第一章专题讲座反应热的四种计算方法
反应热的计算ppt课件

利用物质总能量变化图计算
ΔH=H(生成物)− H(反应物)
随堂练习
(2017∙浙江)根据Ca(OH)2/CaO体系的能量循环图,下列说法正确的是 D
( )
Ca(OH)2(s)
ΔH1
510oC
ΔH3
Ca(OH)2(s)
25oC
A.ΔH5>0
C.ΔH3=ΔH4+ΔH5
ΔH2
CaO(s) + H2O(g)
试计算下述反应的反应热:
2C(s) + 2H2 (g) + O2 (g) = CH3COOH (l)
2② + 2③ -①
△H = 2△H 2 + 2△H3 - △H1
= - 488.3kJ/mol
随堂练习
3、室温下,若将1mol CuSO4·5H2O(s)溶于水会使溶液温度降低,热效
应为ΔH1,将1mol CuSO4(s)溶于水会使溶液温度升高,热效应为ΔH2;
随堂练习
2、已知下列反应的反应热为
①CH3COOH (l) + 2O2(g) = 2CO2(g) + 2H2O(l)
②C(s) + O2 (g)
③H2(g) +
△H1= -870.3 kJ/mol
= CO2(g)
△H2= -393.5 kJ/mol
O2(g) = H2O(l)
△H3= -285.8 kJ/mol
ΔH3=−483.6kJ/mol
C(s)+H2O(g)=CO(g)+H2(g) ΔH=+131.3 kJ/mol
1
1
分析: ①- 2 ③- ②得:
2
1
ΔH= ΔH1 −
化学反应热的计算ppt课件

ΔH=ΔH3 -(ΔH 1+ΔH2) =-394 kJ/mol + (111 kJ/mol +242kJ/mol)
=-41 kJ/mol 即:CO与H2O作用转化为H2和CO2反应的 反应热为=-41 kJ/mol
7. 1kg人体脂肪可储存约32200kJ能量。一般 人每行走1km大约要消耗170kJ能量,如果某人每天 步行5km,1年中因此消耗的脂肪大约是多少?
成物的能量和-反应物的能量和。
▪ (3)根据反应物和生成物的键能计算:ΔH=反
应物的键能和-生成物的键能和。 ▪ (4)根据盖斯定律计算:将热化学方程式进行适
当的“加”“减”等变形后,由过程的热效应 进行计算、比较。
▪ (5)根据物质燃烧放热数值计算:Q(放)=n(可 燃物)×|ΔH|。
▪ (6)根据比热公式进行计算:Q=cmΔt。
则ΔH1和ΔH2的关系正确的是( B )
A.ΔH1>ΔH2
B.ΔH1<ΔH2
C.ΔH1=ΔH2
D.无法确定
Page 15
3.已知25℃、101kPa下,石墨、金刚石燃烧的热化学方程式分 别为
C(石墨)+O2(g)=CO2(g) △H=-393.51kJ·mol-1 C(金刚石)+O2(g)=CO2(g) △H=-395.41kJ·mol-1
A. 2:1
B. 1:2
C. 1:1
Page 17
D. 2:3
教材习题答案
1. 2.5molC在O2中完全燃烧生成CO2, 放出多少热量?
提示:C(s)+O2(g)=CO2(g) ΔH=-393.51 kJ/mol
2.5molC完全燃烧:Q =2.5mol × (-393.51 kJ/mol) =-938.8kJ
高中化学第三节 化学反应热的计算优秀课件

A.ΔH2>ΔH1 C.ΔH1+ΔH2=ΔH3
B.ΔH1+ΔH2>ΔH3 D.ΔH1<ΔH3
D
(二)“叠加减〞法--正向思维 消掉目标方程中没有的物质
C(s)+O2(g)=CO2(g)
△H1=-393.5 kJ/mol
-) CO(g)+1/2O2(g)=CO2(g) △H2=-283.0 kJ/mol
第三节 化学反响热的计算
一、盖斯定律
化学反响不管是一步完成还是分几步完成,其反响热 总是相同的。
化学反响的反响热只与反响体系的始态和终态有关, 而与反响的途径无关。
态:物质种类、物质的量、物质的状态及环境条件
A
ΔH
B
ΔH1
ΔH2
C
ΔH=ΔH1+ΔH2
阅读教材P11~12
2H2(g) +O2(g) =2H2O(l) △H1 < 0
5、反响热的大小比较 (江苏)以下热化学方程式程中△H前者大于后者的是〔 C
①C(s)+O2(g)=CO2(g) △H1 C(s)+1/2O2(g)=CO(g) △H2
状态:s→l→g 变化时,会吸热; 反之会放热。
②S(s)+O2(g)=SO2(g) △H3 S(g)+O2(g)=SO2(g) △H4
(2)“叠加减〞法 ①P4(白磷,s)+5O2(g)===P4O10(s) ΔH1=-2 983.2 kJ·mol-1 ②P(红磷, s)+5/4O2(g)=1/4P4O10(s) △H2= -738.5 kJ/mol ③P4(白磷,s)===4P(红磷,s) ΔH= ? 。 ③ = ① - 4×②
k〔J/2m〕oCl O(g)+1/2O2(g)=CO2(g) △H2=-283.0 kJ/mol
高考化学 第一章 第三节 化学反应热的计算课件 4

2.运用盖斯定律解题的常用方法 (1)虚拟路径法[以 C(s)+O2(g) CO2(g)为例]
图 1-3-1 则有:ΔH1=ΔH2+ห้องสมุดไป่ตู้H3。
(2)加合法:即将化学方程式像代数方程式那样进行代数运 算,反应热也以同样方式进行运算。
例如:求 P4(s,白磷)→P(s,红磷)的热化学方程式。
已知:①P4(s,白磷)+5O2(g) P4O10(s) ΔH1
CO(g)+12O2(g)
CO2(g) ΔH2=-282.57 kJ/mol
则反应 C(s)+O2(g) CO2 (g)的反应热为( D )。
A.+172.22 kJ/mol
B.-172.22 kJ/mol
C.+392.93 kJ/mol
D.-392.93 kJ/mol
解析:由盖斯定律可知ΔH=ΔH1+ΔH2=-110.35 kJ/mol +(-282.57 kJ/mol)=-392.93 kJ/mol,故 D 项正确。
若 C(s)+12O2(g)
CO(g)的反应热为 ΔH,则 ΔH=ΔH1-ΔH2
=__-__3_9_3_.5__k_J_/m__o_l-__(_-__2_8_3_._0_k_J_/m__o_l)__=-__1_1_0_._5_k_J_/m__o_l。
盖斯定律 1.盖斯定律的应用及意义 根据盖斯定律,可以将热化学方程式相加减,间接把一些 生产和科研中难以测定的反应热计算出来;还可以比较物质的 稳定性,通常来讲,放热反应的生成物比反应物稳定,吸热反 应的反应物比生成物稳定。
盖斯定律及其应用 【例 1】(2010 年广东理综)在 298 K、100 kPa 时,已知: 2H2O(g) O2(g)+2H2(g) ΔH1 Cl2(g)+H2(g) 2HCl(g) ΔH2 2Cl2(g)+2H2O(g) 4HCl(g)+O2(g) ΔH3 则ΔH3 与ΔH1 和ΔH2 间的关系正确的是( )。
《反应热的计算》 讲义

《反应热的计算》讲义一、反应热的基本概念在化学反应中,不仅存在着物质的变化,还伴随着能量的变化。
当反应物和生成物的温度相等时,化学反应过程中吸收或放出的热量,称为反应热。
反应热通常用符号 Q 表示,单位是焦耳(J)或千焦(kJ)。
如果反应过程中放出热量,Q 为负值;如果反应过程中吸收热量,Q 为正值。
二、反应热的测定实验是研究反应热的重要方法之一。
通过实验可以直接测量一定量的物质在反应前后的温度变化,进而计算出反应热。
例如,在一个绝热容器中,将一定量的反应物混合,利用温度计测量反应前后体系的温度变化(ΔT)。
同时,知道参与反应的物质的质量和比热容(c),就可以根据公式 Q =mcΔT 计算出反应放出或吸收的热量。
但要注意的是,实验测定反应热往往存在一定的误差,比如热量的散失、测量仪器的精度等。
三、热化学方程式为了更准确地表示化学反应与能量变化的关系,我们引入了热化学方程式。
热化学方程式不仅表明了化学反应中的物质变化,还注明了反应的焓变(ΔH)。
例如:H₂(g) + 1/2O₂(g) = H₂O(l) ΔH =-2858 kJ/mol在这个热化学方程式中,“”表示反应放热,2858 kJ/mol 表示每摩尔反应放出的热量。
书写热化学方程式时,需要注意以下几点:1、要注明物质的状态,因为物质的状态不同,反应热也不同。
2、要注明反应的温度和压强(如果是在常温常压下进行的反应,可以不注明)。
3、焓变的数值要与方程式的计量系数相对应。
四、盖斯定律盖斯定律是反应热计算中的重要定律。
其内容为:不管化学反应是一步完成还是分几步完成,其反应热是相同的。
换句话说,化学反应的焓变只与反应体系的始态和终态有关,而与反应的途径无关。
例如,我们可以通过已知的热化学方程式,利用盖斯定律来计算一些难以直接测定的反应的反应热。
假设已知反应 A:C(s) + O₂(g) = CO₂(g) ΔH₁=-3935 kJ/mol 反应 B:CO(g) + 1/2O₂(g) = CO₂(g) ΔH₂=-2830 kJ/mol现在要计算反应 C:C(s) + 1/2O₂(g) = CO(g) 的反应热。
反应热的计算方法

反应热的计算方法反应热是指化学反应在一定条件下放出或吸收的热量。
它是化学反应热力学研究的重要内容之一,对于化学反应的研究和应用具有重要的意义。
在实际应用中,我们需要通过实验来测定反应热,然后根据测定结果来计算反应热。
本文将介绍反应热的计算方法。
一、反应热的测定方法反应热的测定方法有多种,其中最常用的方法是燃烧法和溶解法。
1. 燃烧法燃烧法是指将反应物燃烧,使其与氧气反应,从而放出热量,然后通过测量燃烧前后的温度差来计算反应热。
燃烧法适用于燃烧烃类化合物、烷基醇、烷基酸等有机物,以及金属和非金属元素等。
2. 溶解法溶解法是指将反应物溶解在水或其他溶剂中,使其与溶剂发生反应,从而放出或吸收热量,然后通过测量溶解前后的温度差来计算反应热。
溶解法适用于溶解盐类、酸碱等化合物。
反应热的计算方法有两种,即摩尔反应热计算法和质量反应热计算法。
1. 摩尔反应热计算法摩尔反应热是指单位摩尔反应物在一定条件下放出或吸收的热量。
摩尔反应热的计算公式为:ΔH = Q / n其中,ΔH为摩尔反应热,单位为kJ/mol;Q为反应放出或吸收的热量,单位为kJ;n为反应物的摩尔数。
例如,对于以下反应:2H2(g) + O2(g) → 2H2O(l) + 572kJ反应放出的热量为572kJ,反应物的摩尔数为2mol,因此该反应的摩尔反应热为:ΔH = 572kJ / 2mol = 286kJ/mol2. 质量反应热计算法质量反应热是指单位质量反应物在一定条件下放出或吸收的热量。
质量反应热的计算公式为:q = Q / m其中,q为质量反应热,单位为kJ/g;Q为反应放出或吸收的热量,单位为kJ;m为反应物的质量,单位为g。
例如,对于以下反应:2H2(g) + O2(g) → 2H2O(l) + 572kJ反应放出的热量为572kJ,反应物的质量为4g,因此该反应的质量反应热为:q = 572kJ / 4g = 143kJ/g三、反应热的应用反应热的应用非常广泛,例如:1. 工业生产反应热可以用于工业生产中的热力学计算,例如计算化学反应的热效率、热平衡等。
第一章 第二节 第1课时 反应热的计算(学生版)
第二节反应热的计算第1课时反应热的计算[核心素养发展目标] 1.变化观念与平衡思想:能认识化学变化的本质是有新物质生成并伴随能量的转化,并遵循盖斯定律。
2.证据推理与模型认知:构建盖斯定律模型,理解盖斯定律的本质,形成运用模型进行相关判断或计算。
一、盖斯定律1.盖斯定律(1)实验证明,一个化学反应,不管是一步完成的还是分几步完成的,其反应热是。
换句话说,在一定条件下,化学反应的反应热只与反应体系的和有关,而与反应的无关。
例:如图表示始态到终态的反应热。
(2)盖斯定律的意义应用盖斯定律可以间接计算出反应很慢的或不容易直接发生的或者伴有副反应的反应的反应热。
2.应用盖斯定律计算ΔH的方法(1)“虚拟路径”法若反应物A变为生成物D,可以有两个途径:①由A直接变成D,反应热为ΔH;②由A经过B变成C,再由C变成D,每步的反应热分别为ΔH1、ΔH2、ΔH3。
如图所示:则:ΔH=。
(2)加合法依据目标方程式中各物质的位置和化学计量数,调整已知方程式,最终加合成目标方程式,ΔH同时作出相应的调整和运算。
L,则下列说法不正确的是(填字例(1)假定反应体系的始态为S,终态为L,它们之间变化为SΔH1ΔH2母)。
A.若ΔH1<0,则ΔH2>0 B.若ΔH1<0,则ΔH2<0C.ΔH1和ΔH2的绝对值相等D.ΔH1+ΔH2=0(2)已知:①2H 2O(g)===O 2(g)+2H 2(g) ΔH 1 ②Cl 2(g)+H 2(g)===2HCl(g) ΔH 2③2Cl 2(g)+2H 2O(g)===4HCl(g)+O 2(g) ΔH 3 则ΔH 3等于 (用ΔH 1、ΔH 2表示)。
1.已知:P 4(s ,白磷)+5O 2(g)===P 4O 10(s) ΔH 1 P(s ,红磷)+54O 2(g)===14P 4O 10(s) ΔH 2设计成如下转化路径,请填空:则ΔH = 。
2.根据下列热化学方程式:①C(s)+O 2(g)===CO 2(g) ΔH 1=-393.5 kJ·mol -1 ②H 2(g)+12O 2(g)===H 2O(l) ΔH 2=-285.8 kJ·mol -1③CH 3COOH(l)+2O 2(g)===2CO 2(g)+2H 2O(l) ΔH 3=-870.3 kJ·mol -1 计算出2C(s)+2H 2(g)+O 2(g)===CH 3COOH(l)的反应热(写出计算过程)。
化学反应热的计算ppt课件
环形玻璃搅拌棒、实验大概步骤、操作注意之处及原因
2
第二节 燃烧热
一、燃烧热
.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳
定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。
※注意以下几点: ①研究条件:101 kPa
②反应程度:
完全燃烧,产物是稳定的氧化物。
3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时
的中和热小于57.3kJ/mol。
3
第三节 化学反应热的计算
一、盖斯定律(主要是应用)
1.内容:化学反应的反应热只与反应的始态(各反应物) 和终态(各生成物)有关,而与具体反应进行的途径无关, 如果一个反应可以分几步进行,则各分步反应的反应热之和 与该反应一步完成的反应热是相同的。 2、运用:根据盖斯定律,可以设计反应求出另一个反应的 反应热。
11
化学平衡图像
速率——时间(判断改变条件、平衡移动) 转化率——温度——压强(定一变二)
转化率——T/P——时间(先拐先平数值大)
二、化学平衡常数
表达式、K值只与温度有关、转化率的计算 计算题(列出起始、转化、平衡浓度)
12
第四节 化学反应进行的方向
金属腐蚀快慢的规律:在同一电解质溶液中,金属腐蚀的 快慢规律如下: 电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀 >有防腐措施的腐蚀
防腐措施由好到坏的顺序如下: 外接电源的阴极保护法>牺牲负极的正极保护法>有一般 防腐条件的腐蚀>无防腐条件的腐蚀
13
反应方向判断依据
• 在温度、压强一定的条件下,化学反应的 判读依据为:
• ΔH-TΔS〈 0 反应能自发进行
• ΔH-TΔS = 0 反应达到平衡状态
第一章专题讲座反应热的四种计算方法
第一章 化学反应与能量
解析:设 H2、C3H8 的物质的量分别为 x、y,则有
x+y=1 mol
x×285.8
kJ·mol-1+y×2
220
kJ·mol-1=769.4
kJ
解得:xy≈≈00..2755
mol mol
在相同 p、T 时,V(H2)∶V(C3H8)=n(H2)∶n(C3H8)=3∶1。
第一章 化学反应与能量
2.已知以下两个热化学方程式: H2(g)+12O2(g)===H2O(l) ΔH=-285.8 kJ·mol-1 C3H8(g)+5O2(g)===3CO2(g)+4H2O(l)
ΔH=-2 220 kJ·mol-1 试回答下列问题: 现有 H2 和 C3H8 的混合气体共 1 mol,完全燃烧并生成液态水 时放出的热量为 769.4 kJ,则在混合气体中 H2 和 C3H8 的体 积比为__3_∶__1___。
第一章 化学反应与能量
①第一步反应是__放__热____(填“放热”或“吸热”)反应,判断 依据是_Δ_H__<_0_(_或__反__应__物__的__总__能__量__大__于__生__成__物___的__总__能__量__)_。
②1
mol
NH
+
4
(aq)
全
部
氧
化
成
NO
-
3
(aq)
的
热
化
学
方
程
式
(2) 已 知 红 磷 比 白 磷 稳 定 , 则 反 应 P4( 白 磷 , s) +
5O2(g)===2P2O5(s) ΔH1 ; 4P( 红 磷 , s) + 5O2(g)===2P2O5(s)
第一章 第三节化学反应热的计算
第三节 化学反应热的计算[知 识 梳 理]一、盖斯定律 1.内容不论化学反应是一步完成还是分几步完成,其反应热是相同的(填“相同”或“不同”)。
2.特点(1)反应的热效应只与始态、终态有关,与途径无关。
(2)反应热总值一定,如下图表示始态到终态的反应热。
则ΔH =ΔH 1+ΔH 2=ΔH 3+ΔH 4+ΔH 5。
(3)能量守恒:能量既不会增加,也不会减少,只会从一种形式转化为另一种形式。
【自主思考】已知H 2(g)+12O 2(g)===H 2O(g) ΔH =-241.8 kJ/mol ,而H 2O(g)―→H 2O(l) ΔH =-44.0 kJ/mol ,请问若1 mol H 2和12 mol O 2反应生成液态水,放出的热量是多少? 提示 Q =(241.8 kJ/mol +44 kJ/mol)×1 mol =285.8 kJ 。
二、反应热的计算 1.主要依据热化学方程式、键能、盖斯定律及燃烧热等数据。
2.主要方法(1)依据热化学方程式:反应热的绝对值与各物质的物质的量成正比,依据热化学方程式中的ΔH求反应热,如(2)依据盖斯定律:根据盖斯定律,可以将两个或两个以上的热化学方程式包括其ΔH相加或相减,得到一个新的热化学方程式,同时反应热也作相应的改变。
(3)依据反应物断键吸收热量Q吸与生成物成键放出热量Q放进行计算:ΔH=Q吸-Q。
放(4)依据反应物的总能量E反应物和生成物的总能量E生成物进行计算:ΔH=E生成物-E。
反应物(5)依据物质的燃烧热ΔH计算:Q放=n可燃物×|ΔH|。
(6)依据比热公式计算:Q=cmΔt。
[效果自测]1.判断正误,正确的画“√”,错误的画“×”。
(1)同温同压下,氢气和氯气分别在光照条件下和点燃的条件下发生反应时的ΔH 不同。
()(2)对于放热反应,放出的热量越多,ΔH就越大。
()(3)2H2(g)+O2(g)===2H2O(l)ΔH=-571.6 kJ·mol-1,ΔH=-571.6 kJ·mol-1的含义是指每摩尔该反应所放出的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ΔH=-2 220 kJ·mol-1 试回答下列问题: 现有 H2 和 C3H8 的混合气体共 1 mol,完全燃烧并生成液态水 时放出的热量为 769.4 kJ,则在混合气体中 H2 和 C3H8 的体 积比为__3_∶__1___。
是
__N_H__+ 4_(a_q__)+__2_O__2(_g_)_=_=_=_N_O__- 3_(_a_q_)+__2_H__+_(_a_q_)_+__H_2_O_(_l_) ______
_________________________________Δ_H__=__-__3_4_6_k_J_·_m_o_l_-_1_。
第一章 化学反应与能量
专题讲座 反应热的四种计算方法
第一章 化学反应与能量
1.利用热化学方程式进行相关量的求解,可先写出热化学方 程式,再根据热化学方程式所体现的物质与物质间、物质与 反应热间的关系直接或间接求算物质的质量或反应热。其注 意的事项有: (1)反应热数值与各物质的化学计量数成正比,因此热化学方 程式中各物质的化学计量数改变时,其反应热数值需同时做 相同倍数的改变。 (2)热化学方程式中的反应热是指反应按所给形式完全进行时 的反应热。 (3)正、逆反应的反应热数值相等,符号相反。
第一章 化学反应与能量
4.根据键能计算:反应热(焓变)等于反应物中的键能总和减 去生成物中的键能总和,ΔH= E 反- E 生(E 表示键能),如 反应 3H2(g)+N2(g) 2NH3(g) ΔH=3E(H-H)+E(NN)- 6E(N-H)。
第一章 化学反应与能量
1.(1)在微生物作用的条件下,NH经过两步反应被氧化成 NO。两步反应的能量变化示意图如下:
第一章 化学反应与能量
本部分内容讲解结束
按ESC键退出全屏播放
第一章 化学反应与能量
①第一步反应是__放__热____(填“放热”或“吸热”)反应,判断 依据是_Δ_H__<_0_(_或__反__应__物__的__总__能__量__大__于__生__成__物___的__总__能__量__)_。
②1
mol
NH
+
4
(aq)
全
部
氧
化
成
NO
-
3
(aq)
的
热
化
学
方
程
式
(2) 已 知 红 磷 比 白 磷 稳 定 , 则 反 应 P4( 白 磷 , s) +
5O2(g)===2P2O5(s) ΔH1 ; 4P( 红 磷 , s) + 5O2(g)===2P2O5(s)
ΔH2;ΔH1 和 ΔH2 的关系是 ΔH1___<_____ΔH2(填“>”、“<”或
“=”)。
第一章 化学反应与能量
第一章 化学反应与能量
(4)已知 H2(g)+Br2(l)===2HBr(g) ΔH=-72 kJ·mol-1,蒸发 1 mol Br2(l)需要吸收的能量为 30 kJ,其他相关数据如下表:
物质
H2(g) Br2(g) HBr(g)
1 mol分子中的化学键断裂时 需要吸收的能量(kJ)
436
200
第一章 化学反应与能量
2.根据盖斯定律,可以将两个或两个以上的热化学方程式包 括其ΔH相加或相减,得到新的热化学方程式,可进行反应热 的有关计算。其注意的事项有: (1)热化学方程式同乘以某一个数时,反应热数值也必须乘上 该数。 (2)热化学方程式相加减时,同种物质之间可相加减,反应热 也随之相加减。 (3)将一个热化学方程式颠倒时,ΔH的“+”、“-”号必须 随之改变。 3.根据燃烧热计算:可燃物完全燃烧产生的热量=可燃物的 物质的量×燃烧热。
第一章 化学反应与能量
(3)(①+②×2)×12得:CO(g)+Na2O2(s)===Na2CO3(s) ΔH= -509 kJ·mol-1,转移 2 mol e-。 (4)由题中热化学方程式及蒸发 1 mol Br2(l)吸热 30 kJ 可得: H2(g)+Br2(g)===2HBr(g) ΔH=-102 kJ·mol-1,则 436+200 -2a=-102,a=369。
第一章 化学反应与能量
解析:设 H2、C3H8 的物质的量分别为 x、y,则有
x+y=1 mol
x×285.8
kJ·mol-1+y×2
220
kJ·mol-1=769.4
kJ
解得:xy≈≈00..2755
mol mol
在相同 p、T 时,V(H2)∶V(C3H8)=n(H2)∶n(C3H8)=3∶1。
a
则表中a=___3_6_9___。
第一章 化学反应与能量
解析:(1)由图可知:NH+4 (aq)+32O2(g)===NO-2 (aq)+2H+(aq) +H2O(l) ΔH=-273 kJ·mol-1,NO-2 (aq)+12O2(g)===NO-3 (aq) ΔH=-73 kJ·mol-1,2 个热化学方程式相加可得第②问 答案。 (2)将 2 个热化学方程式相减得 P4(白磷,s)===4P(红磷,s) ΔH =ΔH1-ΔH2,由红磷比白磷稳定可知白磷的能量高,白磷转 化为红磷是放热反应,ΔH<0,所以 ΔH1<ΔH2。
(3)已知: 2CO(g)+O2(g)===2CO2(g) ΔH=-566 kJ·mol-1 ① Na2O2(s)+CO2(g)===Na2CO3(s)+12O2(g) ΔH=-226 kJ·mol-1 ② 则 CO(g)与 Na2O2(s)反应放出 509 kJ 热量时,电子转移数目 为___2_m__o_l(_或__1_._2_0_4_×__1_0_2_4或__2_N__A_)_________。 (4)已知 H2(g)+Br2(l)===2HBr(g) ΔH=-72 kJ·mol-1,蒸发 1 mol Br2(l)需要吸收的能量为 30 kJ,其他相关数据如下表: