SL(2,R) Invariance of Non-Linear Electrodynamics Coupled to An Axion and a Dilaton

合集下载

非线性方程的求根方法1

非线性方程的求根方法1
x xk
*
xk x
*
1 2
k 1
(b a )

,否则继续对分。
10
10 0 例 用二分法求 1 在(1,2)内的根,要求绝对误差不超过 10 2 解: f(1)=-5<0 有根区间 中点 x n x 1 1.5 f(2)=14>0 -(1,2)+ x 2 1 . 25 f(1.5)>0 (1,1.5) x 3 1 . 375 f(1.25)<0 (1.25,1.5) x 4 1 . 313 f(1.375)>0 (1.25,1.375) x 5 1 . 344 f(1.313)<0 (1.313,1.375) x 6 1 . 360 f(1.344)<0 (1.344,1.375) f(1.360)<0 (1.360,1.375) x 7 1 . 368 f(1.368)>0 (1.360,1.368) x 8 1 . 364 x
* n * n n
( 0<L<1 )
所以,
lim x n x
n
*
故迭代格式收敛.
25
| x n x | | x n x n 1 x n 1 x |
* *
| x n x n 1 | | x n 1 x | | x n x n 1 | L | x n x |
3
1 . 5 1 1 . 35721
– x1≠x0,再将x1代入得
x2
3
x1 1
3
1 . 35721 1 1 . 33086
– x2≠x1,再将x2代入得
x3

sl(2,r)上的双不变函数的winer型定理

sl(2,r)上的双不变函数的winer型定理

sl(2,r)上的双不变函数的winer型定理在数学领域中,Lie群一直是研究的热门话题。

特别是SL(2,R)作为Lie群中最简单的非阿贝尔李群之一,是数学研究中的主要对象之一。

在SL(2,R)中,具有对称性质的双不变函数一直是被广泛研究的问题之一。

而Winer型定理就是相关问题的集大成之作,本文将对它进行详细的介绍和解释。

1. Lie群和对称性在介绍Winer型定理之前,需要提及Lie群和对称性这两个概念。

李群是指同时具有群结构和微分流形结构的一类特殊的数学对象。

通俗地说,就是具有无限个元素的群,并且其中每个元素都可以被看做是某个空间中的点。

而这个空间又被赋予了一些额外的结构,比如拓扑结构或微分结构等等。

李群具有丰富的几何性质,因而被广泛应用于物理、数学等领域的研究。

对称性也是几何学、物理学、数学等领域中一个十分重要的概念。

它在一定程度上可以理解为某种结构下的不变性。

例如圆形在旋转下具有不变性,这种性质就可以被称为对称性。

具有对称性的对象往往具有某些特殊的性质,能够方便地被研究和描述。

2. SL(2,R)上的双不变函数SL(2,R)是指二维实系数矩阵组成的李群。

其中的元素具有形如下式的基本形式:$$ \begin{pmatrix} a & b \\ c & d\end{pmatrix} , \,\,\, ad-bc=1 $$在研究SL(2,R)上的函数时,我们通常会研究它们在群作用下的变化。

而SL(2,R)作为李群,可以看做是一些变换的集合。

其中变换可以被看做是由二维实系数矩阵的乘法实现的。

令$g$为一个矩阵,而$f$为一个函数。

我们可以定义它们之间的对应关系:$$ f \xrightarrow{g} f' $$其中$f'$表示函数$f$在矩阵$g$下的变换。

例如,对于一个函数$f(x,y)$和一个矩阵$g$,变换前后的函数可以写成:$$ f(x,y) \xrightarrow{g} f'(x',y') $$其中$x'$和$y'$是矩阵$g$作用于$(x,y)$得到的结果。

第10章 机器人的非线性控制

第10章 机器人的非线性控制
m , ) kx bc sgn( x
The model-based portion:
f f
The servo portion:
k pe f xd kve
where the values of the gains are calculated
methods that seem well suited to mechanical manipulators.
The major focus: Computed-torque method, first proposed in 1972, by R.P.Paul
第十章 机器人的非线性控制 §10.1 非线性时变系统
df ( x) 1 d 2 f ( x) 2 y f ( x) f ( x0 ) ( ) x0 ( x x0 ) ( ) ( x x ) x0 0 2 dx 2! dx
df ( x) y y0 ( ) x0 ( x x0 ) dx y K x y Kx
Design a control system that use a nonlinear model-based portion
to damp the system critically at all times.
The open loop equation:
bc sgn( x ) kx f mx
from some desired performance specification.
第十章 机器人的非线性控制 §10.1 非线性时变系统
Example: Consider the single link manipulator. The mass is

代数英语

代数英语

(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。

0+||zero-dagger; 读作零正。

1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。

AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。

BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。

B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。

C0 类函数||function of class C0; 又称“连续函数类”。

CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。

Cp统计量||Cp-statisticC。

特殊线性群SL(2,R)的有限Abelian子群

特殊线性群SL(2,R)的有限Abelian子群

2.2. 常系数线性齐次递归关系的求解方法[3]
本节我们介绍常系数线性齐次递归关系的求解,相关内容请参考文献[3]。 常系数线性齐次递归关系,其形如
H( = n ) a1 H ( n − 1) + a2 H ( n − 2 ) + + ar H ( n − r )

H = a1 H n −1 + a2 H n − 2 + + ar H n − r n
Open Access
1. 引言
n 阶一般线性群是由 n 阶可逆矩阵组成的群,矩阵的元素取自 R 群运算,为通常的矩阵乘法,记为
GL ( n, R ) ;特殊线性群是 GL ( n, R ) 中行列式为 1 的全体矩阵,它们对于矩阵乘法构成 GL ( n, R ) 的一个
子群,记为 SL ( n, R ) 。一般线性群 GL ( n, R ) 和特殊线性群 SL ( n, R ) 都是经典的李群,它们与群论和几何 的研究有着密切的联系,在几何分析中有如下深刻的结果:特殊线性群 SL ( n, R ) 的有限 Abelian 子群是紧 黎曼曲面的微分同胚不变量。这一结论将几何和代数(群理论)紧密联系起来,本文以此为出发点,结合群 理论中对有限 Abel 群结构的完整刻画,如:有限 Abel 群可以分解成阶为素数的方幂的循环群(循环 p-群) 的直积[1]等,对特殊线性群 SL ( 2, R ) 的有限 Abelian 子群进行研究,从而进一步加深对紧黎曼曲面的认 识。
1, ,1; d1 ( λ ) , , d k ( λ ) ,
其中 deg di ( λ ) = mi ,则 A 相似于下列分块对角矩阵:
629
蒋传华,段翠连
F1 F =

非参数回归 r语言-概述说明以及解释

非参数回归 r语言-概述说明以及解释

非参数回归r语言-概述说明以及解释1.引言1.1 概述非参数回归是一种不依赖于特定函数形式的回归分析方法,它不需要对数据的分布做出假设。

相比于传统的参数回归方法,非参数回归更加灵活,能够更好地拟合复杂的数据模式。

在实际应用中,非参数回归可以有效地处理非线性关系、异常值和数据噪音等问题,因此受到越来越多研究者和数据分析师的青睐。

本文将重点介绍在R语言中如何进行非参数回归分析,包括常用的非参数回归方法、分析步骤以及如何利用R语言中的工具进行非参数回归分析。

同时,我们将讨论非参数回归的优缺点,以及对R语言在非参数回归中的意义和展望非参数回归的发展。

希望本文能够帮助读者更加深入地了解非参数回归方法,并在实践中灵活运用。

1.2 文章结构本文分为引言、正文和结论三部分。

在引言部分,将包括概述、文章结构和目的等内容,为读者提供对非参数回归和R语言的整体了解。

在正文部分,将介绍什么是非参数回归、在R语言中如何进行非参数回归分析以及非参数回归的优缺点。

最后,在结论部分将对非参数回归的应用进行总结,探讨R语言在非参数回归中的意义,以及展望非参数回归的发展前景。

通过以上结构,读者将逐步深入了解非参数回归和R语言在该领域的应用和发展。

1.3 目的本文旨在探讨非参数回归在数据分析中的应用,特别是在R语言环境下的实现方法。

通过深入了解非参数回归的概念、原理和优缺点,读者可以更全面地了解这一方法在处理不确定性较大、数据分布不规律的情况下的优势和局限性。

此外,本文还旨在介绍R语言中如何进行非参数回归分析,帮助读者学习如何利用这一工具进行数据建模和预测分析。

最终,通过对非参数回归的应用和发展的展望,希望能够激发更多的研究者和数据分析师对于这一领域的兴趣,推动非参数回归方法在实际应用中的进一步发展和创新。

2.正文2.1 什么是非参数回归非参数回归是一种用于建立数据之间关系的统计方法,它不对数据的分布做出任何假设。

在传统的参数回归中,我们通常会假设数据服从某种特定的分布,比如正态分布,然后通过参数估计来拟合模型。

carnot群上水平laplace算子的二次多项式算子的特征值不等式(英文)

carnot群上水平laplace算子的二次多项式算子的特征值不等式(英文)Title: Inequalities of Eigenvalues of Quadratic Operators of the Horizontal Laplace Operator on the Carnot GroupIntroduction:The Carnot group is a class of non-commutative Lie groups that have found applications in various areas of mathematics and physics. One important operator on the Carnot group is the horizontal Laplace operator. In this article, we will explore the inequalities of eigenvalues of quadratic operators of the horizontal Laplace operator on the Carnot group.I. Overview of the Horizontal Laplace Operator:1.1 Definition of the Horizontal Laplace Operator:The horizontal Laplace operator, denoted by Δ_H, is a second-order differential operator defined on the Carnot group. It captures the geometric and analytic properties of the group.1.2 Properties of the Horizontal Laplace Operator:- The horizontal Laplace operator is a self-adjoint operator.- It is invariant under the left translations on the Carnot group.- The operator plays a crucial role in studying the heat equation and harmonic analysis on the Carnot group.II. Quadratic Operators of the Horizontal Laplace Operator:2.1 Definition of Quadratic Operators:Quadratic operators are operators that can be expressed as a sum of quadratic forms. In the case of the horizontal Laplace operator, quadratic operators are polynomials of degree two.2.2 Examples of Quadratic Operators:- The square of the horizontal Laplace operator: Δ_H^2.- The product of the horizontal Laplace operator with itself: Δ_H Δ_H.2.3 Properties of Quadratic Operators:- Quadratic operators of the horizontal Laplace operator are still self-adjoint.- They preserve the invariance under left translations on the Carnot group.- Quadratic operators are important in studying higher-order differential equations on the Carnot group.III. Eigenvalues of Quadratic Operators:3.1 Definition of Eigenvalues:Eigenvalues are the values for which a given operator, when applied to a vector, results in a scalar multiple of the vector. In the case of quadratic operators of the horizontal Laplace operator, we are interested in the eigenvalues of these operators.3.2 Inequalities of Eigenvalues:- The eigenvalues of quadratic operators of the horizontal Laplace operator satisfy certain inequalities.- These inequalities provide important information about the spectrum of the operators and their behavior.3.3 Applications of Eigenvalue Inequalities:- The eigenvalue inequalities of quadratic operators of the horizontal Laplace operator have applications in various areas, such as geometric analysis, harmonic analysis, and partial differential equations on the Carnot group.Conclusion:In conclusion, the inequalities of eigenvalues of quadratic operators of the horizontal Laplace operator on the Carnot group provide valuable insights into the properties and behavior of these operators. Understanding these inequalities is crucial for studying various mathematical and physical phenomena on the Carnot group. Further research and exploration in this area can lead to advancements in the field of geometric analysis and differential equations on non-commutative Lie groups.。

第五章 非线性回归

迭代方向的选择通常在梯度方向,令
Δj=Wj(gj)′ (5 24)式中,gj=g(βj)为S(β)在βj
处其的作梯用度是行使向 目量 标, 函数Wj值为降一低个。负定矩阵,
则 S(βj+1)-S(βj)≈λjgjWj(gj)′(5 25)
若gj≠0,λj>0,则λjgjWj(gj)′<0,因而S(βj+1)S(βj)<0,因而迭代将导致函数值降低。其中,
计得初值:
ˆ 70.45 ˆ 0.46
经过迭代,得到NLS估计方程
Yt 150.35 1.15X t 0.89
EViews计算的回归结果
Y=C(1)+C(2)*X^C(3)
C(1) C(2) C(3) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
五、迭代初值与停止规则
1.迭代初值
如果目标函数为凸函数,则至多有一个极小点, 且局部极小即是整体最小,迭代会收敛到最小 值,但初值的选择对迭代速度的影响相当大。
如果目标函数不是凸函数但有唯一极小点,迭 代也会有不错的效果。但如果目标函数有多于 一个的极小点,迭代可能收敛到局部极小点, 不能保证是整体最小点,则迭代那么初值的选 择就更加重要。
3
1 2
1 2
二、线性化回归方法
我们将非线性模型写成
其中:
Yt f (xt , β) ut
xt ( X1t , X 2t ,..., X kt ) β (1, 2 ,..., m )
如果函数在参数向量 β 0附近连续可微,将函数
在 β 0附近进行一阶泰勒展开

机器学习计算方法非线性方程(组)的数值解

计算方法
1
第三章 非线性方程(组)的数值解
• 3.1 引入 • 3.2非线性方程问题 • 3.3二分法 • 3.4不动点迭代法 • 3.5牛顿迭代法 • 3.6解非线性方程组的牛顿迭代法
2
第三章 非线性方程(组)的数值解
• 3.1 引入 • 3.2非线性方程问题 • 3.3二分法 • 3.4不动点迭代法 • 3.5牛顿迭代法 • 3.6解非线性方程组的牛顿迭代法
3
3.1 引入
4
3.1 引入
早在四千多年以前,在古 巴比伦地区就已经萌发出数 学智慧的幼芽。古巴比伦数 学取得了一系列的重要成就, 譬如制成了有关平方根的计 算表。古巴比伦人制造开方 表的方法难以考证,不过可 以想象其计算方法必定相当 的简单。
5
3.1 引入
给定a>0,求开方值的问题就是要解方程 x2-a=0
(1)式无解; (2)式有三个解,x=1,-2,3,无论x取值的区间怎样变化, 只要它包含[-2,3]这个区间,解的性质和个数不变。 但这三个解的性质又各不相同,x=3是一个单根,x= -2是 两重根,x=1则是三重根。 (3)式随x的取值范围不同,解的个数也不同。事实上,在整 个实数轴上有无穷多个解。在讨论非线性问题时,通常总 是要更强调“定义域”,往往要求的是自变量在一定范围 内的解,道理就在于此。
i
xi
xi
0 9.000000 20.000000
1 9.500000 12.250000
2 9.486842 9.798469
3 9.486833 9.491789
4 9.486833 9.486834
5 9.486833 9.486833
10
第三章 非线性方程(组)的数值解

Nonlinear Dirac Equations


with F ∝ I, n = 1 23 . . . . . . . . . . . . . 24 . . . . . . . . . . . . . 24 . . . . . . . . . . . . . 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 26 26 27 27
with F ∝ I, n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Abstract We study nonlinear extensions of Dirac’s relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincar´ e invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries, plane wave solutions, modified dispersion relations and the non-relativistic limit. Motivated by some previously suggested applications such as neutrino oscillations, we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples together with their associated properties. We contrast our construction procedure and results with others in the literature and also outline various physical applications we envisage for these equations, ranging from use as effective equations at low energies to probes of possible quantum nonlinearities at high energies.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
SL(2,R) Duality at Lowest Order
In 4 dimensions, the bosonic sector of N=4 supergravity and string theory compactified on a torus, at lowest order, may be described by the following Lagrangian [3]
1 1 2φ 1 1 −φ L=R− 2 ( ∇φ ) 2 − 2 e (∇a)2 + 4 aFµν ⋆ F µν − 4 e F simplicity we consider only a single U (1) gauge field1 . The resulting theory admits an SL(2, R) electric-magnetic duality which mixes the electromagnetic field equations with the Bianchi identities and also transforms the axion and dilaton. In a local orthonormal frame, the electric intensity E and magnetic induction B may be defined by Ei = Fi0 and Bi = 1 ǫ F . The Bianchi identities 2 ijk jk dF = 0 or ∂[α Fβγ ] = 0 are then equivalent to ∇·B = 0 ∇×E = − Defining Gµν by2 Gµν = −2 ∂L , ∂Fµν (2.3) ∂B . ∂t
1 2 F − 1+ 2 1 (F 16
⋆ F )2 .
(1.1)
Note that Linv (gµν , Fρσ ) itself is not invariant under duality rotations. In this letter we shall extend these results by including a coupling to a scalar dilaton field φ and a pseudo-scalar axion field a. They contribute to the action the following kinetic terms
(1.3) where Linv (gµν , Fρσ ) is a Lagrangian with SO (2) invariant equations of motion. In particular there is just one generalization of the Born-Infeld Lagrangian admitting SL(2, R) invariant equations of motion. This SL(2, R) invariant generalization of the Born-Infeld Lagrangian does not coincide with that discussed in [1] in connection with string theory. The relation of our new results to string theory is currently under investigation.
−1
ψ
⇒ ,
M → ST E H
−1
M S −1
−1
(2.10)
D B
→ ST
E , H
where S ∈ SL(2, R). If S= p q r s where ps − qr = 1, (2.11)
then the induced transformations of the axion and dilaton fields are given by a Mobius transformation of λ : λ→ pλ + q . rλ + s 3 (2.12)
1 2φ Lax−dil = − 1 ( ∇φ ) 2 − 2 e (∇a)2 2
(1.2)
which are SL(2, R) invariant. We shall show that this SL(2, R) invariance may be extended to the equations of motion (but not the action) if and only if the action takes the form √ 1 1 2φ d4 x g R − 2Λ − 1 (∇φ)2 − 2 e (∇a)2 + 1 aF ⋆ F + Linv (gµν , e− 2 φ Fρσ ) 2 4
(2.2)
the field equations are d ⋆ G = 0 or ∂[α ⋆ Gβγ ] = 0, which are equivalent to ∇·D = 0 ∇×H = + ∂D , ∂t
(2.4)
where the electric induction D and magnetic intensity H are defined by 1 Di = Gi0 and Hi = 2 ǫijk Gjk . For the Lagrangian (2.1), D and H are given by D = + ∂L = e−φ E + aB ∂E (2.5) H = −
Then the matrix M may be written as M= ψψ † + c.c. det (ψψ † + c.c.) . (2.9)
Chosing the first component of ψ to be 1 fixes the representation of M. The SL(2, R) duality transformation may then be constructed so that it automatically leaves the constitutive relations invariant : ψ → ψ′ ∝ S T D B →S

Supported by EPSRC grant no. 9400616X.
1
Introduction
In a recent paper [1] we found the condition on the Lagrangian function Linv (gµν , Fρσ ) for a non-linear electrodynamic theory coupled to gravity that the equations of motion, including the Einstein equations, are invariant under the action of an SO (2) group of generalized electric-magnetic duality rotations. One such Lagrangian is the Born-Infeld Lagrangian [2] LBI = 1 −
2 2 1 2φ 1 µν + L (g , e− 2 φ F ) −1 ρσ inv µν 2 (∇φ) − 2 e (∇a) + 4 aFµν ⋆ F
1
where Linv (gµν , Fρσ ) is a Lagrangian whose equations of motion are invariant under electric-magnetic duality rotations. In particular there is a unique generalization of Born-Infeld theory admitting SL(2, R) invariant equations of motion.
Abstract The most general Lagrangian for non-linear electrodynamics coupled to an axion a and a dilaton φ with SL(2, R) invariant equations of motion is
3
SL(2,R) Duality in Non-Linear Electrodynamics
Since in both string theory and in supergravity theories, higher order terms in the electromagnetic field arise, causing the electrodynamic equations of motion to become non-linear, it is natural to ask under what circumstances the SL(2, R) duality above continues to hold. It has been shown [1] that, in the case of pure non-linear electrodynamics with no axion or dilaton, the equations of motion will admit an SO (2) duality provided the Lagrangian satisfies a simple differential constraint : Gµν ⋆ Gµν = Fµν ⋆ F µν , or equivalently E · B = D · H. Moreover there are, roughly speaking, as many Lagrangians satisfying this constraint as there are functions of a single real variable. Amongst this class of Lagrangians is the Born-Infeld Lagrangian : √ gL = √ g− det(gµν + Fµν ), (3.1)
相关文档
最新文档