化特点,由于利用了该分子筛的酸性和较小的孔口直径的形状选择性作用,可以高选择性地将甲醇转化为乙烯、丙烯,同时SAPO 分子筛结构中的“笼”的存在和酸催化的固有性质也使得该催化剂因结焦而失活较快。流化床是与催化剂和反应特征相适应的反应方式,在中试放大中和工业性试验中得到了验证。DMTO工艺采用循环流化反应方式具有工艺的特点:

a.可以实现催化剂的连续反应-再生过程;

b.有利于反应热的及时导出,很好地解决反应床层温度分布均匀性的问题;

c.控制反应条件和再生条件,通过合理的取热,可实现反应的热量平衡;

d.可以实现较大的反应空速;

e.反应原料满足专利商要求。

(2)DMTO专用催化剂

甲醇制烯烃专用催化剂专门针对DMTO工艺所发展,不仅具有优异的催化性能,高的热稳定性和水热稳定性,适用于甲醇和二甲醚及其化合物等多种原料,也具有合适的物理性能。特别是其物理性能和粒度分布与工业催化裂化催化剂相似,流态化性能也相近,是DMTO

工艺可以借鉴已有的流态化研究成果和成熟流化反应(如FCC)经验的基础。

需要指出的是,DMTO毕竟是不同于现有任何工艺的新技术,在借鉴FCC技术的成功经验方面应以催化剂物理性质相似为基础,但不应不加分析地照搬套用。

(3)DMTO工艺对原料和工艺设备的特殊要求

DMTO工艺技术采用酸性分子筛催化剂,为了保证催化剂性能的长期稳定性,对原料甲醇中的杂质含量有特别的指标要求,以防止催化剂的中毒性永久失活。

另外,鉴于DMTO工艺生产的低碳烯烃只是中间产品,需要进一步加工才能成为最终产品,应尽可能控制低碳烯烃产品中的杂质(尤其是重要的杂质)含量,以降低下游加工前的净化成本。因此,DMTO工艺对循环催化剂的脱气效率有较高的要求,需要汽提装置对特殊设计。

DMTO工艺要求较低的再生温度,以避免氮氧化物的生成。DMTO催化剂的性能可以使得低温再生成为可能,推荐的再生温度为550-700oC。

5. DMTO工艺流程描述

DMTO反应工艺流程框图由原料气化部分、反应-再生部分、产品急冷及预分离部分、污水汽提部分、主风机组部分、蒸汽发生部分六部分组成。

(1)原料气化部分

原料气化部分的主要作用是将液体甲醇原料按要求加热到进料要求温度,以汽相形式进入反应器。

(2)反应-再生部分

该部分是DMTO 技术的核心,采用循环流化床的反应-再生型式,两器内需设置催化剂回收系统、原料及主风分配设施、取热设施、催化剂汽提设施,能够满足反应操作条件要求的催化剂输送系统。

(3)产品急冷及预分离部分

产品急冷及预分离部分的主要作用是将产生的反应混合气体在该部分进行冷却。

通过急冷进一步洗涤反应气中携带的催化剂细粉,通过水洗将反应气中的大部分水进行分离。

(4)污水汽提部分

由产品急冷及预分离部分分离出的水,含有少量甲醇、二甲醚等物质,由该部分提浓回用,并使排放水合格。

(5)主风机组部分

该部分是为再生器烧焦提供必要的空气而设置的。

(6)蒸汽发生部分

装置内所有可发生蒸汽的热能应尽量发生蒸汽。

下图给出了典型的DMTO工业装置流程图和物料平衡(包括DMTO反应再生工段和烯烃分离回收工段):

图2 MTO工业装置(DMTO工艺)流程图

6. DMTO装置投资

以180万吨/年甲醇制60万吨/年烯烃为例,整套装置包括DMTO反应装置和烯烃聚合装置以及相关的公用工程建设,主要产品为30万吨/年聚合级乙烯和30万吨/年聚合级丙烯,装置的总投资为22-25亿元。DMTO装置占地面积为200m×115m=23000m2。

以60万吨/年甲醇制20万吨/年烯烃为例,整套装置包括DMTO反应装置和烯烃聚合装置以及相关的公用工程建设,主要产品为10万吨/年聚合级乙烯和10万吨/年聚合级丙烯,装置的总投资约为10亿元。DMTO装置占地面积为150m×90m=13500m2。

7. 经济性分析

图3 不同工艺路线生产烯烃的经济性比较

从初步的技术经济计算可以看出,在国际原油高于50美元/桶(FOB离岸油价)下,对应的石脑油不含税价格在4000元/吨以上,导致石脑油管式裂解炉制混合烯烃的税前销售成本可在8300元/吨以上。与此对应的MTO制混合烯烃的甲醇不含税价可在2300元/吨左右,对应的由煤制甲醇的原料煤可在550元/吨左右价位,对应的由天然气制甲醇的原料天然气价在1.8元/m3。使低于此原料价位的煤基和天然气基MTO工艺有技术经济优势。

下图为DMTO技术制烯烃与传统的石脑油制烯烃技术成本对比图。可以看出,固定聚烯烃平均价格为11000元/吨,当石脑油价格为4400元/吨时,传统的石脑油制烯烃项目其内部投资收益率(IRR)为10%;此时通过DMTO技术生产烯烃,如果甲醇的成本能够控制在2300元/吨,则DMTO项目的IRR为14%左右;如果自有煤炭资源,通过煤制甲醇经DMTO生产烯烃,则该项目的IRR可以达到16-18%。

图4 不同工艺路线生产烯烃的内部收益率

甲醇制烯烃反应典型操作条件和产物组成

1. 典型操作条件

采用连续反应-再生的循环流化床反应器时,下表给出了典型的操作工况:

2. 产物组成

在上述反应条件下,甲醇单程转化率大于99.8%,反应器出口组成如下表所示:

甲醇制烯烃的相关工艺

甲醇制低碳烯烃的工艺举例以及本组最佳工艺的确定 一、 甲醇制低碳烯烃的工艺列举 甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要为在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SAPO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(methanol-to-olefin ,MTO ),甲醇制丙烯(methanol-to-propylene ,MTP )。MTO 工艺的代表技术有环球石油公司( UOP )和海德鲁公司( Norsk Hydro )共同开发的UOP/Hydro MTO 技术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP 工艺的代表技术有鲁奇公司(Lurgi )开发的Lurgi MTP 技术和我国清华大学自主研发的FMTP 技术。 1.1 UOP /I-Iydro 公司的MTO 工艺 美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发了UOP /Hydro MTO 工艺。MTO 工艺对原料甲醇的适用范围较大,可以使用粗甲醇(浓度80%一82%)、燃料级甲醇(浓度95%)和AA 级甲醇(浓度>99%) 。该工艺采用流化床反应器和再生器设计,其流程见图3。其反应温度由回收热量的蒸汽发生系统来控制,失活的催化剂被送到流化床再生器中烧碳再生,并通过发生蒸汽将热量移除,然后返回流化床反应器继续反应。由于流化床条件和混合均匀催化剂的共同作 甲醇制取低碳烯烃 UOP/Hydro 公司 的MTO 工艺 大连化学物理研究 所的DMTO 工艺 上海化工研究院的SMTO 工艺 鲁奇(Lurgi)公司的MTP 工艺 清华大学的 FMTP 工艺 MTO MTP

煤制烯烃研究报告范本

煤制烯烃研究报告

煤制烯烃工艺研究报告 一、煤制烯烃简介 制备丙烯的传统方法是采用轻油(石脑油、轻柴油)裂解工艺,但石油储量有限,因此世界各国开始致力于非石油路线制乙烯和丙烯类低碳烯烃的开发。其中,以煤或天然气为原料制甲醇,再由甲醇制低碳烯烃的工艺受到重视。 煤制烯烃主要指乙烯、丙烯及其聚合物。聚乙烯主要应用于粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯是仅次于乙烯的一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先经过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂的作用下脱水生成二甲醚(DME),形成甲醇、二甲醚和水的平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。当前,国际上有几种领先的甲醇制烯烃工艺,如美国UOP公司与挪威海德鲁(Lydro)公司的甲醇制烯烃工艺(MTO)、德国鲁奇(Lurgi)公司的甲醇制丙烯工艺(MTP)、美国AtoFina与UOP公司的烯烃裂

解工艺等,其中Lurgi公司的MTP工艺已经在国内的生产装置上应用,在最先实现工业化。 二、国外煤制烯烃技术 MTO是国际上对甲醇制烯烃的统一叫法。最早提出煤基甲醇制烯烃工艺的是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO 的工业化。1995年,UOP与挪威Norsk Hydro公司合作建成一套甲醇加工能力0.75 吨/天的示范装置,连续运转90天,甲醇转化率接近100%,乙烯和丙烯的碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺的20万吨/年乙烯工业装置,截止已实现50万吨/年乙烯装置的工业设计,并表示可对设计的50万吨/年大型乙烯装置做出承诺和保证。UOP/Hydro的MTO工艺能够在比较宽的范围内调整反应产物中C2与C3;烯烃的产出比,可根据市场需求生产适销对路的产品,以获取最大的收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)的甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,是全球首套采用霍尼韦尔先进技术(Honeywell)的装置,与传统工艺相比,该项工艺被验证拥有高收率和低副产品形成的优点。

甲醇制烯烃工艺_MTO_

纪律和奖罚制度,调动全体试车人员的积极性,经过一年多的工作,于1998年11月15日又开始试车。经过一个多月的投料表明,1.5万t a氯化法钛白的主要技术难关基本上已被攻克,初步实现了连续稳定生产。 5 几点建议 (1)面对世界钛白由跨国集团高度垄断的新局面,国内钛白工业必须加强集中统一领导、统一规划、合理布局,一致对外。 (2)对现有的钛白厂要实行强强联合,对亏损严重、污染大的厂要坚决实行关停并转。 (3)对已引进的3套较大型的钛白粉生产装置,国家应继续给予优惠政策和资金支持,并跨地区、跨部门地组织专家联合进行技术攻关。特别要充分发挥经验丰富的老专家的作用,协同作战,解决工艺、技术难题,提高产品质量,开发新品种,以满足国民经济发展的需要。 (4)由于硫酸法钛白生产三废排放量大,较难处理,而氯化法钛白生产的主要技术难题又已基本被攻克,现在完全可以利用国内技术兴建万吨级以上的氯化法钛白生产装置。建议除了特殊地区外,今后兴建的钛白厂主要应采用氯化法。而且厂址最好能与氯碱厂在一起,以达到优势互补,提高经济效益的目的。 (5)为保护民族工业,扶植国内钛白生产,建议对国外钛白供应商向我国低价倾销钛白粉要进行处罚;要制定相关法律,向其所在国贸易管理机构起诉,并对进口产品征收高额的反倾销税。 ?新产品新装置? 吉化公司乙撑双硬脂酰胺装置建成投产 具有国内领先水平的年产700t乙撑双硬脂酰胺生产装置,在吉化公司研究院建成,并投入批量生产。 乙撑双硬脂酰胺是一种多功能塑料加工助剂,可广泛应用于高分子聚合树脂,如AB S树脂、聚氯乙烯、聚丙烯、酚醛树脂及氨基树脂加工中的润滑剂、防粘剂、粘度调节剂和表面光亮剂等。 该装置是由吉化研究院自行开发、设计的。经半年的运转考核,生产能力达到并超过设计能力(已达800t a以上),其产品经在吉化合成树脂厂引进的10万t a AB S生产装置上应用,性能指标完全满足生产要求。目前,产品已向该公司及国内多家用户批量供货,质量及稳定性已达到国外同类产品水平。 (微笔) 扬子石化大型空分装置投入运行 扬子石化股份公司投资近3亿元的每小时增产氧气2万m3、氮气3.75万m3的大型空气分离装置投入运行。 该空分装置在设计、安装过程中,采用了引进国外先进技术和设备与国内配套设计相结合的办法,装置开停车过程可全部自动调整控制,DCS控制系统达到国际90年代先进水平。(微笔) 甲醇制烯烃工艺(M TO) 一项以天然气为原料经甲醇制取混合烯烃(乙烯+丙烯+丁烯)的工艺技术即M TO工艺,已由美国环球油品公司(UO P)和挪威海德罗(H ydroc)公司联合开发中试成功。 1995年11月,在南非第四次天然气转化国际年会上,UO P和H ydroc公司首次公布了这一工艺技术及其示范装置的运行数据。据称,这一工艺经小试、中试和示范装置长期、连续试验,操作稳定,得到了相互验证,可以用来建设年产50万t乙烯的工业化生产装置。 该技术的工艺流程和设备与炼厂的 型催化裂化装置基本相同,产品分离流程比传统的深冷分离流程简单。 采用M TO工艺生产烯烃,需要大量天然气或甲醇:一套30万t a M TO法乙烯装置,年消耗天然气13亿m3或甲醇150万t。因此,在天然气供应充足而且价格便宜的地方,采用此法生产烯烃,比之石脑油或轻柴油裂解制烯烃,在技术和经济上都具有一定的优越性。 我国对M TO工艺的开发也已经历多年,中试数据与国外很接近,而催化剂性能则优于国外。据了解,中国石油和天然气北方公司正在进行M TO工艺的千吨级工业化试验。(宗言恭) 81 化 工 技 术 经 济 第17卷

甲醇制烯烃工艺

甲醇制烯烃工艺 学生姓名:冯佑磊 班级学号:101409121

在天然气制烯烃工艺中,天然气经甲醇制烯烃MTO/MTP工艺技术是最具备工业化条件的技术。中国化工学会理事长、中国工程院院士曹湘洪表示,在后石油时代,炼油工业应以汽油、煤油、柴油产量最大化为目标;新建乙烯、丙烯装置,宜选择MTO「甲醇制烯烃」工艺路线;已有乙烯装置,宜用费托合成油来替代石脑油作为原料。“中国科学院大连化学物理研究所”的DMTO在神华包头的成功实现工业化生产,证明了国产的MTO技术与催化剂的生产都已达到世界领先的水平。MTO 工艺与MT P工艺都是可行的,从市场的风险性考虑,MTO工艺比MT P工艺更安全些。 MTO/MTP工艺概述 1.1 概述 MTO是指以煤基或天然气基合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工工艺技术,其主要产品为乙烯、丙烯。 MTP是指以煤基或天然气基合成的甲醇为原料,采用固定床反应器,生产丙烯的化工工艺技术。 甲醇制烯烃技术源于甲醇制汽油。在甲醇合成汽油过程中,发现C2~C4 烯烃是过程的中间产物。控制反应条件(如温度等)和调整催化剂的组成,就能使反应停留在生产乙烯等低碳烃的阶段。显然,催化剂的研究则是MTO 技术的核心。 目前世界上,对研制MTO催化剂卓有成效,因而具备工业化和商业转让条件的甲醇制低碳烯烃的技术主要有三种:美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发的UOP/Hydro MTO 工艺;德国鲁奇公司开发的Lurgi MTP 工艺;中国科学院大连化学物理研究所开发的D M TO 工艺。 1.2 MTO技术特点 采用流化床反应器和再生器,连续稳定操作;采用专有催化剂,催化剂需要在线再生,保持活性;甲醇的转化率达100%,低碳烯烃选择性超过85%,主要产物为乙烯和丙烯;可以灵活调节乙烯/丙烯的比例;乙烯和丙烯达到聚合级。 1.3 MTP技术特点 采用固定床由甲醇生产丙烯,首先将甲醇转化为二甲醚和水,然后在三个MTP反应器中进行转化为丙烯。催化剂系采用南方化学开发的改进ZSM-5催化剂,有较高的丙烯选择性。甲醇和DME 的转化率均大于99%,对丙烯的收率则约为71%。产物中除丙烯外还将有液化石油气、汽油和水。 1.4 基本反应历程 MTP、MTO反应历程通常认为可分成三个步骤: (1)甲醇首先脱掉一分子水生成二甲醚。甲醇和二甲醚迅速形成平衡混合物。甲醇/二甲醚分子与分子筛上酸性位作用生成甲氧基. (2)甲氧基中一个C.H质子化生成C-H+,与甲醇分子中-OH.作用形成氢键,然后生成已基氧缝,进而生成C=C键。 (3)C=C键继续发生链增长生成(CH2)n。反应过程以分子筛作催化剂时,产物分布比较简单,以C2--一C4(特别是乙烯、丙烯)为主。MTP、 MTO过程的关键技术是催化剂,由于反应过程中有大量的水存在,且催化剂运行中需要在较高温度下频繁再生烧炭,因而催化剂的热稳定性及水热稳定性是影响化学寿命的决定因素。 二.国内外MTO、MTP技术介绍 2.1 UOP/Hydro 甲醇制烯烃工艺 2.1.1工艺简介 挪威海德鲁(Hydro)公司创建于1905年2月,以生产氮肥起家。现在油气开发是其支柱产业。美国环球油品公司(U O P)创建于1914年,是当今世界上炼油和石油化工最主要的工艺技术专利商之一,而又以生产和供应分子筛及炼油、石油化工用催化剂见长。1992年,美国UOP公司和挪威Hydro公司开始了类似催化裂化装置的甲醇制烯烃工艺,并进行了小试工作。1995 年两公司合作

煤制烯烃简介

煤制烯烃项目简介 一、煤制烯烃 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先通过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂得作用下脱水生成二甲醚(DME),形成甲醇、二甲醚与水得平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。 煤制烯烃主要指乙烯、丙烯及其聚合物、聚乙烯主要应用于粘合剂、农膜、电线与电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯就是仅次于乙烯得一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 二、国外煤制烯烃技术 MTO就是国际上对甲醇制烯烃得统一叫法。最早提出煤基甲醇制烯烃工艺得就是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO得工业化。1995年,UOP与挪威NorskHydro公司合作建成一套甲醇加工能力0.75 吨/天得示范装置,连续运转90天,甲醇转化率接近100%,乙烯与丙烯得碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺得20万吨/年乙烯工业装置,截止2006年已实现50万吨/年乙烯装置得工业设计,并表示可对设计得50万吨/年大型乙烯装置做出承诺与保证、UOP/Hydro得MTO工艺可以在比较宽得范围内调整反应产物中C2与C3;烯烃得产出比,可根据市场需求生产适销对路得产品,以获取最大得收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)得甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,就是全球首套采用霍尼

甲醇制丙烯工艺

甲醇制丙烯工艺 与甲醇制烯经同时生产乙烯和丙烯不同,甲醇制丙烯工艺主要生产丙烯,副产LPG和汽油;反应中生成的乙烯和丁烯返回系统再生产,作为歧化制备丙烯的原料。 1、鲁奇公司(Lurgi)的MTP工艺 1996年鲁奇公司使用南方化学公司的高选择性沸石基改性ZSM-5催化剂,开始研发MTP工艺。1999年,鲁奇公司在德国法兰克福研发中心建立了一套单管绝热固定床反应装置,装置设计规模为数百克/时甲醇处理能力,主要完成了催化剂性能测试,并验证了MTP设计理念、优化了反应条件。2000年,鲁奇公司在法兰克福研发中心建立了三管(3x50%能力)绝热固定床反应装置,装置处理甲醇能力为1千克/小时,该装置打通了MTP总工艺流程,模拟了系统循环操作,进一步优化了反应条件,并为MTP示范厂的建立积累了大量基础数据。2002年1月,鲁奇公司在挪威Tjeldbergodden地区的Statoil甲醇厂建成甲醇处理能力为360千克/天的MTP示范厂。2004年5月,示范工作结束。通过测试,催化剂在线使用寿命满足8000小时的商业使用目标;产物丙烯纯度达到聚合级水平,并副产高品质汽油。 鲁奇公司MTP技术特点是甲醇经两个连续的固定床反应器,第一个反应器中甲醇首先转化为二甲醚,第二个反应器中二甲醚转化为丙烯。该技术生成丙烯的选择性高,结焦少,丙烷产率低。整个MTP工艺流程对丙烯的总碳收率约为71%。催化剂由德国南方化学公司生产。 鲁奇公司MTP反应器有两种形式:即固定床反应嚣(只生产丙烯)和流化床反应器(可联产乙烯/丙烯)。

2008年3月,鲁奇公司与伊朗Fanavaran石化公司正式签署MTP技术转让合同,装置规模为10万吨/年。 2008年9月,LyondeIIBasell,特立尼达多巴哥政府,特立尼达多巴哥国家气体公司(NGC),特立尼达多巴哥国家能源公司(NEC)和鲁奇(Lurgi)公司联合宣布,已经签署了一项项目发展协议,共同建设和运营在特立尼达多巴哥的一体化甲醇制丙烯(MTP)和聚丙烯(PP)项目。通过三条世界级的工厂,包括大规模天然气制甲醇和MTP以及PP工厂,该项目最终将实现49万吨PP产能。其中,大规模甲醇和MTP的工艺分别由鲁奇公司提供,而丙烯聚合将利用巴塞尔公司的Spherizone工艺。 采用鲁奇MTP技术的神华宁煤50万吨/年煤基聚丙烯项目于2010年12月打通全流程,2011年4月底产出终端合格聚丙烯产品,由试车阶段全面进入试生产阶段,并于5月实现首批产品外运销售。 2、中国化学工程集团、清华大学和淮化集团联合开发的FMTP工艺 流化床甲醇制烯烃(FMTP)技术由中国化学工程集团公司、清华大学和淮化集团联合开发,三方在安徽淮南建设甲醇处理量3万吨/年的流化床甲醇制丙烯(FMTP)中试装置,于2008年底建成,截至2009年8月,该装置己完成11吨催化剂生产任务,进行了二次流态化试车,全面打通了系统工艺流程。 该技术采用SAPO-18/34分子筛催化剂和流化床反应器,与MTO工艺一样。但是通过把生成物中的丙烯分离出之后,使C2组分和C4以上组分进入一个独立的烯烃转化反应器使其转化成丙烯。 该技术可调节丙烯/乙烯比例,从1.2:1到1:0(全丙烯产出)均可实现。据称,利用该技术生产以丙烯为目标产物的烯烃产品,丙烯总收率可达77%,原料甲醇

甲醇制乙烯丙烯原理

甲醇制烯烃技术(MTO/MTP) 甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。 从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro 等公司都投入巨资进行技术开发。 Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。 国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,建设投资和操作费用节省50%~80%。当采用D0123催化剂时产品以乙烯为主,当使用D0300催化剂是产品以丙烯为主。 一、催化反应机理 MTO及MTG的反应历程主反应为: 2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O 甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。 Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。 UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。 从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要手段之一。金属离子的引入会引起分子筛酸性及孔口大小的变化,孔

甲醇制烯烃技术(MTOMTP)

甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。 上世纪七十年代美国Mobil公司在研究甲醇使用ZSM-5催化剂转化为其它含氧化合物时,发现了甲醇制汽油(Methanol to Gasoline,MTG)反应。1979年,新西兰政府利用天然气建成了全球首套MTG装置,其能力为75万吨/年,1985年投入运行,后因经济原因停产。 从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro等公司都投入巨资进行技术开发。 Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。 国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,

建设投资和操作费用节省50%~80%。当采用D0123催化剂时产品 以乙烯为主,当使用D0300催化剂是产品以丙烯为主。 一、催化反应机理 MTO及MTG的反应历程主反应为: 2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O 甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。 Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。 UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。 从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要

甲醇制烯烃技术发展现状及应用

甲醇制烯烃技术发展现状及应用 发表时间:2019-05-13T16:08:29.723Z 来源:《防护工程》2019年第2期作者:赵峰涛刘登攀 [导读] 随着经济的发展和科技的进步,烯烃的量也逐年递增。众所周知,乙烯不仅仅是化工产业的基础原料,其本质也是合成材料的重要组成部分,就当下塑料产品的生产过程而言,也是不可或缺的重要参与成分。 陕西煤化工技术工程中心有限公司陕西渭南 714104 摘要:随着经济的发展和科技的进步,烯烃的量也逐年递增。众所周知,乙烯不仅仅是化工产业的基础原料,其本质也是合成材料的重要组成部分,就当下塑料产品的生产过程而言,也是不可或缺的重要参与成分。丙烯作为一种应用范围同样十分广泛的低碳烯烃,该材料的应用对于我国化工产业的发展意义重大。甲醇制烯烃技术作为以生产乙烯、丙烯为主要目的的化工技术,其对于我国化工产业乃至社会发展的推动作用毋庸置疑。本文就甲醇制烯烃技术发展现状及应用展开探讨。 关键词:甲醇制烯烃;技术分析;应用 引言 烯烃是衡量一个国家化工产业实力的标准,在过去10多年中,我国50%以上的乙烯和丙烃大多为石油烃类蒸汽裂解而形成,而所采用的原料为石脑油,但由于近年来原油的价格持续攀升,致使生产烯烃的成本也逐年提升,为改变此种被动的局面,通过科研人员的不断探索与反复试验,一种新型的制烯烃技术进入人们的视野,并逐渐受到社会各界的广泛关注,此种技术即是甲醇制取烯烃技术。甲醇制烯烃技术不仅消耗成本较低,且符合我国的能源格局衍生需要,因此,对于“甲醇制烯烃技术进展及与石油烃裂解制烯烃技术的对比分析”研究,就具有极大的现实意义。 1甲醇制烯烃技术的简介 通俗的来说,甲醇制烯烃技术正是以煤或天然气合成的甲醇为原料,用来生产低碳烯烃。低碳烯烃在国内市场比较短缺,采用这一项技术,烯烃的供应不足问题可以得到很大程度的改善。尤其是生产出来的乙烯,对各项工业技术的发展有着巨大的推动作用。乙烯不仅仅是各项化工产业的基本原料,它更是合成材料的重要单体。在通用塑料的生产中也是必不可少的原料之一。甲醇制烯烃技术生产的烯烃主要以低碳烯烃为主。除了常用的乙烯之外,丙烯也是另一种应用较广泛的低碳烯烃,它的应用范围也仅次于乙烯。该项技术的发展,极大地推动了我国化工业的发展,可以说是一项历史性的突破。该工艺最终的目的是为生产乙烯和丙烯,然而整个工艺反应之后剩余的副产品中主要包括汽油、焦炭、水、C4等杂质。这些杂质的存在使得整个工艺的选择难度进一步加大,必须使用合理的选择性催化剂,只选择需要的乙烯和丙烯,将其他的杂质都排除在外,并且要装置乙烯和丙烯的分离器,将这两种主要的烯烃分离开来,便于后续的工业生产,同时也为后续的生产提供了很多的便利。 2甲醇制烯烃技术的发展现状 2.1 MTO技术的发展现状分析 作为当下一种较为普遍的应用技术,MTO技术的本质是通过对甲醇的利用,在历经反应器的反应之后,实现乙烯与丙烯的生产。该技术最早是由美国研发,并逐渐在世界范围内应用。该技术的应用主要分为再生系统与反应器分离系统。两个系统在应用的过程中相互配合,最终促进技术目标的达成。生产后得到的乙烯与丙烯在分离器的帮助下实现分离,最终可获得较高纯度的烯烃。相比于MTP技术,MTO技术的综合利用价值更高,MTO技术对于乙烯与丙烯都具有较高的生产价值。 2.2 MTP技术的发展 MTP技术是在德国成功研发的。它与MTO技术还是存在较大的不同。MTP技术的工艺流程主要是先将原料甲醇进行加热,待其温度达到一定范围之后,再将其通入到甲醚反应器中,此时需要采用高活性、高选择性的催化剂,先将甲醇转化为二甲醚、水、甲醇—水—二甲醚的混合物,接着将这些产物通入到分凝器中,再放入MTP反应器中。整个反应得到的主要产物是丙烯,乙烯含量较少,不如MTO技术生产的乙烯多。总的来说,MTP技术是优点与缺点并存,在实际生产的时候需要根据具体情况进行选择。 2.3甲醇制烯烃技术在国内的应用分析 下文针对神华包头煤化工有限公司的烯烃项目进行分析。神华包头煤化工有限公司的甲醇制烯烃项目的发展历程并不悠久,但是该公司紧跟时代潮流,勇于就公司自身进行大刀阔斧的改革,且对于市场定位与公司发展有着较为独到的视角。所以该公司的甲醇制烯烃项目发展至今如鱼得水。伴随着企业的发展,该项目对于社会进步的推动作用也不可忽视。该项目在2010年的七月份正式投入使用,随着该项目的持续发展与优化,乙烯与丙烯的产出率也在不断的提升,与此同时该项目的发展也已经逐步实现了商业化的运营。甲醇制烯烃技术的应用一方面可以有效的缓解我国对进口石油的依赖程度,另一方面也可以有效的实现烯烃原料的多元化发展,这对于我国能源结构的改善具有重要的践行意义。根据《石油和化学工业“十三五”发展指南要求》,在“十三五”期间,我国应就现有乙烯装置的升级与改造予以重视,到2020年我国应达到乙烯产能3200万吨/年,比较2016年底我国MTO/MTP装置产能1293万吨/年的发展数据,可以预知在未来的几年中,我国的甲醇制烯烃技术仍旧具备较大的发展空间。尽管如此,由于现阶段的规划与管理的缺失,使得具体工艺开展的过程中面临着前期投入过大,环境污染严重以及因竞争激励而导致的产生过剩等因素。加强对相关工作的管理与引导,也是未来工作开展的重中之重。 3甲醇制烯烃技术发展动向 当前的MTO技术,烃类产物中乙烯和丙烯的质量总和可以达到80%左右,混合碳四约为13%,其组分以1-丁烯和2-丁烯为主(占90%),其余组分是丁烷、异丁烯、丁二烯和丁炔等,而丙烷为2%~3%,混合碳五为约2%,碳六及以上烃在1%左右。每生成1t乙烯约产生0.34t的C4~C5+烃类,如何利用这些副产物使之更多、更有效地转化为乙烯和丙烯是目前甲醇制烯烃研究的主要技术方向。将这些MTO 反应的副产物一起进入反应器参加对SAPO-34分子筛催化剂的流化,同时可将这些物质进一步转化成为乙烯和丙烯。则发现这些副产物直接返回反应器会对催化剂的性能造成一定的影响(如结焦速率更快等),因此,采用副产物先加氢处理再返回反应器的方案。当加氢催化剂含有Ni、Cu、MO、W等活性组分,可将其中所含的烯烃转化成为烷烃,所含的醛、酮等含氧化合物转化成烃类物质或醇类,这样可有效地减少返回物料对催化剂的影响。将副产物经过多次分离,只将高浓度的含氧化合物返回反应器,这样可减少反应器的负荷,同时返回物料中

煤制烯烃成本分析

煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的竞争力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场竞争力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的竞争力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济竞争力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO 工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成

甲醇制烯烃工艺技术及经济性分析

甲醇制烯烃工艺技术及经济性分析 李建新安福何祚云 (中国石化咨询公司) 甲醇制烯烃(Methanol to Olefins,简称MTO)工艺是美国UOP公司和挪威HYDRO公司于1995 年合作开发成功的一种新技术,该工艺以甲醇为原料,通过甲醇裂解制得以乙烯和丙烯为主的烯烃产品。 按甲醇原料的不同,可以有天然气和煤两种路线。MTO工艺的开发成功拓宽了烯烃原料来源渠道,同 时为天然气和煤的化工利用开辟了一条新的途径。 目前,MTO工艺虽尚未实现在工业化大型装置上的应用,但已实现技术转让。作为一种新兴工艺, 其技术成熟度及与其它烯烃生产工艺相比的经济性怎样成为人们普遍关心的问题。 下面将重点对MTO工艺的技术可靠性及天然气、煤路线及传统蒸汽裂解工艺路线烯烃产品的成本 经济性状况进行分析研究,供大家参考。 1 MTO工艺技术可靠性分析 1.1 MTO工艺开发进程 甲醇制取烯烃的概念最早由美国Mobil公司在20世纪80年代提出。美国UOP公司和挪威Hydro 公司相继从1992年开始有关MTO技术的研究,两家公司利用筛选出的新型SAPO-34型催化剂开展 MTO工艺的研究。该催化剂是硅铝磷酸盐型具有择形能力的分子筛催化剂,可控制酸性中心的位置和 强度,使低碳烯烃齐聚的反应减少,从而大幅提高甲醇转化为乙烯和丙烯的选择性,SAPO-34催化剂 的研发成功是对MTO工艺研究的极大推进。目前,UOP公司MTO工艺的定型催化剂为MTO-100。 UOP和Hydro开发了类似催化裂化装置的MTO工艺流程,并于1992年开始小试工作,1995年两 公司合作在挪威建设了原料处理量为0.75 t/d的工业演示装置。甲醇的转化率始终保持在100%附近。 催化剂再生次数超过450次,其稳定性和强度得到一定的验证。该工艺的乙烯/丙烯的生成比例可从最 大量生产乙烯时的1.5到最大量生产丙烯时的0.75。该工业演示装置典型的产品收率数据见表1。 表1 MTO工业演示装置典型产品收率 组份产率Wt%,以甲醇进料为基产率,Wt%,以甲醇中碳为基 C l~C4饱和烃 1.5 3.5 乙烯 21.1 48.0 丙烯 14.6 33.0 碳四 4.2 9.6 C5+ 1.0 2.4 COX+焦炭 0.5 3.5 生成水 57.1 一 合计 100 100 1995年11月UOP和HRDRO在南非第四届国际天然气转化会议上宣布可以进行MTO技术的转让, 并称该过程已可实现年产50万t/a乙烯的工业化生产,可从UOP和Hydro获得建厂许可证。目前,该 技术已成功转让给尼日利亚一家天然气联合企业,MTO装置规模为年产80万t烯烃,下游配套建设40 万t/a HDPE和40万t/a PP,配套建设250万t/a甲醇装置。 我国中科院大连化物所从20世纪80年代也开始了有关甲醇制烯烃工艺的研究,现在围绕合成气转 化为低碳烯烃已申请专利20余项,在甲醇或二甲醚制取低碳烯烃方面构成了自主的知识产权。大连化 物所在1993年完成了以ZSM-5为催化剂的固定床MTO工艺中试研究,90年代提出了由合成气制二甲 醚进而制取烯烃的SDTO工艺,并于1995年在上海青浦化工厂建设了原料二甲醚处理量为0.06~0.10 t/d 146

【精品】煤制烯烃成本分析

【关键字】精品 煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的比赛力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场比赛力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的比赛力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济比赛力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP 对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成本不到100元/吨,车板价约200多元/吨,东

甲醇制烯烃技术进展及评价

甲醇制烯烃技术进展及经济评价 甲醇制烯烃技术主要分两步。首先由天然气转化生成粗甲醇,该过程已实现工业化;然后甲醇转化生成烯烃,主要是乙烯和丙烯。不同的工艺生成的乙烯与丙烯的比例也不同。UOP/Hydro公司的甲醇制烯烃工艺(MTO)是在Mobil公司的甲醇制汽油技术(MTG)上发展起来的。该MTO工艺具有很大的灵活性,可根据市场的需求变化,通过改变反应器的操作条件,来调整乙烯与丙烯的产量。产品中乙烯与丙烯之产量比可在 0.77-1.33的范围内进行调节。 1 催化剂进展 UOP/Hydro公司在SAPO-34催化剂基础上开发了新型催化剂 MTO-100,取得了突破性的进展。SAPO-34催化剂是磷酸硅铝分子筛,对甲醇转化乙烯和丙烯具有较高的选择性。新型催化剂MTO-100具有择形选择性,其酸性位和强度具有可控性,大大提高了向乙烯和丙烯转化的选择性,可使乙烯、丙烯的选择性达到80%。SAPO系列属通用性较强的催化材料,尽管它与沸石的热稳定性不同,但其化学性质和晶体结构与沸石材料很相似,具有均一的孔隙率、晶体分子结构、可调酸度、择形催化剂以及酸性交换能力。其最大的改进在于孔隙更小,酸性位和强度具有可控性。尽管改进的SAPO-34是MTO工艺理想的催化材料,但对于流化床反应器来说仍不是最佳的选择。必须将SAPO-34与一系列专门选择的粘合剂结合起来。粘合剂的选择极其重要,它必须要能提高催化剂的活性,但又不能影响催化剂的选择性。美国Nexant化学系统公司认为采用处理过的氧化硅和氧化铝作粘合剂可达到一定的孔隙率、酸度以及强度。粘合剂的孔隙率很重要,它必须允许甲醇和MTO的产品快速地进出SAPO-34。该催化剂与FCC催化剂的制备方式相似,通过喷雾法干燥制备。 2 工艺进展 UOP/Hydro公司的MTO工艺设计与Mobil公司的工艺很相似,由于需要分离和处理的较重副产品很少,分离系统相对简单。该工艺采用的原料是粗甲醇,因此没必要通过蒸馏制取AA级的甲醇(纯度为99.85%),减少了上游甲醇装置的资本投资。但粗甲醇不能出售用于其他方面,因此限制了甲醇设备的灵活性。为了较容易地保持稳定的温度和产量,MTO 工艺采用流化床反应器,操作温度为350-525℃,操作压力为0.1-0.3Mh。MTO工艺的苛刻度可以通过产量、温度、压力以及催化剂循环率来控制。温度决定热动力学操作,生产能力决定接触时间。同时,转化率和选择

甲醇制烯烃项目可行性研究报告

目录 第一章总论 (1) 1.1 项目概况 (1) 1.2 设计依据 (1) 1.3 项目背景 (1) 1.3.1 MTO的国内外研究 (2) 1.3.2 MTO的工业展望 (4) 1.4 研究结论 (6) 1.4.1 项目产品及生产规模 (6) 1.4.2 工艺路线简介 (7) 1.4.3 建设周期 (7) 1.4.4 项目投资及资金来源 (7) 1.4.5 项目结论 (8) 第二章建设规模 (8) 2.1规模确定 (8) 2.1.1 市场需求 (8) 2.1.2 产品描述 (9) 2.1.3 原料来源 (11) 2.1.4 建厂规模 (13) 2.2产品方案 (14) 第三章 MTO技术 (15) 3.1甲醇制烯烃的基本原理 (15) 3.2 催化剂的研究 (19) 3.2.1 催化剂的发展 (19)

3.2.2 催化剂的使用 (23) 3.2.3 催化剂的再生 (26) 3.3 MTO工艺的优点 (26) 3.4 甲醇制烯烃工艺条件 (27) 3.4.1 反应温度 (27) 3.4.2 反应压力 (27) 3.5 甲醇制烯烃工艺流程及主要设备 (27) 3.5.1 MTO工艺流程 (27) 3.5.2 MTO主要设备 (33) 第四章 C4的综合利用 (34) 4.1 C4馏分的利用现状 (34) 4.1.1 综述 (34) 4.1.2 工业利用途径 (35) 4.1.3 C4馏分的分离及化工利用 (36) 4.2 提高C4资源利用价值 (41) 4.2.1 加氢精制,作乙烯裂解原料 (41) 4.2.2 C4烯烃歧化制丙烯 (42) 4.2.3 C4烃类回炼增产乙烯、丙烯 (43) 4.2.4 异丁烷氧化法生产环氧丙烷,联产叔丁醇 (43) 4.2.5 MTBE-烷基化油联合装置 (44) 4.3 本厂C4情况 (44) 4.3.1 方案设计 (45) 4.3.2 C4裂解增产丙烯 (45) 4.3.3 烯烃歧化制丙烯 (46)

神华包头煤制烯烃项目工艺总流程

神华包头煤制烯烃项目工艺总流程 神华包头煤化工有限公司将在内蒙古包头市九原区建设神华包头煤制烯烃项目,建设 180万吨/年煤制甲醇、60万吨/年 MTO、30万吨聚乙烯、30万吨/年聚丙烯、产汽 1440吨/小时(发电 100MW)自备热电站、4套 6万标立空分装置以及公用工程、辅助生产设施、厂外工程. 1气化、净化 气化装置采用 GE公司水煤浆加压气化技术,变换由天辰公司设计,低温甲醇洗技术来源于林德工程公司。 原煤由火车运输入厂,进入卸车间卸车,翻车机卸煤进入受煤深地槽。地槽的贮煤经叶轮给煤机、地槽带式输送机、进入料场贮存。 料场的煤经仓下叶轮给煤机、仓底带式输送机输送进入环锤破碎机破碎。破碎合格后,经圆管带式输送机、带式输送机分别输送到煤气化和热电站系统。 由煤运系统送来的原料煤(干)送至煤贮斗,经称量给料机控制输送量送入棒磨机,出棒磨机的煤浆浓度约 60%,经出料槽泵加压后送至气化工段煤浆槽。 煤浆由煤浆槽经煤浆给料泵加压后,连同空分送来的高压氧通过烧咀进入气化炉,气化反应在 (G)、1350~1400℃下进行。 反应生成 CO、H2、CO2、H2O和少量 CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由捞渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理,处理后的水循环使用。 由气化碳洗塔来的粗水煤气送至变换工段,经气液分离器分离掉气体夹带的水分后,进入变换炉,与自身携带的水蒸汽在耐硫变换催化剂作用下进行变换反应,出变换炉的高温气体经热量回收后进入低温甲醇洗系统,依次脱除 H2S+COS、CO2后,净化气中 CO2含量小于 3%,H2S+COS<,压力约为,送到甲醇合成系统。 在净化工段,来自吸收塔上段的含 CO2富液,中间二次塔底出来的含硫富液分别进行再生后,经泵送到吸收塔循环使用。从酸性气分离器出来的酸性气送至硫回收装置进行硫磺回收,硫回收尾气达标排放。 2甲醇合成及精馏 采用国外甲醇技术生产粗甲醇作为 MTO装置原料。经甲醇洗脱硫脱碳净化后的合成气经甲醇合成气压缩机增压与 来自甲醇合成回路的循环气被压缩至合成需要的压力,送入甲醇合成 回路进行甲醇合成,CO、CO2和 H2在 Cu-Zn催化剂作用下,合成粗甲醇。出甲醇合成塔的热气体经回收热量和冷却后,进入甲醇分离器,从分离器上部出来的未反应气体除少部分作为弛放气送至氢回收,绝大部分进入循环气压缩机压缩,返回到甲醇合成回路。粗甲醇从甲醇分离器底部排出,送往甲醇精馏工段。在甲醇精馏工段经过脱轻组分塔,得到 MTO级甲醇;约 30%的粗甲醇送入精馏塔生产商品级的精甲醇,并副产甲醇油。精甲醇和 MTO级甲醇送入 MTO装置或中间产品罐区储存,精制后的甲醇送入 MTO装置或中间产品罐区储存。

相关文档
最新文档