电子科技大学微电子器件

合集下载

电子科技大学微电子器件实验报告MICRO-1

电子科技大学微电子器件实验报告MICRO-1

电⼦科技⼤学微电⼦器件实验报告MICRO-1电⼦科技⼤学实验报告(实验)课程名称微电⼦器件实验⼀:双极晶体管直流特征的测量学⽣姓名:学号:201203******指导教师:刘继芝实验地点:211楼605实验时间:2015、6、⼀、实验室名称:微电⼦器件实验室⼆、实验项⽬名称:双极晶体管直流特征的测量三、实验学时:3四、实验原理:1.XJ4810半导体管特性图⽰仪的基本原理⽅框图XJ4810图⽰仪的基本原理⽅框图如图1-3所⽰。

其各部分的作⽤如下。

(1)基极阶梯信号发⽣器提供必须的基极注⼊电流。

(2)集电极扫描电压发⽣器提供从零开始、可变的集电极电源电压。

(3)同步脉冲发⽣器⽤来使基极阶梯信号和集电极扫描电压保持同步,以便正确⽽稳定地显⽰特性曲线(当集电极扫描电压直接由市电全波整流取得时,同步脉冲发⽣器可由50Hz 市电代替)。

(4)测试转换开关是⽤于测试不同接法和不同类型晶体管的特性曲线和参数的转换开关。

(5)放⼤和显⽰电路⽤于显⽰被测管的特性曲线。

(6)电源(图中未画出)为各部分电路提供电源电压。

2.读测⽅法(以3DG6 npn 管为例)(1)输⼊特性曲线和输⼊电阻R i在共射晶体管电路中,输出交流短路时,输⼊电压和输⼊电流之⽐为R i ,即常数=??=CE V B BEi I V R 它是共射晶体管输⼊特性曲线斜率的倒数。

例如需测3DG6在V CE = 10V 时某⼀⼯作点Q 的R i 值,晶体管接法如图1-4所⽰。

各旋钮位置为:峰值电压范围 0~10V极性(集电极扫描)正(+)极性(阶梯)正(+)功耗限制电阻 0.1~1k Ω(适当选择)x 轴作⽤电压0 .1V/度 y 轴作⽤阶梯作⽤重复阶梯选择 0.1mA/级测试时,在未插⼊样管时先将x 轴集电极电压置于1V/度,调峰值电压为10V ,然后插⼊样管,将x 轴作⽤扳到电压0.1V/度,即得V CE =10V 时的输⼊特性曲线。

这样可测得图1-5;.200101.002.0310Ω=?=??=-=V VB BE i CE I V R图1-4 晶体管接法图1-5 晶体管的输⼊特性曲线(2)输出特性曲线、转移特性曲线和β、h FE 、α在共射电路中,输出交流短路时,输出电流和输⼊电流增量之⽐为共射晶体管交流电流放⼤系数β。

电子科技大学《微电子器件》课件PPT微电子器件(3-10)

电子科技大学《微电子器件》课件PPT微电子器件(3-10)

CTE↓
① ②
AE↓ ( NB↓(
l↓, s↓ ) 但会使
rbb’↑,VA↓)
要使 b↓,应: (1) WB↓( 但会使 rbb’↑,VA↓,且受工艺限制)
(2) η↑ ( 采用平面工艺 )
要使 d↓,应:xdc↓ →NC↑( 但会使 BVCBO↓, CTC↑)
要使 c↓,应:
(1) rcs↓
① ② ③
fT
rbb fT Le
2
CTC
3.10.3 高频晶体管的结构

M
fT
8 rbbCTC
可知,要提高 M ,应提高 fT ,降低 rbb’
和 CTC,因此应该采用由平面工艺制成的硅 NPN 管,并采用细
线条的多基极条和多发射极条结构。
l B E B E B ….…
S
提高 M 的各项具体措施及其副作用
除以上主要矛盾外,还存在一些相对次要的其它矛盾,在 进行高频晶体管的设计时需权衡利弊后做折衷考虑。
3.11 双极晶体管的开关特性
(自学)
3.12 SPICE 中的双极晶体管模型
(自学)
3.10 功率增益和最高振荡频率
3.10.1 高频功率增益与高频优值
利用上一节得到的共发射极高频小信号 T 形等效电路,可以 求出晶体管的高频功率增益。先对等效电路进行简化。
与 re 并联的 Cπ可略去,又因 re << rbb’ ,re 可近似为短路。
再来简化
Zc
Zcb
1 ω
,
1 Zcb
1 rμ
(3) 对 NC 的要求
减小 d 及 rcs 与减小 CTC及提高 BVCBO 对 NC 有矛盾的要求。
这可通过在重掺杂 N+ 衬底上生长一层轻掺杂 N- 外延层来缓解。 外延层厚度与衬底厚度的典型值分别为 10 m 与 200 m 。

电子科技大学(成都)考研历年真题之832微电子器件2008--2015年考研真题

电子科技大学(成都)考研历年真题之832微电子器件2008--2015年考研真题
电子科技大学 2014 年攻读硕士学位研究生入学考试试题 考试科目:832 微电子器件
注:所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、填空题(共 48 分,每空 1.5 分) 1、PN 结二极管用途广泛,在作为变容二极管使用时,主要利用其( ( 高而( )向偏置的
微电子器件 试题共 6 页,第 1 页
) ,因此τb/τB 可以表示 ) 。 )的控制能力。 ) 。 (第二个空填 “大” 或 “小” ,
) , 该控制能力越 (
)单向导电性。 (从以下选项中选择) C 空穴阻挡层 D 空穴反阻挡层
8、MOSFET 的跨导是(
)特性曲线的斜率,而漏源电导是(
)特性曲
3、防止 PN 结发生热击穿,最有效的措施是降低器件的( (
)的半导体材料,其热稳定性越好。 (第二个空填“大”或“小” ) ) ,共发射极增量输
4、双极型晶体管的基区宽度调变效应越严重,其厄尔利电压越( 出电阻越( ) 。 (填“大”或“小” )
5、已知双极型晶体管的基区度越时间和基区少子寿命分别为τb 和τB,则 1/τB 表示的物理 意义为( ( 6、MOSFET 的亚阈区摆幅 S 反应了在亚阈区中( 栅氧化层越厚, 则S越 ( 第三个空填“强”或“弱” ) 7、当金属和 P 型半导体形成金-半接触时,如果金属的功函数大于半导体的功函数,半导体表 面将形成( A 电子阻挡层 E 具有 ) ,该结构( B 电子反阻挡层 F 不具有
2、一个 NPN 双极型晶体管,掺杂浓度为 NE=5×1018cm-3,NB=5×1016cm-3,NC=1×1013cm-3,发 射区和基区宽度为 WE=10µm,WB=2µm。偏置条件为 IB=2mA,VBC=-3V。电子和空穴的扩散 系数分别为 Dn=40cm2/s 和 Dp=20cm2/s,电子和空穴的寿命均为 1µs。求: (1) 器件的共发射极直流短路电流放大系数 β 为多少? (2) 器件的跨导 gm 为多少? (10 分)

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.线性缓变结的耗尽层宽度正比于【图片】。

参考答案:正确2.反向偏置饱和电流可看成是由中性区内少数载流子的产生而导致的。

参考答案:正确3.减薄p+n突变结的轻掺杂区厚度,不但能减少存储电荷,还能降低反向抽取电流。

参考答案:错误4.在异质结双极型晶体管中,通常用()。

参考答案:宽禁带材料制作发射区,用窄禁带材料制作基区5.( )的集电结反向电压VCB称为共基极集电结雪崩击穿电压,记为BVCBO。

参考答案:发射极开路时,使6.【图片】对高频小信号注入效率的影响的物理意义是,【图片】的存在意味着【图片】必须先付出对势垒区充放电的多子电流【图片】后,才能建立起一定的【图片】。

这一过程需要的时间是()。

参考答案:发射结势垒电容充放电时间常数7.某长方形扩散区的方块电阻为200Ω,长度和宽度分别为100μm和20μm,则其长度方向的电阻为()。

参考答案:1KW8.要提高均匀基区晶体管的电流放大系数的方法()。

参考答案:减小基区掺杂浓度_减小基区宽度9.防止基区穿通的措施是提高()。

参考答案:增大基区宽度_增大基区掺杂浓度10.从发射结注入基区的少子,由于渡越基区需要时间tb ,将对输运过程产生三方面的影响( )。

参考答案:时间延迟使相位滞后_渡越时间的分散使减小_复合损失使小于111.晶体管的共发射极输出特性是指以输入端电流【图片】作参量,输出端电流【图片】与输出端电压【图片】之间的关系。

参考答案:正确12.电流放大系数与频率成反比,频率每提高一倍,电流放大系数下降一半,功率增益降为四分之一。

参考答案:正确13.特征频率【图片】代表的是共发射极接法的晶体管有电流放大能力的频率极限,而最高振荡频率【图片】则代表晶体管有功率放大能力的频率极限。

参考答案:正确14.模拟电路中的晶体管主要工作在()区。

参考答案:放大15.共发射极电路中,基极电流IB是输入电流,集电极电流IC是输出电流。

微电子器件试验二极管高低温特性测试及分析完整版

微电子器件试验二极管高低温特性测试及分析完整版

微电子器件试验二极管高低温特性测试及分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】电子科技大学微固学院标准实验报告(实验)课程名称微电子器件电子科技大学教务处制表电子科技大学实验报告学生姓名:学号:指导教师:张有润实验地点: 211楼605 实验时间:一、实验室名称:微电子器件实验室二、实验项目名称:二极管高低温特性测试及分析三、实验学时:3四、实验原理:1、如图1,二极管的基本原理是一个PN结。

具有PN结的特性——单向导电性,如图2所示。

图 1 二极管构成原理2、正向特性:二极管两端加正向电压,产生正向电流。

正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。

3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。

4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。

图 2 二极管直流特性五、实验目的:学习晶体管图示仪的使用,掌握二极管的高低温直流特性。

六、实验内容:1、测量当二极管的正向电流为100A时的正向导通压降;2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。

七、实验器材(设备、元器件):二极管、晶体管特性图示仪、恒温箱八、实验步骤:1、测晶体管的正向特性。

各旋钮位置为:•峰值电压范围 0~10V•极性(集电极扫描)正(+)•功耗限制电阻 ~1kΩ(适当选择)•x轴作用电压0 .1V/度•y轴作用电流10A/度2、测晶体管的反向特性。

各旋钮位置为:•峰值电压范围 0~10V•极性(集电极扫描)正(+)•功耗限制电阻 10k~100kΩ(适当选择)•x轴作用电压1V/度•y轴作用电流A/度3、对高温时的二极管进行参数测量。

电子科技大学微电子专业开设课程

电子科技大学微电子专业开设课程

微电子学专业(071202)一、培养目标培养德、智、体全面发展,自动化专业知识基础扎实、相关学科知识丰富,具有一定创新意识和较强实践应用能力、社会适应能力,能在企事业单位从事集成电路设计、制造、测试等技术工作,具有电子信息领域及新型交叉学科领域相关工作能力,适应地方经济建设与社会发展的高级应用型专门人才。

二、培养规格根据“宽口径、厚基础、强能力、高素质”的基本精神,学生经过四年学习,达到如下基本素质要求:(一)德育方面1.有坚定的政治信念。

热爱祖国,拥护党的领导,努力掌握马列主义、毛泽东思想、邓小平理论以及“三个代表”重要思想的基本原理。

2.有科学的思想方法和良好的学术道德。

能运用辩证唯物主义和历史唯物主义的立场、观点和方法分析问题、解决问题。

3.具有积极的人生态度和高度的工作热情,品质优良,情操高尚,行为规范;具有社会主义民主和法制观念。

(二)智育方面1.具有一定的人文社会科学、自然科学基本知识和文化艺术素养。

2.掌握本专业系统的基础知识、基本理论和基本技能,了解本专业最新科学成就和发展趋势,具有较好的获取知识、发现问题、分析问题和解决问题的能力,具有较强的自学能力和创新意识。

3.相对擅长半导体器件和微电子学方向的知识和技能,具备从事专业业务工作的能力和适应相邻专业业务工作的基本能力与素质,以及初步的自主创业的能力。

4.掌握一门外国语,具有一定的听、说、读、写、译的能力;具有较强的计算机操作能力;掌握文献检索、资料查询的基本方法,具备一定的学科专业科研能力。

(三)体育方面1.有健康的身体素质,具备体育锻炼的基本知识和良好的卫生习惯,达到国家规定的大学生体育合格标准。

2.有良好的心理素质、健全的人格、坚强的意志、较强的心理承受能力和乐观情绪。

三、学制及学习年限弹性学制。

学制四年,学习年限三至八年。

四、毕业最低学分163+8学分,8为课外学分。

五、授予学位工学学士。

六、主要课程简介:1.基础物理课程性质:专业必修课学分:8 学时:117+36内容简介:本课属于基础课,使学生比较系统地掌握物理基础知识,且能灵活应用,培养学生独立分析问题与解决问题能力。

电子科技大学微电子器件 (习题解答)

电子科技大学微电子器件 (习题解答)

s Emax
qND

x
xi2 处,E3
Emax
q
s
NA xp
,
由此得:xp
s Emax
qNA
(2) 对于无 I 型区的PN结,
xi1 0,
xi2 0,
E1
q
s
ND (x
xn ),
E3
q
s
NA(x
xp )

x
0 处,电场达到最大, Emax
q
s
ND xn
q
s
NA xp
E
Emax
E1
E3
x
0
表面上,两种结构的 Emax 的表达式相同,但由于两种结构 的掺杂相同,因而Vbi 相同(即电场曲线与横轴所围面积相同), 所以两种结构的 xn、xp与 Emax 并不相同。
WB
dWB dVCE
0 NBdx
IC VA
WB
VA 0 NBdx
N
B
(WB
)
dWB dVCE
对均匀基区,VA
WB dWB dVCE
式中,dWB dxdB , VCE VCB VBE

VBE
保持不变,所以 dVCE
dVCB ,
于是:VA
WB dxdB dVCB
1
xdB
2s N
2DB n
,
将n
106 s 及 WB 、DB
之值代入,得: 0.9987。
7、
b
WB2 2DB
2
1
1
1.1251011(s)
8、以 NPN 管为例,当基区与发射区都是非均匀掺杂时, 由式(3-33a)和式(3-33b),

微电子器件期末复习题 含答案

微电子器件期末复习题 含答案

【习题压得准五杀跑不了】微电子器件(陈星弼·第三版)电子工业出版社◎前言◎根据统计,课堂测验、课后作业中的题目提纲中无相似题型,请复习提纲的同时在做一次作业以及课堂测验。

作业答案、课堂作业答案平时随课堂进度上传群共享,请自行查阅。

本答案为个人整理,如有不妥之处望批评指正。

计算题部分,实在无能为力,后期会继续上传计算题集锦,敬请期待。

另,由于本人微电子班,无光源班群,请有心人士转载至光源班群,共同通过1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=⨯,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为(316105.1-⨯=cm N A )和(314105.1-⨯=cm N A )。

2、在PN 结的空间电荷区中,P 区一侧带(负)电荷,N 区一侧带(正)电荷。

内建电场的方向是从(N )区指向(P )区。

[发生漂移运动,空穴向P 区,电子向N 区]3、当采用耗尽近似时,N 。

由此方程可以看出,掺杂浓度越高,则内建电场的斜率越(大)。

4、PN 结的掺杂浓度越高,则势垒区的长度就越(小),内建电场的最大值就越(大),内建电势V bi 就越(大),反向饱和电流I 0就越(小)[P20],势垒电容C T 就越( 大 ),雪崩击穿电压就越(小)。

5、硅突变结内建电势V bi )[P9]在室温下的典型值为(0.8V )6、当对PN结外加正向电压时,其势垒区宽度会(减小),势垒区的势垒高度会(降低)。

7、当对PN 结外加反向电压时,其势垒区宽度会(增大),势垒区的势垒高度会(提高)。

8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为P18。

若P 型区的掺杂浓度173A 1.510cm N -=⨯,外加电压V = 0.52V ,则P 型区与耗尽区边界上的少子浓度n p 为(3251035.7-⨯cm )。

9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(大);当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度(小)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 基本方程的简化与应用举例
最重要的简化是三维形式的方程简化为一维形式,得到
dE dx
q
s
(
p
n
ND
NA )
Jn
qn nE
qDn
dn dx
Jp
qp
pE
qDp
dp dx
n t
1 q
Jn x
Un
p t
1 q
Jp x
Up
(1-9) (1-10) (1-11) (1-12) (1-13)
在此基础上再根据不同的具体情况还可进行各种不同形式 的简化。
(g) 2 g 2 g 2 g 2 g x2 y2 z2
分析半导体器件的基本方程包含三组方程。
1.1.1 泊松方程
2
s
q
s
(pa)
式中 为静电势,它与电场强度 E之间有如下关系,
E
所以泊松方程又可写成
E
q
s
(p
n
ND
NA )
(1-1b)
1.1.2 输运方程
输运方程又称为电流密度方程。 电子电流密度和空穴电流密度都是由漂移电流密度和扩散 电流密度两部分所构成,即
中心的能级与本征费米能级相等,则 U 可表为
U np ni2
n p 2ni
(1-17)
式中, 代表载流子寿命,n n0 n, p p0 p, n0 p0 ni2
如果在 P 型区中,且满足小注入条件,则
于是得
p p0 , n p 2ni p p0
Un
(n0
n)p0
n p0
固体器件
1960年:实用的 MOS 场效应管
1947 年,美国贝尔实验室发明了世界上第一支锗点接触式 双极型晶体管,1950 年出现了结型双极型晶体管,并于 1956 年 获诺贝尔物理奖。
1956 年出现了扩散工艺,60 年代初出现了 硅平面工艺 , 为今后集成电路的大发展奠定了技术基础。
1958 年,美国德州仪器公司造出了世界上第一块集成电路, 并于 2000 年获诺贝尔物理奖。
q
n ( V t
Un )dv
p
Ip A Jp dA q V ( t Up )dv
称为电子与空穴的 电荷控制方程 ,它表示流出某封闭曲面的 电流受该曲面内电荷的变化率与电荷的净复合率所控制。
在用基本方程分析半导体器件时,有两条途径,一条是用 计算机求 数值解。这就是通常所说的半导体器件的数值模拟; 另一条是求基本方程的 解析解,得到解的封闭形式的表达式。 但求解析解是非常困难的。一般需先 对基本方程在一定的近似 条件下加以简化后再求解。本课程讨论第二条途径。
1.1.4 方程的积分形式
以上各方程均为微分形式。其中方程 (1-1) 、(1-4) 、(1-5) 可根据场论中的积分变换公式
A f dA V f dv
而变为积分形式,
E A
dA q
s
V ( p n ND NA )dv
In
A Jn
dA
q
( n V t
Un )dv
Ip
漂移电流密度远小于扩散电流密度,可以忽略漂移电流密度,
方程(1-10)简化为
Jn
qDn
dn dx
(1-16)
反之,则可以忽略扩散电流密度,方程(1-10)简化为
Jn qnnE
例 1.3 对于方程 ( 1-12 ) 、( 1-13 ) 中的净复合率 U ,当作如
下假设:(1) 复合中心对电子与空穴有相同的俘获截面;(2) 复合
Jn qnnE qDnn Jp qp pE qDpp
(1-2) (1-3)
1.1.3 连续性方程
n 1 t q Jn Un
p t
1 q
Jp
Up
(1-4) (1-5)
式中, Un 和 Up 分别代表电子和空穴的净复合率。U > 0 表示净复合,U < 0 表示净产生。
所谓连续性是指 载流子浓度在时空上的连续性,即:造成 某体积内载流子增加的原因,一定是载流子对该体积有净流入 和载流子在该体积内有净产生。
半导体器件基本方程是由 麦克斯韦方程组 结合 半导体的 固体物理特性 推导出来的。这些方程都是三维的。
先来复习场论中的有关内容
i j k x y z
对于数量场 g(x, y, z)
g
g
i
g
j
g
k
x y z
对于矢量场 f (x, y, z) fx i f y j fz k
f fx f y fz x y z
微电子器件
电子科技大学 微电子与固体电子学院
张庆中
总学时数:72 学时 其中课堂讲授:60 学时,实验:12 学时 成绩构成: 期末考试:70 分、平时:20 分、实验:10 分
W HAT ? W HY ? HOW ?
电子器件发展简史
1904年:真空二极管 电子管 1907年:真空三极管
1947年:双极型晶体管
1995年:GSI(以1G DRAM 为代表,2.2 ×109 元件,700 mm2, 0.18 m ,200 mm ,2000 年开始商业化生产)
第 1 章 半导体器件基本方程
1.1 半导体器件基本方程的形式
半导体器件内的载流子在外电场作用下的运动规律可以用 一套 基本方程 来加以描述,这套基本方程是分析一切半导体 器件的基本数学工具。
例 1.1 对于方程 ( 1-9 )
dE dx
q
s
(
p
n
ND
NA )
在耗尽区中,可假设 p = n = 0 ,又若在 N 型耗尽区中,则还可
忽略 NA ,得
dE q
dx
s
ND
(1-14)
若在 P 型耗尽区中,则得
dE dx
q
s
NA
例 1.2 对于方程(1-10),
Jn
qn nE
qDn
dn dx
当载流子浓度和电场很小而载流子浓度的梯度很大时,则
ni2
n
n
(1-18)
A Jp
dA
q
V
( p t
Up )dv
(1-6) (1-7) (1-8)
上面的方程(1-6)
E A
dA q
s
V ( p n ND NA )dv
就是大家熟知的 高斯定理,
A D dA V dv
式中,D sE 代表电位移。
方程 ( 1-7 )、( 1-8 )
In
A Jn
dA
1958年:中小规模集成电路(IC)
1969年:大规模集成电路(LSI ,103 ~ 105 元件或 102 ~ 5 ×103 等效门 )
1977年:超大规模集成电路(VLSI ,以 64K DRAM 、16位 CPU 为代表 )
1986年:巨大规模集成电路(ULSI,以 4M DRAM 为代表 , 8 ×106 元件,91 mm2,0.8 m ,150 mm )
相关文档
最新文档