微电子器件与工艺课程设计

微电子器件与工艺课程设计
微电子器件与工艺课程设计

目录

1.设计任务及目标 (1)

2.课程设计的基本内容 (1)

2.1 pnp双极型晶体管的设计 (1)

2.2 设计的主要内容 (1)

3.晶体管工艺参数设计 (2)

3.1 晶体管的纵向结构参数设计 (2)

3.1.1 集电区杂质浓度的确定 (2)

3.1.2 基区及发射区杂质浓度 (3)

3.1.3 各区少子迁移率及扩散系数的确定 (3)

3.1.4 各区少子扩散长度的计算 (4)

3.1.5 集电区厚度的选择 (4)

3.1.6 基区宽度的计算 (4)

3.1.7 扩散结深 (6)

3.1.8 表面杂质浓度 (7)

3.2晶体管的横向设计 (8)

3.3工艺参数的计算 (8)

3.3.1 基区磷预扩时间 (8)

3.3.2基区磷再扩散时间计算 (8)

3.3.3 发射区硼预扩时间计算 (9)

3.3.4 发射区硼再扩散时间计算 (9)

3.3.5 基区磷扩散需要的氧化层厚度 (10)

3.3.6 发射区硼扩散需要的氧化层厚度 (11)

3.3.7 氧化时间的计算 (11)

3.3.8设计参数总结 (12)

4晶体管制造工艺流程 (13)

4.1硅片及清洗 (15)

4.2氧化工艺 (16)

4.3光刻工艺 (17)

4.3.1光刻原理 (17)

4.3.2具体工艺流程 (18)

4.3.3硼的扩散 (19)

4.3.4磷的扩散 (20)

5 版图 (20)

6总结 (23)

7参考文献 (23)

微电子器件与工艺课程设计报告

——pnp 双极型晶体管的设计

1、课程设计目的与任务

《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。

目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计→晶体管的图形结构设计→材料参数的选取和设计→制定实施工艺方案 晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。 2、课程设计的基本内容 2.1 pnp 双极型晶体管的设计

设计一个均匀掺杂的pnp 型双极晶体管,使T=300K 时,β=120。V CEO =15V,V CBO =80V.晶体管工作于小注入条件下,最大集电极电流为I C =5mA 。设计时应尽量减小基区宽度调制效应的影响。 2.2 设计的主要内容:

(1)了解晶体管设计的一般步骤和设计原则。

(2)根据设计指标选取材料,确定材料参数,如发射区掺杂浓度N E ,,基区掺

杂浓度N B ,集电区掺杂浓度N C ,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命等。

(3)根据主要参数的设计指标确定器件的纵向结构参数,如集电区厚度W c ,基

区宽度W b ,发射极宽度W e 和扩散结深X jc ,发射结结深等。

(4)根据结深确定氧化层的厚度,氧化温度和氧化时间;杂质预扩散和再扩散

的扩散温度和扩散时间。

(5)根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、

发射区和金属接触孔的光刻版图。

(6)根据现有工艺条件,制定详细的工艺实施方案。 3晶体管工艺参数设计

3.1 晶体管的纵向结构参数设计

双极晶体管是由发射结和集电结两个PN 结组成的,晶体管的纵向结构就是指在垂直于两个PN 结面上的结构。因此,纵向结构设计的任务有两个:首先是选取纵向尺寸,即决定衬底厚度t W 、集电区厚度C W 、 基区厚度B W 、 扩散结深jc X 和je X 等;

其次是确定纵向杂质浓度和杂质分布,即确定集电区杂质浓度C N 、 衬底杂质浓度sub N 、 表面浓度ES N ,BS N 以及基区杂质浓度分布()B N χ等,并将上述参数转换成生产中的工艺控制参数。 3.1.1 集电区杂质浓度的确定

V 80BV CBO =根据击穿电压与浓度的关系图来读出BV CBO =80V 时的N C ,如

图1

图1 击穿电压与杂质浓度的关系

从图1中可以读出,当BV CBO=80V时,集电区杂质浓度N C=5×1015CM-3,对应的电阻率为1.2Ω*CM,所以选用(111)晶向的P型硅。

3.1.2 基区及发射区杂质浓度

一般的晶体管各区的浓度要满足N E>>N B>N C,故

(1)基区杂质浓度取N

=5×1016cm-3。

B

=5×1018cm-3。

(2)发射杂质浓度取N

E

3.1.3 各区少子迁移率及扩散系数的确定

(1)少子迁移率

少子的迁移率可以通过迁移率与杂质浓度的关系图查出来。此关系图如下图2所示。

图2 迁移率与杂质浓度的关系图

通过图2可以查出在300K时,集电区、基区和发射区各自的少子的迁移率如下。

C区:U c= 1298cm 2/v.s;

B 区: U B =378 cm 2 /v.s ; E 区: U E =130 cm 2/v.s ; (2)各区少子扩散系数的计算

根据爱因斯坦关系式q kT D =μ可以求出各区少子的扩散系数

C 区:s cm q

kT

D c C /6.3312980259.02=?==μ; B 区:s cm q

kT

D B B /79.93780259.02=?==μ;

E 区:s cm q

kT

D E E /37.31300259.02=?==

μ; 3.1.4 各区少子扩散长度的计算

由τD L =,其中少子寿命s C 6

10-=τ ,s B 610-=τ,s E 7

10-=τ

um 5810396=?==-C C C D L τ;

um 3.311061.3101336=?=?==--cm D L B B B τ; um 8.51081.91062.937=?=?==--cm D L E E E τ; 3.1.5 集电区厚度的选择 (1)集电区厚度的最小值

集电区厚度的最小值由击穿电压决定。通常为了满足击穿电压的要求,集电区厚度W C 必须大于击穿电压时的耗尽层宽度,即C W > mB X (mB X 是集电区临界击穿时的耗尽层宽度)。对于高压器件,在击穿电压附近,集电结可用突变结耗尽层近似,因而

m qN BV X W C CBO S mB

C u 57.4]105106.1808.111085.82[]2[2

1

15

1914210=???????==?--εε

(2)集电区厚度的最大值

C W 的最大值受串联电阻CS r 的限制。增大集电区厚度会使串联电阻CS r 增加,

饱和压降CES V 增大,因此C W 的最大值受串联电阻限制。 考虑到实际情况最终确定um 15=C W 。 3.1.6 基区宽度的计算

(1)基区宽度的最大值

对于低频管,与基区宽度有关的主要电学参数是β,因此低频器件的基区宽

度最大值由β确定。当发射效率γ≈1时,电流放大系数][1

22

B

B L W λβ=,因此基区宽度

的最大值可按下式估计:2

1

2][β

λnb B L W <

为了使器件进入大电流状态时,电流放大系数仍能满足要求,因而设计过程中取λ=4。

将数据代入上式中得:

m L

W b B u 7.51203.314][2

122

12=??

?????=<βλ

所以基区宽度的最大值为5.7um 。 (2)基区宽度的最小值

为了保证器件正常工作,在正常工作电压下基区绝对不能穿通。因此,对于高耐压器件,基区宽度的最小值由基区穿通电压决定。对于均匀基区晶体管,当集电结电压接近雪崩击穿时,基区一侧的耗尽层宽度为

um

BV N N N qN X CBO C

B C B S mB

436.0]105.5105106.1801058.111085.82[]2[21

16161915142

1

0=???????????=+=--εε 所以基区宽度的取值范围为:0.436um

根据设计要求给出的电流放大倍数β=120以及公式2

)(5.01

B

E E B B E L W

L W N N D D +=

β

2

341816

1013.321108.510510579.937.31

120??

?

???+?????=

--W W

可以求出基区的准中性宽度。W=3.46um (4)基区耗尽层宽度的计算 ①eb 结基区边的耗尽层宽度的计算 先求出eb 结的内建电势

V n N N q kT V i B E biEB

918.0)10(105105ln 0259.0ln 2

1018162=???== 再求出eb 结基区边的耗尽层宽度

um

155.0918.01051106.18.111085.82122

116

1914

2

1

i 0≈??

???????????=?

?

????≈--EB B B S nEB V N q K X ε ②cb 结基区边的耗尽层宽度的计算 先求出cb 结的内建电势

V n N N q kT V i B C biCB

739.0)

10(105105ln 0259.0ln 2

1016152=???== 再求出cb 结基区边的耗尽层宽度

()um 0419.0739.0105.51106.18.1185.8222

1

1752

1

i 0≈???

?????????=?

?

????+=-CB B C B B C S nCB

V N N N N q K X ε (5)总的基区宽度

W B =W+X nEB +X pCB =3.46+0.155+0.0419=3.66um

符合之前计算出来的基区宽度的范围,但是这样的宽度相对应的结深过大,故根据经验值W=4um 3.1.7 扩散结深

在晶体管的电学参数中,击穿电压与结深关系最为密切,它随结深变浅,曲率半径减小而降低,因而为了提高击穿电压,要求扩散结深一些。但另一方面,结深却又受条宽限制,当发射极条宽C j S X >>条件时,扩散结面仍可近似当做平

面结。但当S E 随着特征频率T f 的提高,基区宽度W B 变窄而减小到不满足S E >>Xj 时,发射结变为旋转椭圆面旋转椭圆面,如图3所示。发射结集电结两个旋转椭圆面之间的基区体积大于平面结之间的基区体积,因而基区积累电荷增多,基区渡越时间增长。按照旋转椭圆的关系,可以解出当S E 与Xj 接近时,有效特征频率为)(13

02

B T Teff W f f ++=

ξξ 式中B

jc W X =

0ξ ,因此,

B

jc W X 愈大,有效特征频

率愈低。图3也明显表明,

B

jc W X 越大,则基区积累电荷比平面结时增加越多。由

于基区积累电荷增加,基区渡越时间增长,有效特征频率就下降,因此,通常选取

1e =B j W X , 则:Xje =W B =4um

2=B

jc W X , 则:Xjc =2W B =8um

图 3 发射极条宽对结面形状的影响

3.1.8 表面杂质浓度

结构尺寸选定的情况下,发射区和基区表面杂志浓度及其杂志分布的情况主要影响晶体管的发射效率γ和基区电阻b r 。减小基区电阻b r 要求提高基区平均杂质浓度B N 和表面浓度BS C 。同时,提高基区平均杂质浓度,也有利于减小基区宽变效应和基区电导调制效应。提高发射效率则要求减小

sb

se

R R ,增大发射区和基区浓度差别。为了保证在大电流下,晶体管仍具有较高的发射效率,要求发射区和基区表面浓度相差两个数量级以上,即

210≥BS

ES

N N 。在这个晶体管设计中取 BS C =1019 cm -3左右,则ES C =1021 cm -3。

3.2晶体管的横向设计

无特别要求,取有效的2u 100m A B =,2u 500m A C =,2u 30m A E =。 在这个pnp 双极晶体管的设计中,衬底选取p 型硅衬底,晶向为(111)晶向。

3.3工艺参数的计算 3.3.1 基区磷预扩时间

首先先列出表1,是计算扩散系数时所需要用到的数据,如下表一所示。

表1:硼、磷元素在硅中的D 0与激活能E

注:适用温度范围(o C )为:800~1350

基区磷的预扩温度为1000 C ?,即1273K 。

扩散系数:s cm kT E D D 2

14501023.1127310614.866.3ex p 85.3)ex p(--?=??

? ????-?=-= 通过单位表面积扩散到硅片内部的杂质数量:

21315164104.4)1015105(108)()t (cm N N X Q C B jc ?=?+???=+=- 根据公式Dt C t Q S π

2

)(=

可解得在特定温度下扩散的时间:

min

5.2012331023.11013.1104.4141913==???=?-s t t 3.3.2基区磷再扩散时间计算

基区磷的预扩温度为1300 C ?,即1573K 。

硅衬底中原有杂质的浓度:315105-?==cm N C C B 磷在硅中的扩散系数为:

s cm KT E D D a O 2125102.71573614.81066.3exp 85.3exp -?=???

? ????-?=??? ??-?= 由于预扩散的结深很浅,可将它忽略,故再扩散结深:

m x j μ8=

B

S

j C C Dt x ln

2=(2) 又Dt

Q

C S π=

所以代入(2)式可得

02ln 2ln 2=+-D

x D

C Q t t t j B π

()

010

2.7210810

2.714.3105104.4ln

2ln 12

2

412

15

13

=???+

?????----t t t

化简得04444405.15ln =+-t t t

解得基区磷主扩时间为:

t=7166s=2h

3.3.3 发射区硼预扩时间计算

发射区硼预扩散温度为1000C ?,即1273K

硼在硅中的扩散系数为:s cm D 2

145105.1127310614.846.3ex p 76.0--?=??

? ???-?= 发射区进行扩散时的总的杂质数量:

21518154102)105105(104)()t (cm N N Xjc Q C E ?≈?+???=+=-

发射区表面杂质浓度:213110ES C cm -=? 根据公式Dt C t Q S π

2

)(=

可解得在特定温度下扩散的时间:

min

5.3209105.11013.1102142115==???=?-s t t

3.3.4 发射区硼再扩散时间计算

发射区硼再扩散温度为1200C ?,即1473K 在1473K 时,硼在硅中的扩散系数为:

s cm D 2

1251009.1147310614.846.3ex p 76.0--?=??

? ????-?=

由于预扩散的结深很浅,可将它忽略,故再扩散结深:

m C C Dt x B

S

j μ4ln

2== Dt

Q

C S π=

315105-?==cm N C C B

()

01009.1210410

09.114.3105102ln 2ln 152

412

1615

=???+

???

? ???????----t t t 化简上式可得:07339596.19ln =+-t t t 解得发射区硼再扩散时间:

t=6571s=1.83h

3.3.5 基区磷扩散需要的氧化层厚度

表2:二氧化硅中磷和硼的0D 与a E

氧化层厚度的最小值由发射区主扩温度为1000C ?,预扩时间为209S,磷元素在硅中的D O 与激活能E

s cm KT E D D a o SiO /1017.1127310614.875.1exp 10exp 2135

62---?=??? ????-?=??? ??-= 0

13

min 249025010

17.16.46.42A t D x SiO ≈???==-

为了便于后续的氧化时间的计算及湿法干法的分配,最终取基区磷扩散需要的氧化层厚度为0

6000A 。

3.3.6 发射区硼扩散需要的氧化层厚度

氧化层厚度的最小值由发射区主扩温度为1100C ?,预扩时间为1233S

s cm KT E D D a o SiO /1012.4127310614.85.3exp 103exp 2

205

62---?=??? ????-??=??? ??-= 0

7

20

min 7000cm 1024.2128910

2.46.46.42A t D x SiO

由于最小氧化层厚度小于7000?

A ,考虑到生产的实际情况,最终取发射区硼扩散需要的氧化层厚度为7000?

A 。 3.3.7 氧化时间的计算

表3 1100℃的干氧和湿氧的氧化速率常数

表4 1200℃的干氧和湿氧的氧化速率常数

(1)基区氧化时间的计算

以上已经计算出基区磷扩散需要的氧化层厚度为0

6000A 。

根据合适的氧化时间,将0

6000A 分配:先干氧5000A ,然后湿氧50000

A ,最后再干氧5000

A

干氧氧化:05.015.456.41209.014/11222=???

? ??-++=???? ??-++=ττB A A X SiO 解得t=11min

湿氧氧化:5.013559.01211.02

=???

? ??-+=t

X SiO

解得t=36min

(2)发射区氧化时间计算

以上已经计算出发射区硼扩散需要的氧化层厚度为7000?

A 。

根据合适的氧化时间,将0

6000A 分配:先干氧10000A ,然后湿氧50000

A ,最后再干氧10000

A

干氧氧化:1.015333.062.11204.014/1222

=???

?

??-++=???? ??-+=t B A A X SiO τ 解得t=17min

湿氧氧化:5.010521.01205.02=???

? ??-+=t X SiO 解得t=22.9min

3.3.8设计参数总结

整个pnp 双极晶体管设计的相关参数通过表5总结如下。

表5 pnp 设计参数

4晶体管制造工艺流程

4.1硅片及清洗

在晶体管和集成电路生产中,几乎每道工艺有化学清洗的问题.化学清洗的好坏对器件性能有严重的影响,处理不当,可使全部硅片报废,无法做出管芯,或使制造出来的器件性能低劣,稳定性和可靠性很差。

化学清洗是指清除吸附在半导体,金属材料以及生产用具表面上的各种有害杂质或油污的工艺。

清洗方法是利用各种化学试剂与吸附在被清洗物体表面上的杂质及油污发生化学反应和溶解作用,或伴以超声,加热,抽真空等物理措施,使杂质从被清洗物体的表面脱附,然后用大量的高纯热,冷去离子水冲洗,从而获得洁净的物体表面。

化学清洗主要包括三个方面的清洗。一是硅片表面的清洗;二是生产过程中使用的金属材料的清洗;三是生产用的工具,器皿的清洗。

硅片清洗的一般程序:吸附在硅片表面的杂质大体上可分为分子型,离子型和原子型三种,分子型杂质粒子与硅片表面之间的吸附较弱,清除这些杂质粒子比较容易.它们多属油脂类杂质,具有疏水性的特点,这种杂质的存在,对于清除离子型和原子型杂质具有掩蔽作用,因此在对硅片清洗时首先要把它们清除,离子型和原子型吸附的杂质属于化学吸附杂质,其吸附力都较强,因此在化学清洗时,一般都采用酸,碱溶液或碱性双氧水先清除离子型吸附杂质,然后用王水或酸性双氧水再来清除残存的离子型杂质用原子型杂质,最后用高纯去离子水将硅片冲洗干净,再加温烘干就可得到洁净表面的硅片。

工艺程序:去分子---去离子---去原子---去离子水冲洗、烘干。

硅片清洗液是指能够除去硅片表面沾污物的化学试剂或几种化学试剂配制的混合液。常用硅片清洗液如表6所示:

表6:清洗液

4.2氧化工艺

(一)氧化原理

二氧化硅能够紧紧地依附在硅衬底表面,具有极稳定的化学性和电绝缘性,因此,二氧化硅可以用来作为器件的保护层和钝化层,以及电性能的隔离、绝缘材料和电容器的介质膜。

二氧化硅的另一个重要性质,对某些杂质(如硼、磷、砷等)起到掩蔽作用,从而可以选择扩散;正是利用这一性质,并结合光刻和扩散工艺,才发展起来平面工艺和超大规模集成电路。

根据迪尔和格罗夫模型,热氧化过程须经历如下过程:

(1)氧化剂从气体内部以扩散形式穿过滞流层运动到SiO2-气体界面,其流密度用F1表示,流密度定义为单位时间通过单位面积的粒子数。

(2)氧化剂以扩散方式穿过SiO2层(忽略漂移的影响),到过SiO2-Si界面,其流密度用F2表示。

(3)氧化剂在Si表面与Si反应生成SiO2,流密度用F3表示。

(4)反应的副产物离开界面。

氧化的致密性和氧化层厚度与氧化气氛(氧气、水气)、温度和气压有密切关系。应用于集成电路掩蔽的热氧化工艺一般采用干氧→湿氧→干氧工艺制备。

(二)基区氧化的工艺步骤

1、开氧化炉,并将温度设定到750~850℃,开氧气流量2升/分钟。

2、打开净化台,将清洗好的硅片装入石英舟,然后,将石英舟推到恒温区。并开始升温。

3、达到氧化温度1100℃后,调整氧气流量3升/分钟,并开始计时,干氧时间20分钟。

4、在开始干氧同时,将湿氧水壶加热到95~98℃。干氧完成后,开湿氧流量计,立即进入湿氧化。同时关闭干氧流量计。湿氧时间25分钟。

5、湿氧完成,开干氧流量计,调整氧气流量3升/分钟,并开始计时,干氧时间20分钟。

6、干氧完成后,开氮气流量计,调整氮气流量3升/分钟,并开始降温,降温时间30分钟。

7、将石英舟拉出,并在净化台内将硅片取出,同时,检测氧化层面状况和厚度。

8、关氧化炉,关气体。

4.3光刻工艺

4.3.1光刻原理

光刻工艺是加工制造集成电路微图形结构的关键工艺技术,起源于印刷技术中的照相制版,是在一个平面(硅片)上,加工形成微图形。光刻工艺包括涂胶、曝光、显影、腐蚀等工序。集成电路对光刻的基本要求有如下几个方面:

1、高分辨率:一个由10万元件组成的集成电路,其图形最小条宽约为3μm,而由500万元件组成的集成电路,其图形最小条宽≤1μm,因此,集成度提高则要求条宽越细,也就要求光刻技术的图形分辨率越高。条宽是光刻水平的标志,代表集成电路发展水平。

2、高灵敏度:灵敏度是指光刻机的感光速度,集成电路要求产量要大,因此,曝光时间应短,这就要求光刻胶的灵敏度要高。

3、低缺陷:如果一个集成电路芯片上出现一个缺陷,则整个芯片将失效,集成电路制造过程包含几十道工序,其中光刻工序就有10多次,因此,要求光刻工艺缺陷尽是少,否则,就无法制造集成电路。

4、精密的套刻对准:集成电路的图形结构需要多次光刻完成,每次曝光都需要

相互套准,因此集成电路对光刻套准要求非常高,其误差允许为最小条宽的10%左右。

集成电路所用的光刻胶有正胶和负胶两种:正性光刻胶通常由碱溶性酚醛树脂、光敏阻溶剂及溶剂等组成,光敏剂可使光刻胶在显影液中溶解度减小,但曝光将使光敏阻溶剂分解,使光刻胶溶解度大增加而被显掉,未曝光部分由于溶解度小而留下,负性光刻胶和正性光刻胶相反,负性光刻胶在曝光前能溶于显影液,曝光后,由于光化反应交链成难溶大分子而留下,未曝光部分溶于显影液而显掉。由此完成图形复制。可在衬底表面得到与光刻掩膜版遮光图案相反的保护胶层。

本课程设计采用正光刻胶,正光刻胶通常由碱溶性酚醛树脂、光敏阻溶剂及溶剂等组成,光敏剂可使光刻胶在显影液中溶解度减小,但曝光将使光敏阻溶剂分解,使光刻胶溶解度大大增加而被显掉,未曝光部分由于溶解度小而留下。其4.3.2具体工艺流程如下

1.准备:

①开前烘,坚膜烘箱,前烘温度设定95---110℃,坚膜温度为135--145℃。

②涂胶前15分钟开启图胶净化台,调整转速,以满足实验要求。

③光刻前30分钟,开启光刻机汞灯。

④开启腐蚀恒温槽,温度设定40℃

⑤清洗胶瓶和吸管,并倒好光刻胶。

⑥清洗掩膜版,并在净化台下吹干

2.涂胶:光刻工艺实验采用旋转涂胶法,涂胶前设定好予匀转速和时间。将氧化完成或扩散完成的硅片放在涂胶头上,滴上光刻胶进行涂胶,要求胶面均匀、无缺陷、无未涂区域。

3.前烘:温度在95℃将涂好光刻胶的硅片放入前烘烘箱,并计时,前烘完成后将硅片取出。

4.对准:将掩膜版上在光刻机上,并进行图形套准。

5.曝光:将套准后的硅片顶紧,检查套准误差、检查曝光时间,确认无误后,在进行曝光。

6.显影:本实验采用浸泡显影,25℃时,分别在1#显影液,2#显影液显3-5分钟,然后在定影液定影3-5分钟,之后在甩干机中甩干,在显微镜下检查是

集成电路课程设计(CMOS二输入及门)

) 课程设计任务书 学生姓名:王伟专业班级:电子1001班 指导教师:刘金根工作单位:信息工程学院题目: 基于CMOS的二输入与门电路 初始条件: 计算机、Cadence软件、L-Edit软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) & 1、课程设计工作量:2周 2、技术要求: (1)学习Cadence IC软件和L-Edit软件。 (2)设计一个基于CMOS的二输入的与门电路。 (3)利用Cadence和L-Edit软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。 | 学习Cadence IC和L-Edit软件,查阅相关资料,复习所设计内容的基本理论知识。 对二输入与门电路进行设计仿真工作,完成课设报告的撰写。 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 # 摘要 (2) 绪论…....………………………………………….………………….. ..3 一、设计要求 (4) 二、设计原理 (4) 三、设计思路 (4) 3.1、非门电路 (4) 3.2、二输入与非门电路 (6) 、二输入与门电路 (8) } 四、二输入与门电路设计 (9) 4.1、原理图设计 (9) 4.2、仿真分析 (10) 4.3、生成网络表 (13) 五、版图设计........................ (20) 、PMOS管版图设计 (20) 、NMOS管版图设计 (22) 、与门版图设计 (23)

微电子工艺习题总结(DOC)

1. What is a wafer? What is a substrate? What is a die? 什么是硅片,什么是衬底,什么是芯片 答:硅片是指由单晶硅切成的薄片;芯片也称为管芯(单数和复数芯片或集成电路);硅圆片通常称为衬底。 2. List the three major trends associated with improvement in microchip fabrication technology, and give a short description of each trend. 列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势 答:提高芯片性能:器件做得越小,在芯片上放置得越紧密,芯片的速度就会提高。 提高芯片可靠性:芯片可靠性致力于趋于芯片寿命的功能的能力。为提高器件的可靠性,不间断地分析制造工艺。 降低芯片成本:半导体微芯片的价格一直持续下降。 3. What is the chip critical dimension (CD)? Why is this dimension important? 什么是芯片的关键尺寸,这种尺寸为何重要 答:芯片的关键尺寸(CD)是指硅片上的最小特征尺寸; 因为我们将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易产生。 4. Describe scaling and its importance in chip design. 描述按比例缩小以及在芯片设计中的重要性 答:按比例缩小:芯片上的器件尺寸相应缩小是按比例进行的 重要性:为了优电学性能,多有尺寸必须同时减小或按比例缩小。 5. What is Moore's law and what does it predict? 什么是摩尔定律,它预测了什么 答:摩尔定律:当价格不变时,集成电路上可容纳的晶体管数,月每隔18个月便会增加1倍,性能也将提升1倍。 预言在一块芯片上的晶体管数大约每隔一年翻一番。 第二章 6. What is the advantage of gallium arsenide over silicon? 砷化镓相对于硅的优点是什么 答:优点:具有比硅更高的电子迁移率;减小寄生电容和信号损耗的特性;集成电路的速度比硅电路更快;材料的电阻率更大。 7. What is the primary disadvantage of gallium arsenide over silicon? 砷化镓相对于硅的主要缺点是什么 答:主要缺点:缺乏天然氧化物;材料的脆性;成本比硅高10倍;有剧毒性在设备,工艺和废物清除设施中特别控制。

831002拨叉课程设计说明书工序卡片工艺过程卡片全部

课程设计说明书题目: 设计拨叉(CA6140车床)零件的机械加工工艺规程以及加工装备 学院: 专业班级: 学生姓名: 学号: 指导老师: 年月日

一、参考资料 (1)、设计工作量: 1、分析零件技术要求,绘制零件图、毛坯图; 2、设计零件机械加工工艺过程,填写工艺文件(工艺过程卡和工序卡); 3、设计零件机械加工工艺装备(夹具),绘制夹具装配图及一个主要零件 的零件图; 4、编写设计说明书。 (2)、主要参考资料: 1、段明扬主编,现代机械制造工艺设计实训教程,桂林:广西师范大学出版社,2007 2、李益明主编,机械制造工艺设计简明手册,北京:机械工业出版社,2007 3、艾兴等编,切削用量简明手册,北京:机械工业出版社,2002 4、东北重型机械学院等编,机床夹具设计手册,上海:上海科技出版社,1990 5、邹青主编,机械制造技术基础课程设计指导教程,北京:机械工业出版社, 2004 6、段明扬主编,现代制造工艺设计方法,桂林:广西师范大学出版社,2007 7、崇凯主编,机械制造技术基础课程设计指南,北京:化学工业出版社,2007 8、华楚生主编,机械制造技术基础,重庆:重庆大学出版社,2011 9、赵家齐主编,机械制造工艺学课程设计指导书,北京:机械工业出版社,2000

目录 一、参考资料 (2) 二、设计内容 (3) 三、零件分析 (3) (一)零件的作用 (4) (二)零件的工艺分析 (4) 四、确定毛坯的制造方法,初步确定毛坯的形状 (4) 五、工艺规程的设计 (5) (一)定位基准的选择 (5) (二)零件表面加工方法的选择 (5) (三)制订工艺路线 (6) (四)确定机械加工余量、工序尺寸及毛坯尺寸,设计、绘制 毛坯图 (9) (五)确定切削用量及基本工时(机动时间) (12) 六、夹具的设计 (30) (一)定位基准的选择 (30) (二)切削力及夹紧力的计算 (31) (三)定位误差分析 (31) (四)夹具设计及操作的简要说明 (31) 七、设计感言 (32) 二、设计内容 设计题目:设计拨叉(CA6140车床)零件的机械加工工艺规程及机床夹具。拨叉(CA6140车床)的拨叉零件图、拨叉毛坯图、夹具装配图、夹具零件图见附件。

微电子工艺学试卷(A卷)及参考答案

华中科技大学2010—2011学年第二学期 电子科学与技术专业《微电子工艺学》试卷(A 卷) 一、判断下列说法的正误,正确的在后面括号中划“√”,错误的在后面括号中划“×”(本大题共12小题,每小题2分,共24分) 1、用来制造MOS 器件最常用的是(100)面的硅片,这是因为(100)面的表面状态更有利于控制MOS 器件开态和关态所要求的阈值电压。(√) 2、在热氧化过程的初始阶段,二氧化硅的生长速率由氧化剂通过二氧化硅层的扩散速率决定,处于线性氧化阶段。( × ) 3、在一个化学气相淀积工艺中,如果淀积速率是反应速率控制的,则为了显著增大淀积速率,应该增大反应气体流量。( × ) 4、LPCVD 紧随PECVD 的发展而发展。由660℃降为450℃,采用增强的等离子体,增加淀积能量,即低压和低温。(×) 5、蒸发最大的缺点是不能产生均匀的台阶覆盖,但是可以比较容易的调整淀积合金的组分。(×) 6、化学机械抛光(CMP)带来的一个显著的质量问题是表面微擦痕。小而难以发现的微擦痕导致淀积的金属中存在隐藏区,可能引起同一层金属之间的断路。(√) 7、曝光波长的缩短可以使光刻分辨率线性提高,但同时会使焦深线性减小。如果增大投影物镜的数值孔径,那么在提高光刻分辨率的同时,投影物镜的焦深也会急剧减小,因此在分辨率和焦深之间必须折衷。( √ ) 8、外延生长过程中杂质的对流扩散效应,特别是高浓度一侧向异侧端的扩散,不仅使界面附近浓 度分布偏离了理想情况下的突变分布而形成缓变,且只有在离界面稍远处才保持理想状态下的均匀分布,使外延层有效厚度变窄。( × ) 9、在各向同性刻蚀时,薄膜的厚度应该大致大于或等于所要求分辨率的三分之一。如果图形所要求的分辨率远小于薄膜厚度,则必须采用各向异性刻蚀。( × ) 10、热扩散中的横向扩散通常是纵向结深的75%~85%。先进的MOS 电路不希望发生横向扩散, 因为它会导致沟道长度的减小,影响器件的集成度和性能。(√) 11、离子注入能够重复控制杂质的浓度和深度,因而在几乎所有应用中都优于扩散。( ×) 12、侧墙用来环绕多晶硅栅,防止更大剂量的源漏注入过于接近沟道以致可能发生源漏穿通。(√) 二、选择填空。 (本大题共8小题,每小题2分,共16分。在每小题给出的四个选项 中,有的只有一个选项正确,有的有多个选项正确,全部选对得2分,选对但不全的得1分,有选错的得0分) 1、微电子器件对加工环境的空气洁净度有着严格的要求。我国洁净室及洁净区空气中悬浮粒子洁净度标准GB50073-2001中,100级的含义是:每立方米空气中大于等于0.1 m 的悬浮粒子的最大允许个数为( B ) A 、35; B 、100; C 、102; D 、237。 2、采用二氧化硅薄膜作为栅极氧化层,是利用其具有的( A 、D ) A 、高电阻率; B 、高化学稳定性; C 、低介电常数; D 、高介电强度。 3、如果淀积的膜在台阶上过度地变薄,就容易导致高的膜应力、电短路或者在器件中产生不希望的(A )。 A. 诱生电荷 B. 鸟嘴效应 C. 陷阱电荷 D. 可移动电荷 4、浸入式光刻技术可以使193 nm 光刻工艺的最小线宽减小到45 nm 以下。它通过采用折射率高的 一、密封线内不准答题。 二、姓名、学号不许涂改,否则试卷无效。 三、考生在答题前应先将姓名、学号、年级和班级填写在指定的方框内。 四、试卷印刷不清楚。可举手向监考教师询问。 注意

CMOS模拟集成电路课程设计

电子科学与技术系 课程设计 中文题目:CMOS二输入与非门的设计 英文题目: The design of CMOS two input NAND gate 姓名:张德龙 学号: 1207010128 专业名称:电子科学与技术 指导教师:宋明歆 2015年7月4日

CMOS二输入与非门的设计 张德龙哈尔滨理工大学电子科学与技术系 [内容摘要]随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本次课程设计将要运用S-Edit、L-edit、以及T-spice等工具设计出CMOS二输入与非门电路并生成spice文件再画出电路版图。 [关键词]CMOS二输入与非门电路设计仿真

目录 1.概述 (1) 2.CMOS二输入与非门的设计准备工作 (1) 2-1 .CMOS二输入与非门的基本构成电路 (1) 2-2.计算相关参数 (2) 2-3.电路spice文件 (3) 2-4.分析电路性质 (3) 3、使用L-Edit绘制基本CMOS二输入与非门版图 (4) 3-1.CMOS二输入与非门设计的规则与布局布线 (4) 3-2.CMOS二输入与非门的版图绘制与实现 (5) 4、总结 (6) 5、参考文献 (6)

1.概述 本次课程设计将使用S-Edit画出CMOS二输入与非门电路的电路图,并用T-spice生成电路文件,然后经过一系列添加操作进行仿真模拟,计算相关参数、分析电路性质,在W-edit中使电路仿真图像,最后将电路图绘制电路版图进行对比并且做出总结。 2.CMOS二输入与非门的设计准备工作 2-1 .CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路 1

套筒加工工艺课程设计

课程设计题目套筒加工工艺课程设计 系机械工程系 专业机电一体化 学生姓名班级 指导教师职称(务) 完成日期年 12 月 25 日

课程设计任务书 学年第一学期 机械工程学院机械工程专业班级 课程名称:机械制造课程设计 设计题目:套筒的制造 完成期限:自年12 月22日至年12月28 日 内容及任务设计内容:(一)对零件(中等复杂程度)进行工艺分析,画零件图。 (二)选择毛坯的制造方式。 (三)制订零件的机械加工工艺规程 1.选择加工方案,制订工艺路线; 2.选择定位基准; 3.选择各工序所用的机床设备和工艺装备(刀具、夹具、量具等); 4.确定加工余量及工序间尺寸和公差; 5.确定切削用量 (四)填写工艺文件 1.填写机械加工工艺卡片; 2.填写机械加工工序卡片。 (五)编写设计说明书。 设计任务:掌握机械制造过程中的加工方法、加工装备等基本知识,提高学生分析和解决实际工程问题的能力,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。 每个学生应在教师指导下,独立完成以下任务: 1.机械加工工艺卡片一张; 2.机械加工工序卡片一套; 3.设计说明书一份。 进度安排 起止日期工作内容2011.12.22-2011.12.22 熟悉课题、查阅资料2011.12.23-2011.12.25 零件分析,画零件图2011.12.26-2011.12.27 制订零件加工工艺规程2012.12.27-2011.12.28 填写工艺文件,编写设计说明书 主要参考资料【1】张世昌,李旦主编,机械制造技术基础[M].北京:高等教育出版社,2006.1 【2】狄瑞坤,潘晓红主编.机械制造工程[M].杭州:浙江大学出版社,2001.1. 【3】杨梳子主编,机械机械加工工艺师手册.北京:机械工业出版社,2004.1 【4】赵如福主编.金属机械加工工艺人员手册.上海:上海科学技术出版社,2006.11

微电子电路课程设计

课程设计报告 微电子电路 带有源负载的共源极放大器与带有源负载的cascode 放大器 集成电路设计 目录 1.课程设计目的···································页码3 2.课程设计题目描述和要求·························页码3 3.设计思路·······································页码4 4.带有源负载的共源极放大器设计过程及结果·········页码5 5.带有源负载的cascode放大器设计过程及结果·······页码7 6.心得体会·······································页码9 7.参考书目·······································页码9

2 1.课程设计目的 深刻理解课本上学到的知识,建立各个章节的知识体系之间的联系。 加强动手能力和运用课本知识理论解决问题的能力。 对于放大器的性能和参数有更深刻的理解和掌握。 2.课程设计题目描述和要求 分析如图这样的带有源负载的共源极放大器与带有源负载的cascode 放大器的开环增益,3dB 频宽,单位增益频率。其中负载电容为3PF ,电源电压为5V ,要求CS 放大器的开环增益大于30dB ,cascode 放大器的开环增益大于60 dB 。对仿真结果进行分析,功耗小于2mW 。 Vdd C

3 Vdd C 3.设计思路:根据题目要求来计算以cs 放大器为例 ⑴功率不超过2mW ,电源为 5v ,得到总电流不能超过400uA 。 ⑵开始分配给ID 的电流为50u 运用了镜像电流源,电流大小之比为2,在长度一定时候的宽度之比也是2,故在右边电路的id 为100u ⑶根据公式 对于n 管来说,预估一个过驱动电压0.4v (大约0.2-0.5v )均可。计算出来n 管宽长比为11.26,取11。因为实验中给定了n 管的阈值电压为0.723v ,所以,可以确定栅源电压为1.1v 左右。 对于p 管来说,预估一个过驱动电压为0.5v (大约0.2-0.5v )均可。经过计算,p 管的宽长比为11.59,取12 。

半导体器件与工艺课程设计

课程设计 课程名称微电子器件工艺课程设计 题目名称 PNP双极型晶体管的设计 学生学院___ 材料与能源学院___ _ 专业班级 08微电子学1班 学号 3108008033 学生姓名____ 张又文 __ _ 指导教师魏爱香、何玉定 ___ 2011 年 7 月 6 日

广东工业大学课程设计任务书 题目名称 pnp 双极型晶体管的设计 学生学院 材料与能源学院 专业班级 微电子学专业08级1班 姓 名 张又文 学 号 3108008033 一、课程设计的内容 设计一个均匀掺杂的pnp 型双极晶体管,使T=300K 时,β=120。V CEO =15V,V CBO =80V.晶体管工作于小注入条件下,最大集电极电流为I C =5mA 。设计时应尽量减小基区宽度调制效应的影响。 二、课程设计的要求与数据 1.了解晶体管设计的一般步骤和设计原则 2.根据设计指标设计材料参数,包括发射区、基区和集电区掺杂浓度N E , N B ,和N C , 根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命等。 3.根据主要参数的设计指标确定器件的纵向结构参数,包括集电区厚度W c ,基本宽度W b ,发射区宽度W e 和扩散结深X jc , 发射结结深X je 等。 4.根据扩散结深X jc , 发射结结深X je 等确定基区和发射区预扩散和再扩散的扩散温度和扩散时间;由扩散时间确定氧化层的氧化温度、氧化厚度和氧化时间。 5.根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、发射区和金属接触孔的光刻版图。 6. 根据现有工艺条件,制定详细的工艺实施方案。 7.撰写设计报告 三、课程设计应完成的工作 1. 材料参数设计

课程设计微电子器件与工艺课程设计报告

课程设计微电子器件与工艺课程设计报告

目录 1.设计任务及目标 (1) 2.课程设计的基本内容 (1) 2.1 pnp双极型晶体管的设计 (1) 2.2 设计的主要内容 (1) 3.晶体管工艺参数设计 (2) 3.1 晶体管的纵向结构参数设计 (2) 3.1.1 集电区杂质浓度的确定 (2) 3.1.2 基区及发射区杂质浓度 (3) 3.1.3 各区少子迁移率及扩散系数的确定 (3) 3.1.4 各区少子扩散长度的计算 (4) 3.1.5 集电区厚度的选择 (4) 3.1.6 基区宽度的计算 (4) 3.1.7 扩散结深 (6) 3.1.8 表面杂质浓度 (7) 3.2晶体管的横向设计 (8) 3.3工艺参数的计算 (8) 3.3.1 基区磷预扩时间 (8) 3.3.2基区磷再扩散时间计算 (8) 3.3.3 发射区硼预扩时间计算 (9) 3.3.4 发射区硼再扩散时间计算 (9) 3.3.5 基区磷扩散需要的氧化层厚度 (10) 3.3.6 发射区硼扩散需要的氧化层厚度 (11) 3.3.7 氧化时间的计算 (11) 3.3.8设计参数总结 (12) 4晶体管制造工艺流程 (13) 4.1硅片及清洗 (15) 4.2氧化工艺 (16)

4.3光刻工艺 (17) 4.3.1光刻原理 (17) 4.3.2具体工艺流程 (18) 4.3.3硼的扩散 (19) 4.3.4磷的扩散 (20) 5 版图 (20) 6总结 (23) 7参考文献 (23)

微电子器件与工艺课程设计报告 ——pnp 双极型晶体管的设计 1、课程设计目的与任务 《微电子器件与工艺课程设计》是继《微电子器件物理》、《微电子器件工艺》和《半导体物理》理论课之后开出的有关微电子器件和工艺知识的综合应用的课程,使我们系统的掌握半导体器件,集成电路,半导体材料及工艺的有关知识的必不可少的重要环节。 目的是使我们在熟悉晶体管基本理论和制造工艺的基础上,掌握晶体管的设计方法。要求我们根据给定的晶体管电学参数的设计指标,完成晶体管的纵向结构参数设计→晶体管的图形结构设计→材料参数的选取和设计→制定实施工艺方案 晶体管各参数的检测方法等设计过程的训练,为从事微电子器件设计、集成电路设计打下必要的基础。 2、课程设计的基本内容 2.1 pnp 双极型晶体管的设计 设计一个均匀掺杂的pnp 型双极晶体管,使T=300K 时,β=120。V CEO =15V,V CBO =80V.晶体管工作于小注入条件下,最大集电极电流为I C =5mA 。设计时应尽量减小基区宽度调制效应的影响。 2.2 设计的主要内容: (1)了解晶体管设计的一般步骤和设计原则。 (2)根据设计指标选取材料,确定材料参数,如发射区掺杂浓度N E ,,基区掺 杂浓度N B ,集电区掺杂浓度N C ,根据各区的掺杂浓度确定少子的扩散系数,迁移率,扩散长度和寿命等。 (3)根据主要参数的设计指标确定器件的纵向结构参数,如集电区厚度W c , 基区宽度W b ,发射极宽度W e 和扩散结深X jc ,发射结结深等。 (4)根据结深确定氧化层的厚度,氧化温度和氧化时间;杂质预扩散和再扩散 的扩散温度和扩散时间。 (5)根据设计指标确定器件的图形结构,设计器件的图形尺寸,绘制出基区、 发射区和金属接触孔的光刻版图。

《微电子制造原理和技术》课程设计大纲-09

微电子制造原理与技术》课程设计大纲 一、课程名称:《微电子制造原理与技术》课程设计 开课专业:电子科学与技术 学分/总学时:2学分,2周 实验(上机)学时:40 先修课程:半导体工艺原理与技术,数字电路,专业实验,集成电路设计 制定人:李金华 制定时间:2009.12.28 二、课程的目的和任务 课程设计是学完一门课后应用本课程知识及以前的知识积累而进行的综合性、开放性、设计性的实践训练,是培养学生工程意识和创新能力的重要环节,是检验学生灵活和牢固掌握知识的重要手段。基于上述认识,决定开设《半导体工艺原理与技术》的课程设计实践环节。所以开设本课程的目的是,通过对本课程的实践,更加牢固和全面地掌握信息功能薄膜材料的制备方法和在微电子器件,特别是在集成电路工艺中的应用。通过本课程的训练,可以将《半导体工艺原理与技术》与《集成电路设 计》、《专业实验》更好地结合起来,使学生掌握更加全面的专业技能。由于电子科学与技术专业的学生学过了《集成电路设计》,希望学生能在这二周时间内得到一定的IC 设计与工艺锻炼,为以后的求职创造条件。 三、课程内容和基本要求 本课程设计的主要内容是将《半导体工艺原理与技术》的课程内容与《集成电路设计》、《专业实验》、《薄膜材料与薄膜技术》课程结合,结合LEDIT 软件的应用,作简单CMOS器件的版图和工艺设计。 本课程设计选择了35个简单实用的CMOS器件与典型工艺,要求学生通过对本课程和已学课程的复习,也可上网检索和阅读参考资料,从器件原理、逻辑图,用当前世界通用的集成电路设计软件LEDIT 设计版图。结合已学过的知识设计该器件的版图与工艺。对基础比较好的学生,可以对已经列出的35 个简单器件或工艺标准作合理提升,相应的课题将利用难度系数来提高成绩。

ca6140拨叉831003课程设计说明书及工序卡片

重庆大学本科学生课程毕业设计(论文) 机械制造课程设计 学生:彭永伟 学号: 指导教师:鞠萍华 专业:工业工程 重庆大学机械工程学院 二O一五年一月

课程设计指导教师成绩评定 指导教师评定成绩:

指导教师签名:鞠萍华年月 日

重庆大学本科学生课程设计任务书

目录 设计总说明.................................. 错误!未定义书签。 1............................................................. 零件的分析错误!未定义书签。 ......................................................... 零件的作用错误!未定义书签。 .................................................... 拨叉的技术要求错误!未定义书签。2........................................................ 工艺规程的设计错误!未定义书签。 ................................................ 确定毛坯的制造形式错误!未定义书签。 ......................................................... 基面的选择错误!未定义书签。 粗基准的选择.......................... 错误!未定义书签。 精基准的选择.......................... 错误!未定义书签。 ...................................................... 制订工艺路线错误!未定义书签。 工艺路线方案.......................... 错误!未定义书签。 加工工艺过程卡片...................... 错误!未定义书签。 代表性工序卡片(见附页).............. 错误!未定义书签。 ......................... 机械加工余量、工序尺寸及毛坯尺寸的确定错误!未定义书签。 ........................................... 确定切削用量及基本工时错误!未定义书签。3............................................................... 夹具设计错误!未定义书签。

法兰盘机械加工工艺过程卡片--1

中北大学机械工程系机械加工工艺过程卡片零件 编号 零件名称 (CA6140)法兰盘 工 序号工序名称 设备夹具刀具量具 工时名称型号名称规格名称规格名称规格 1 铸 2 热处理 3 粗车φ100柱体左端 面、外圆,粗车B面 卧式车床CA6140 三爪卡盘车刀游标卡尺0.83(min) 4 钻中心孔φ18,扩孔 φ19.8,粗铰φ19.94、 精绞Φ20孔 立式摇臂 钻床 Z525 专用夹具 高速钢钻头 W18Cr4V 游标卡尺、千分尺0.78(min) 5 粗车右φ45柱体右 端面、外圆,φ90外 圆及右端面 卧式车床CA6140 三爪卡盘车刀游标卡尺227.9min 6 半精车φ100左端 面、外圆,半精车B 面并倒角C1.5,半精 车φ90外圆,φ20 左侧倒角C1 卧式车床CA6140 三爪卡盘车刀游标卡尺230.45min 7 半精车右φ45外圆 及右端面,倒角C7, 半精车φ90右侧面, 切槽3×2,车φ20孔 右端倒角C1 卧式车床CA6140三爪卡盘车刀游标卡尺75.02min

8 精车φ100柱体左 端面、外圆,精车B 面,车过渡圆角R5 卧式车床CA6140三爪卡盘车刀游标卡尺62.99min 9 粗铣、精铣φ90mm 柱体的两侧面 铣床X63专用夹具 硬质合金镶齿套 面铣刀YT15 游标卡尺62.99min 10 钻4XΦ9mm透孔立式摇臂 钻床 Z525专用夹具 高速钢麻花钻 Φ9 游标卡尺、千分尺 11 钻φ4孔,扩φ6孔立式摇臂 钻床 z525专用夹具 高速钢麻花钻 Φ4高速钢麻花 钻Φ6 游标卡尺、千分尺 12 金刚石车Φ45mm外 圆、φ90mm右侧面 卧式车床CA6140三爪卡盘车刀游标卡尺 13 磨削B面万能外圆 磨床 M114W 砂轮游标卡尺 14 磨削外圆面 φ100mm、φ90mm 万能外圆 磨床 M114W 砂轮游标卡尺 15 磨削φ90凸台距离 轴线24mm的侧平面 万能外圆 磨床 M114W 砂轮游标卡尺 16 B面抛光钳工台游标卡尺 17 Φ100mm划线刻字 18 Φ100mm外圆无光 镀铬 铬离子缸 19 检测入库检验台游标卡尺、千分尺、塞规、卡规

微电子工艺课程设计

微电子工艺课程设计 一、摘要 仿真(simulation)这一术语已不仅广泛出现在各种科技书书刊上,甚至已频繁出现于各种新闻媒体上。不同的书刊和字典对仿真这一术语的定义性简释大同小异,以下3种最有代表性,仿真是一个系统或过程的功能用另一系统或过程的功能的仿真表示;用能适用于计算机的数学模型表示实际物理过程或系统;不同实验对问题的检验。仿真(也即模拟)的可信度和精度很大程度上基于建模(modeling)的可信度和精度。建模和仿真(modeling and simulation)是研究自然科学、工程科学、人文科学和社会科学的重要方法,是开发产品、制定决策的重要手段。据不完全统计,目前,有关建模和仿真方面的研究论文已占各类国际、国内专业学术会议总数的10%以上,占了很可观的份额。 集成电路仿真通过集成电路仿真器(simulator)执行。集成电路仿真器由计算机主机及输入、输出等外围设备(硬件)和有关仿真程序(软件)组成。按仿真内容不同,集成电路仿真一般可分为:系统功能仿真、逻辑仿真、电路仿真、器件仿真及工艺仿真等不同层次(level)的仿真。其中工艺和器件的仿真,国际上也常称作“集成电路工艺和器件的计算机辅助设计”(Technology CAD of IC),简称“IC TCAD”。

二、 综述 这次课程设计要求是:设计一个均匀掺杂的pnp 型双极晶体管,使T=346K 时,β=173。V CEO =18V ,V CBO =90V ,晶体管工作于小注入条件下,最大集电极电流为IC=15mA 。设计时应尽量减小基区宽度调制效应的影响。要求我们先进行相关的计算,为工艺过程中的量进行计算。然后通过Silvaco-TCAD 进行模拟。 TCAD 就是Technology Computer Aided Design ,指半导体工艺模拟以及器件模拟工具,世界上商用的TCAD 工具有Silvaco 公司的Athena 和Atlas ,Synopsys 公司的TSupprem 和Medici 以及ISE 公司(已经被Synopsys 公司收购)的Dios 和Dessis 以及Crosslight Software 公司的Csuprem 和APSYS 。这次课程设计运用Silvaco-TCAD 软件进行工艺模拟。通过具体的工艺设计,最后使工艺产出的PNP 双极型晶体管满足所需要的条件。 三、 方案设计与分析 各区掺杂浓度及相关参数的计算 对于击穿电压较高的器件,在接近雪崩击穿时,集电结空间电荷区已扩展至均匀掺杂的外延层。因此,当集电结上的偏置电压接近击穿电压V 时, 集电结可用突变 结近似,对于Si 器件击穿电压为 4 3 13 106- ?=)(BC B N V , 集电区杂质浓度为: 3 4 13 34 13)1106106CEO n CBO C BV BV N β+?=?=()( 由于BV CBO =90所以Nc=*1015 cm -3 一般的晶体管各区的浓度要满足NE>>NB>NC 设N B =10N C ;N E =100N B 则: Nc=*1015 cm -3 ;N B =*1016 cm -3 ;N E =*1018 cm -3 根据室温下载流子迁移率与掺杂浓度的函数关系,得到少子迁移率: s V cm ?==/13002n C μμ;s V cm P B ?==/3302μμ;s V cm N E ?==/1502μμ 根据公式可得少子的扩散系数:

2012级微电子工艺学试卷(A卷)参考答案

华中科技大学光学与电子信息学院考试试卷(A卷) 2014~2015学年度第一学期 课程名称:微电子工艺学考试年级:2012级 考试时间:2015 年1 月28 日考试方式:开卷 学生姓名学号专业班级 一、判断下列说法的正误,正确的在后面括号中划“√”,错误的在后面括号中划“×”(本大题共10小题,每小题2分,共20分) 1、随着器件特征尺寸不断缩小、电路性能不断完善、集成度不断提高,互连线所占面积已成为决定芯片面积的主要因素,互连线导致的延迟已可与器件门延迟相比较,单层金属互连逐渐被多层金属互连取代。(√) 2、采用区熔法进行硅单晶生长时,利用分凝现象将物料局部熔化形成狭窄的熔区,并令其沿锭长从一端缓慢地移动到另一端,重复多次使杂质被集中在尾部或头部,使中部材料被提纯。区熔法一次提纯的效果比直拉法好,可以制备更高纯度的单晶。(×) 3、缺陷的存在对微电子器件利弊各半:在有源区不希望有二维和三维缺陷,而在非有源区的缺陷能够吸引杂质聚集,使邻近有源区内杂质减少,是有好处的。(√) 4、光刻胶的灵敏度是指完成曝光所需最小曝光剂量(mJ/cm2),由曝光效率决定(通常负胶比正胶有更高曝光效率) 。灵敏度大的光刻胶曝光时间较短,但曝光效果较差。(×) 5、无论对于PMOS还是NMOS器件,要得到良好受控的阈值电压,需要控制氧化层厚度、沟道掺杂浓度、金属半导体功函数以及氧化层电荷。(√) 6、半导体掺杂中掺入的杂质必须是电活性的,能提供所需的载流子,使许多微结构和器件得以实现。掺杂的最高极限由杂质固溶度决定,最低极限由硅晶格生长的杂质决定。(√) 7、离子注入过程是一个平衡过程,带有一定能量的入射离子在靶材内同靶原子核及其核外电子碰撞,逐步损失能量,最后停下来。(×) 8、溅射仅是离子对物体表面轰击时可能发生的四种物理过程之一,其中每种物理过程发生的几率取决于入射离子的剂量。(√) 9、等离子体刻蚀的优点是刻蚀速率较高、刻蚀选择性较好和刻蚀损伤较低,缺点是存在各向异性倾向。 (×) 10、MOS器件中的轻掺杂漏(LDD,Lightly Doped Drain)结构提供了一个从沟道到重掺杂源漏区的过渡,从而降低漏端电场,消除热载流子效应。同时,通过减小源漏结面向沟道区的结面积,抑制短沟效应。 (√) 二、选择填空。(本大题共10小题,每小题2分,共20分。在每小题给出的四个选项中,只一个选项正确。) 1、重离子每次碰撞传输给靶的能量较大,散射角小,获得大能量的位移原子还可使许多原子移位。注入离子的能量损失以核碰撞为主。同时,射程较短,在小体积内有较大损伤。重离子注入所造成的损伤( B) 。 A. 区域大,密度大 B. 区域小,密度大 C. 区域小,密度小 D. 区域大,密度小 2、Ⅲ、Ⅴ族元素在硅中的扩散运动是建立在杂质与空位相互作用的基础上的,掺入的施主或受主杂质诱导出了大量荷电态空位,从而(A) 。

集成电路工艺课程设计报告

深圳职业技术学院 Shenzhen Polytechnic 《集成电路工艺基础》 课程设计报告 课题: D触发器工艺设计 学院:电子与通信工程学院 班级: 11微电子1班 组员: 学号: 指导老师: 2013年6月 24日

目录 绪论 (1) 第一章 N阱硅栅CMOS电路 (2) 1.1 N阱硅栅CMOS电路 (2) 第二章 D触发器原理图设计 (3) 2.1 D触发器原理图设计 (3) 2.1.1逻辑电路图 (3) 2.2.2工作原理 (3) 第三章 D触发器版图设计 (5) 3.1 版图设计规则 (5) 3.2 D触发器版图设计 (6) 第四章工艺流程 (7) 4.1 N阱CMOS工艺流程 (7) 第五章制备掩膜版 (13) 5.1 集成电路对掩膜版的要求 (13) 5.2 掩膜版版图 (13) 总结 (18) 参考文献 (18)

绪论 当前,我国集成电路行业正处于发展的黄金时期,集成电路的设计、制造和封装测试都面临极大的发展机遇。以后,集成电路器件的特征尺寸将从目前的深亚微米进入纳米量级,并且有可能将一个子系统乃至整个系统集成在一个芯片上。 今天,版图设计是在一个不断变化的环境中进行的。软件工具和设计方法,计算机平台,工具厂商、客户,正在实现的应用,以及我们所面对的市场压力,所有这一切都在逐年变化着。所有这一切变化已使该行业成为一个另人感兴趣的行业,但不应该忘记的是,在制作优质版图后面的基本概念是基于物理特性和电学特性的,这是永远不会改变的。 通过集成电路版图设计,按照版图设计的图形加工成光刻掩膜,可以将立体的电路系统转变为平面图形,再经过工艺制造还原成为硅片上的立体结构。

机械加工工艺过程卡片

机械加工工艺过程卡片 九江学院 机械与材料工程学院机械加工工艺过程卡片 零件图号KCSJ-12 共 2 页 零件名称蜗杆第页 材料牌号45钢毛坯种类锻件毛坯外形尺寸每件毛坯可制件数 1 每台件数 工序号工序内容车间工段设备工艺装备 工时 准终单件 01 锻造锻工自由锻锻床游标卡尺 02 去飞边金工磨工磨床砂轮、游标卡尺 03 粗车蜗杆轴左端面,打中心孔,及左边Φ20mm、Φ25mm、 Φ30mm、Φ36mm 定位轴肩,以及Φ30mm 轴段退刀槽的外圆 面,以中心孔轴线为精基准。 金工 车、钳 工 普通车 床 车刀、麻花钻、三爪卡盘 04 粗车蜗杆轴右端面,打中心孔,及右边、Φ30mm 、Φ36mm 定位轴肩,以及Φ30mm 轴段退刀槽的外圆面,以中心孔轴线 为精基准。 金工 车、钳 工 普通车 床 车刀、麻花钻、三爪卡盘 05 调质处理热加工热处理淬火机淬火机 06 半精车左端各外圆面,控制轴线方向的各个轴段的长度。 以中心孔轴线为精基准。金工车工 普通车 床 车刀、三爪卡盘 07 半精车右端各外圆面,控制轴线方向的各个轴段的长度。 以中心孔轴线为精基准。倒角。金工车工 普通车 床 揣测到、三爪卡盘

08 铣键槽,选择两个Φ30mm 外圆面作为基准。金工钳工普通立 式铣床 铣刀、专用夹具 09 车蜗杆螺纹,选择两个Φ30mm 外圆面作为基准。金工车工普通车 床 车刀、专用夹具 10 淬火热加工热处理淬火机淬火机 11 粗、精磨左端面及Φ20mm 轴头外圆面,Φ30mm 轴段外圆面, 以及磨制过渡圆角。 金工磨工 普通磨 床 砂轮、游标卡尺 12 粗、精磨右端面及Φ30mm 轴头外圆面,Φ60mm 轴段外圆面及 螺纹面,以及磨制过渡圆角,以两中心孔轴心线为基准。 金工车工 普通磨 床 砂轮、游标卡尺 13 去毛刺金工钳工钳工台深度游标卡尺 14 检验检验 15 入库仓库

微电子课程设计 基本cs和cascode放大器概要

哈尔滨理工大学 软件学院 课程设计报告 课程微电子电路(双语) 题目带有源负载的CS放大器与 带有源负载的cascode放大器班级集成11-4班 专业集成电路设计与集成系统学生张翠 学号1114020432 指导教师徐瑞

2013年11月8日 目录 1.课程设计目的 .................................... 2.课程设计题目描述和要求 ............................. 3.课程设计报告内容 ............................ 3.1、带有源负载的CS放大器 ...................... 3.2、带有源负载的cascode放大器 ................. 4.心得体会 ......................................... 5.参考书目 .........................................

一.课程设计目的 1.熟悉并掌握Orcad中的capture CIS,Hspice与cosmosScope软件的 使用。 2.掌握使用capture CIS建立带有源负载的CS放大器与带有源负载的 cascode放大器的电路并导出网表。 3.熟练应用Hspice仿真网表并修改分析网表,学会用comosScope查看 分析波形。 4.在扎实的基础上强化实践能力,把微电子理论实践化。 二.课程设计题目描述和要求 分析如图这样的带有源负载的共源极放大器与带有源负载的cascode 放大器的开环增益,3dB频宽,单位增益频率。其中负载电容为3PF,电源电压为5V,要求CS放大器的开环增益大于30dB,cascode放大器的开环增益大于60dB。对仿真结果进行分析,功耗小于2mW。

微电子器件工艺

《微电子器件工艺》课程设计报告 班级:电子09-2 学号: 0906040206 姓名:高春旭 指导教师:白立春

N阱硅栅结构的CMOS集成电工艺设计 一.基本要求 设计如下电路的工艺流程 (1)设计上图所示电路的生产工艺流程: (2)每一具体步骤需要画出剖面图; (3)每一个步骤都要求说明,例如进行掺杂时,是采用扩散还是离子注入,需要 解释原因,又如刻蚀,采用的是干法刻蚀,还是湿法刻蚀,这类问题都须详细说明. (4)在设计时,要考虑隔离,衬底选择等问题. (5)要求不少于5页,字迹工整,画图清楚. 二、设计的具体实现 2.1 工艺概述 n阱工艺为了实现与LSI的主流工艺增强型/耗层型(E/D)的完全兼容,n 阱CMOS工艺得到了重视和发展。它采用E/D NMOS的相同的p型衬底材料制备NMOS器件,采用离子注入形成的n阱制备PMOS器件,采用沟道离子注入调整两种沟遭器件的阈值电压。 n阱CMOS工艺与p阱CMOS工艺相比有许多明显的优点。首先是与E/D NMOS工艺完全兼容,因此,可以直接利用已经高度发展的NMOS 工艺技术;其次是制备在轻掺杂衬底上的NMOS的性能得到了最佳化--保持了高的电子迁移率,低的体效应系数,低的n+结的寄生电容,降低了漏结势垒区的电场强度,从而降低了电子碰撞电离所产生的电流等。这个优点对动态CMOS电路,如时钟CMOS电路,多米诺电路等的性能改进尤其明显。

这是因为在这些动态电路中仅采用很少数目的PMOS器件,大多数器件是NMOS 型。另外由于电子迁移率较高,因而n阱的寄生电阻较低;碰撞电离的主要来源—电子碰撞电离所产生的衬底电流,在n阱CMOS中通过较低寄生电阻的衬底流走。而在p阱CMOS中通过p阱较高的横向电阻泄放,故产生的寄生衬底电压在n阱CMOS中比p阱要小。在n阱CMOS中寄生的纵向双极型晶体管是PNP型,其发射极电流增益较低,n阱CMOS结构中产生可控硅锁定效应的几率较p阱为低。由于n阱 CMOS的结构的工艺步骤较p阱CMOS简化,也有利于提高集成密度.例如由于磷在场氧化时,在n阱表面的分凝效应,就可以取消对PMOS的场注入和隔离环。杂质分凝的概念:杂质在固体-液体界面上的分凝作用 ~ 再结晶层中杂质的含量决定于固溶度→ 制造合金结(突变结);杂质在固体-固体界面上也存在分凝作用 ~ 例如,对Si/SiO2界面:硼的分凝系数约为3/10,磷的分凝系数约为10/1;这就是说,掺硼的Si经过热氧化以后, Si表面的硼浓度将减小,而掺磷的Si 经过热氧化以后, Si表面的磷浓度将增高)。 n阱CMOS基本结构中含有许多性能良好的功能器件,对于实现系统集成及接口电路也非常有利。图A (a)和(b)是p阱和n阱CMOS结构的示意图。 N阱硅栅CMOS IC的剖面图 N离子注入 2.2 现在COMS工艺多采用的双阱工艺制作步骤主要表现为以下几个步骤:

相关文档
最新文档