2016-2017年江苏省南京市江宁区九年级上学期期中数学试卷及答案

合集下载

2016年南京市中考数学试卷及答案

2016年南京市中考数学试卷及答案

市2016年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A .0.7⨯105 B. 7⨯104C. 7⨯105D. 70⨯1032.数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 A .-3+5 B. -3-5 C. |-3+5| D. |-3-5| 3.下列计算中,结果是6a 的是 A .B.23a a C . 122a a ÷D.4、下列长度的三条线段能组成钝角三角形的是A .3,4,4 B. 3,4,5C. 3,4,6D. 3,4,75.己知正六边形的边长为2,则它的切圆的半径为A .C. 26、若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为A . B.C. 或6D. 或二.填空题7. ____________.8. 若式子x 在实数围有意义,则x 的取值围是________. 9. 分解因式的结果是_______.10.3________22.(填“>””<”或“=”号) 11.方程132x x=-的解是_______. 12.设12,x x 是方程的两个根,且12x x +-12x x =1,则12x x +=______,=_______.13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则_____°.14. 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中正确结论的序号是_______.15. 如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD.EF是△ODB的中位线,且EF=2,则AC的长为________.16.如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为_______.三.解答题17. 解不等式组并写出它的整数解.18. 计算19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的乘积,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D. 随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数。

2023-2024学年江苏省南京市江宁区九年级(上)期中数学试卷+答案解析

2023-2024学年江苏省南京市江宁区九年级(上)期中数学试卷+答案解析

2023-2024学年江苏省南京市江宁区九年级(上)期中数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列选项中,是一元二次方程的是()A. B. C. D.2.用配方法解方程,下列变形正确的是()A. B. C. D.3.若关于x的方程有实数根,则常数a的值不可能为()A. B.0 C.1 D.24.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A.平均分B.众数C.中位数D.极差5.如图,是的外接圆,若AB的长等于半径,,则的度数为()A. B. C. D.6.如图,在扇形OAB中,点D在OA上,点C在上,若,则的半径为()A.4B.C.D.二、填空题:本题共10小题,每小题3分,共30分。

7.一组数据,3,,5的极差是____.8.方程的根为_____.9.设是方程的两个根,且,则______.10.某测试中心分别从操作系统、硬件规格、屏幕尺寸、电池寿命四个项目对新投入市场的一款智能手机进行测评,各项得分如下表:测试项目操作系统硬件规格屏幕尺寸电池寿命项目成绩/分7863最后将四项成绩按3:3:2:2的比例计算综合成绩,则该手机的综合成绩为____分.11.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯长一尺,问径如何?”.问题翻译为:如图,现有圆形木材埋在墙壁里,不知木材大小,将它锯下来测得深度CD为1寸,锯长AB为10寸,则圆材的半径为____寸.12.某公司今年销售一种产品,一月份获得利润20万元,由于产品畅销,利润逐月增加,三月份的利润比二月份利润增加万元.设该产品平均每月利润的增长率为x,则可列方程_____.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,则该圆锥的母线长l为__14.如图,在中,弦、相交于点E,若,则的度数为___15.如图摆放的两个正六边形的顶点A,B,C,D在图上.若,则该圆的半径为____.16.如图,在四边形ABCD中,,,,,E为AD的中点,连接BE,CE,则面积的最小值为____.三、计算题:本大题共1小题,共6分。

【精品】2017年江苏省南京市六合区九年级上学期期中数学试卷带解析答案

【精品】2017年江苏省南京市六合区九年级上学期期中数学试卷带解析答案

2016-2017学年江苏省南京市六合区九年级(上)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2﹣2x﹣1 C.x2+=0 D.(x﹣1)(x+2)=12.(2分)用配方法解方程x2﹣6x+7=0时,原方程应变形为()A.(x﹣6)2=2 B.(x﹣6)2=16 C.(x﹣3)2=2 D.(x﹣3)2=163.(2分)关于x的方程x2+kx+k2=0(k≠0)的根的情况描述正确的是()A.k 为任何实数,方程都没有实数根B.k 为任何实数,方程都有两个不相等的实数根C.k 为任何实数,方程都有两个相等的实数根D.根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种4.(2分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.95.(2分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M6.(2分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.60°B.50°C.40°D.25°二、填空题(共10小题,每小题2分,满分20分)7.(2分)方程x2+x=0的根是.8.(2分)一元二次方程x2+3x+1=0的两个根的和为,两个根的积为.9.(2分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于.10.(2分)如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=56°,则∠BDC的度数是.11.(2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD 的度数为()A.35°B.45°C.55°D.75°12.(2分)如图,⊙O经过五边形OABCD的四个顶点,若∠AOD=150°,∠A=65°,∠D=60°,则的度数为°.13.(2分)已知正六边形的外接圆半径为2,则它的内切圆半径为.14.(2分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).15.(2分)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是.16.(2分)如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为.(结果保留π)三、解答题(共10小题,满分88分)17.(15分)解方程:(1)x2+4x+4=0(2)(x﹣1)2=9x2(3)x(x+1)=3(x+1)18.(6分)一个直角三角形的两条直角边的和是14cm,面积为24cm2,求两条直角边的长.19.(7分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)对于任意的实数m,判断方程的根的情况,并说明理由;(2)若方程的一个根为1,求出m的值及方程的另一个根.20.(7分)如图,AB和CD分别是⊙O上的两条弦,圆心O到它们的距离分别是OM和ON,如果AB=CD,求证:OM=ON.21.(8分)如图,已知四边形ABCD内接于圆O,∠A=105°,BD=CD.(1)求∠DBC的度数;(2)若⊙O的半径为3,求的长.22.(8分)如图,在⊙O中,AB是⊙O的弦,BC经过圆心,∠B=25°,∠C=40°.(1)求证:AC与⊙O相切;(2)若BC=a,AC=b,求⊙O的半径(用含a、b的代数式表示).23.(8分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计为多高?24.(10分)用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?能围成一个面积为101cm2的矩形吗?如能,说明围法;如不能,说明理由.25.(10分)如图,⊙O是△ABC的外接圆,直线l与⊙O相切于点E,且l∥BC.(1)求证:AE平分∠BAC;(2)作∠ABC的平分线BF交AE于点F,求证:BE=EF.26.(9分)在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅.问题情境:(1)如图1,在△ABC中,∠A=30°,BC=2,则△ABC的外接圆的半径为.操作实践:(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)迁移应用:(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m).过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为.2016-2017学年江苏省南京市六合区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2﹣2x﹣1 C.x2+=0 D.(x﹣1)(x+2)=1【解答】解:A、a=0时是一元一次方程,故A错误;B、是多项式,故B错误;C、是分式方程,故C错误;D、是一元二次方程,故D正确;故选:D.2.(2分)用配方法解方程x2﹣6x+7=0时,原方程应变形为()A.(x﹣6)2=2 B.(x﹣6)2=16 C.(x﹣3)2=2 D.(x﹣3)2=16【解答】解:x2﹣6x+7=0,x2﹣6x=﹣7,x2﹣6x+9=﹣7+9,即(x﹣3)2=2,故选:C.3.(2分)关于x的方程x2+kx+k2=0(k≠0)的根的情况描述正确的是()A.k 为任何实数,方程都没有实数根B.k 为任何实数,方程都有两个不相等的实数根C.k 为任何实数,方程都有两个相等的实数根D.根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4k2=﹣3k2,∵k≠0,∴△<0,∴k为任何实数,方程都没有实数根,即只有选项A正确;选项B、C、D都错误,故选:A.4.(2分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.5.(2分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M【解答】解:连结BC,作AB和BC的垂直平分线,它们相交于Q点.故选:B.6.(2分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.60°B.50°C.40°D.25°【解答】解:连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵OC=OA,∠A=25°,∴∠OCA=∠A=25°,∴∠DOC=∠A+∠OCA=25°+25°=50°,∴∠D=90°﹣50°=40°,故选:C.二、填空题(共10小题,每小题2分,满分20分)7.(2分)方程x2+x=0的根是x1=0,x2=﹣1.【解答】解:∵x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=﹣1.故答案为x1=0,x2=﹣1.8.(2分)一元二次方程x2+3x+1=0的两个根的和为﹣3,两个根的积为1.【解答】解:设方程的两根为m、n,则有:m+n=﹣3,mn=1.故答案为:﹣3;1.9.(2分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于24πcm2.【解答】解:它的侧面展开图的面积=•2π•4•6=24π(cm2).故答案为24πcm2.10.(2分)如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=56°,则∠BDC的度数是28°.【解答】解:连接OC,∵=,∠AOB=56°,∴∠BOC=∠AOB=56°,∴∠BDC=∠BOC=×56°=28°.故答案为:28°.11.(2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD 的度数为()A.35°B.45°C.55°D.75°【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选:A.12.(2分)如图,⊙O经过五边形OABCD的四个顶点,若∠AOD=150°,∠A=65°,∠D=60°,则的度数为40°.【解答】解:连接OB、OC,如图,∵OA=OB,OC=OD,∴∠OBA=∠A=65°,∠OCD=∠D=60°,∴∠AOB=180°﹣2×65°=50°,∠COD=180°﹣2×60°=60°,∴∠BOC=∠AOD﹣∠AOB﹣∠COD=150°﹣50°﹣60°=40°,∴的度数为40°.故答案为40.13.(2分)已知正六边形的外接圆半径为2,则它的内切圆半径为.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OG=OA•sin60°=2×=,∴半径为2的正六边形的内切圆的半径为.故答案为:.14.(2分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为80度(写出一个即可).【解答】解:连接OB、OD,∵四边形ABCD内接于⊙O,∠DAB=130°,∴∠DCB=180°﹣130°=50°,由圆周角定理得,∠DOB=2∠DCB=100°,∴∠DCB≤∠BPD≤∠DOB,即50°≤∠BPD≤100°,∴∠BPD可能为80°,故答案为:80.15.(2分)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是2.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在Rt△AOM中,OM===2.故答案为:2.16.(2分)如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为.(结果保留π)【解答】解:如图:S===6π;扇形ACA′S扇形BCB′===π;则S阴影=6π﹣=.三、解答题(共10小题,满分88分)17.(15分)解方程:(1)x2+4x+4=0(2)(x﹣1)2=9x2(3)x(x+1)=3(x+1)【解答】解:(1)x2+4x+4=0.(x+2)2=0,解得:x1=x2=﹣2;(2)(x﹣1)2=9x2,x﹣1=±3x,4x﹣1=0或﹣2x﹣1=0,解得:x1=,x2=﹣.(3)x (x+1)=3(x+1),(x﹣3)(x+1)=0,x﹣3=0或x+1=0,解得:x1=3,x2=﹣1.18.(6分)一个直角三角形的两条直角边的和是14cm,面积为24cm2,求两条直角边的长.【解答】解:设其中一条直角边长为xcm,则另一直角边长为(14﹣x)cm,×x(14﹣x)=24,解得x1=6,x2=8,当x1=6时,14﹣x=8;当x2=8时,14﹣x=6;答:两条直角边的长分别为6,8.19.(7分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)对于任意的实数m,判断方程的根的情况,并说明理由;(2)若方程的一个根为1,求出m的值及方程的另一个根.【解答】解:(1)∵在方程x2﹣mx﹣2=0中,△=(﹣m)2﹣4×1×(﹣2)=m2+8≥8,∴不论m为任意实数,原方程总有两个不相等的实数根.(2)将x=1代入原方程,得:1﹣m﹣2=0,解得:m=﹣1,∴原方程为x2+x﹣2=(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.答:m的值为﹣1,方程的另一个根为﹣2.20.(7分)如图,AB和CD分别是⊙O上的两条弦,圆心O到它们的距离分别是OM和ON,如果AB=CD,求证:OM=ON.【解答】证明:如图,连接OC、OA,则OC=OA,∵圆心O到它们的距离分别是OM和ON,∴∠ONC=∠OMA=90°,CD=2CN,AB=2AM,∵AB=CD,∴CN=AM,在Rt△ONC和Rt△OMA中,,∴Rt△ONC≌Rt△OMA(HL),∴OM=ON.21.(8分)如图,已知四边形ABCD内接于圆O,∠A=105°,BD=CD.(1)求∠DBC的度数;(2)若⊙O的半径为3,求的长.【解答】解:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;(2)连接BO、CO,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.22.(8分)如图,在⊙O中,AB是⊙O的弦,BC经过圆心,∠B=25°,∠C=40°.(1)求证:AC与⊙O相切;(2)若BC=a,AC=b,求⊙O的半径(用含a、b的代数式表示).【解答】(1)证明:如图所示:连结AO,∵AO=BO,∠B=25°,∴∠AOC=2∠B=50°,∵∠C=40°,∴∠AOC+∠C=90°,∴∠OAC=90°,即OA⊥AC,∵OA是半径,∴AC与⊙O相切;(2)解:设半径为r,则OC=a﹣r,在Rt△OAC中,r2+b2=(a﹣r)2,解得:r=.23.(8分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计为多高?【解答】解:设雕像的下部高为x m,则题意得:=,整理得:x2+2x﹣4=0,解得x1=﹣1,x2=﹣﹣1(舍去),答:雕像的下部高为﹣1 m.24.(10分)用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?能围成一个面积为101cm2的矩形吗?如能,说明围法;如不能,说明理由.【解答】解:设围成面积为75cm2的长方形的长为xcm,则宽为(40÷2﹣x)cm,依题意,得x(40÷2﹣x)=75整理,得x2﹣20x+75=0解方程,得x1=5,x2=15∵当长>宽∴x=15即这个长方形的长为15cm,则它的宽为5cm.同理,设围成面积为101cm2的长方形的长为ycm,依题意,得y(40÷2﹣y)=101整理,得y2﹣20y+101=0∵△=b2﹣4ac=(﹣20)2﹣4×1×101=﹣4<0∴此方程无解,故不能围成面积为101cm2的长方形.答:长为15cm,宽为5cm时,所围成的长方形的面积为75cm2;用一条长40cm 的绳子不能围成面积为101cm2的长方形.25.(10分)如图,⊙O是△ABC的外接圆,直线l与⊙O相切于点E,且l∥BC.(1)求证:AE平分∠BAC;(2)作∠ABC的平分线BF交AE于点F,求证:BE=EF.【解答】证明:(1)连接OE.∵直线l与⊙O相切于E,∴OE⊥l.∵l∥BC,∴OE⊥BC,∴=,∴∠BAE=∠CAE.∴AE平分∠BAC;(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵=,∴∠BAE=∠CBE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB,∴BE=EF.26.(9分)在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅.问题情境:(1)如图1,在△ABC中,∠A=30°,BC=2,则△ABC的外接圆的半径为2.操作实践:(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)迁移应用:(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m).过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为2≤m<1+.【解答】解:(1)如图1中,连接OB、OC.∵∠BOC=2∠A,∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=2,故答案为:2;(2)如图2中,作BC的垂直平分线,交BE于点O;以O为圆心,OB为半径作圆,交垂直平分线于点P,则点P为所求.(3)如图3中,在x轴上方作△OKC,使得△OKC是以OC为斜边的等腰直角三角形,作KE⊥AB于E.∵OC=2,∴OK=KC=,当EK=KC=时,以K为圆心,KC为半径的圆与AB相切,此时m=BC=1+,在AB上只有一个点P满足∠OPC=∠OKC=45°,当BK=时,在AB上恰好有两个点P满足∠OPC=∠OKC=45°,此时m=BC=2,综上所述,满足条件的m的值的范围为2≤m<1+.故答案为2≤m<1+.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

初三上册数学期中试题及答案

初三上册数学期中试题及答案

【导语】学业的精深造诣来源于勤奋好学,只有好学者,才能在⽆边的知识海洋⾥猎取到真智才学,只有真正勤奋的⼈才能克服困难,持之以恒,不断开拓知识的领域,武装⾃⼰的头脑,成为⾃⼰的主宰,让我们勤奋学习,持之以恒,成就⾃⼰的⼈⽣,让⾃⼰的青春写满⽆悔!搜集的《初三上册数学期中试题及答案》,希望对同学们有帮助。

【篇⼀】 ⼀、选择题(每⼩题3分,共30分) 1.已知x=2是⼀元⼆次⽅程(m-2)x2+4x-m2=0的⼀个根,则m的值为(C) A.2B.0或2C.0或4D.0 2.(2016•葫芦岛)下列⼀元⼆次⽅程中有两个相等实数根的是(D) A.2x2-6x+1=0B.3x2-x-5=0C.x2+x=0D.x2-4x+4=0 3.(2017•⽟林模拟)关于x的⼀元⼆次⽅程x2-4x-m2=0有两个实数根x1,x2,则m2(1x1+1x2)=(D) A.m44B.-m44C.4D.-4 4.若抛物线y=(x-m)2+(m+1)的顶点在第⼀象限,则m的取值范围为(B) A.m>2B.m>0C.m>-1D.-1<m<0 5.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路⾯积占总⾯积的18,则路宽x 应满⾜的⽅程是(B) A.(40-x)(70-x)=350 B.(40-2x)(70-3x)=2450 C.(40-2x)(70-3x)=350 D.(40-x)(70-x)=2450 6.把⼆次函数y=12x2+3x+52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是(C) A.(-5,1)B.(1,-5)C.(-1,1)D.(-1,3) 7.已知点A(-3,y1),B(2,y2),C(3,y3)在抛物线y=2x2-4x+c上,则y1,y2,y3的⼤⼩关系是(B) A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y1 8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是(C) A.抛物线开⼝向上B.抛物线的对称轴是直线x=1 C.当x=1时,y的值为-4D.抛物线与x轴的交点为(-1,0),(3,0) 9.在同⼀坐标系内,⼀次函数y=ax+b与⼆次函数y=ax2+8x+b的图象可能是(C) 10.(2016•达州)如图,已知⼆次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac-b2<8a;④13 A.①③B.①③④C.②④⑤D.①③④⑤ ⼆、填空题(每⼩题3分,共24分) 11.⽅程2x2-1=3x的⼆次项系数是__2__,⼀次项系数是__-3__,常数项是__-1__. 12.把⼆次函数y=x2-12x化为形如y=a(x-h)2+k的形式为__y=(x-6)2-36__. 13.已知抛物线y=ax2+bx+c过(-1,1)和(5,1)两点,那么该抛物线的对称轴是直线__x=2__. 14.已知整数k<5,若△ABC的边长均满⾜关于x的⽅程x2-3kx+8=0,则△ABC的周长是__6或12或10__. 15.与抛物线y=x2-4x+3关于y轴对称的抛物线的解析式为__y=x2+4x+3__. 16.已知实数m,n满⾜3m2+6m-5=0,3n2+6n-5=0,且m≠n,则nm+mn=__-225__. 17.如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为__l=-2m2+8m+12__. 18.如图,在⽔平地⾯点A处有⼀球发射器向空中发射球,球飞⾏路线是⼀条抛物线, 在地⾯上落点为B,有⼈在直线AB上点C(靠点B⼀侧)竖直向上摆放若⼲个⽆盖的圆柱形桶.试图让球落⼊桶内,已知AB =4⽶,AC=3⽶,球飞⾏⾼度OM=5⽶,圆柱形桶的直径为0.5⽶,⾼为0.3⽶(球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶⾄少__8__个时,球可以落⼊桶内. 三、解答题(共66分) 19.(8分)⽤适当的⽅法解⽅程: (1)x2-4x+2=0;(2)(2x-1)2=x(3x+2)-7. 解:x1=2+2,x2=2-2解:x1=2,x2=4 20.(6分)如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点. (1)求A,B两点的坐标; (2)若y1>y2,请直接写出x的取值范围. 解:(1)A(-1,0),B(0,2) (2)-1<x<0 21.(7分)已知关于x的⼀元⼆次⽅程x2-(2k+1)x+k2+k=0. (1)求证:⽅程有两个不相等的实数根; (2)若△ABC的两边AB,AC的长是这个⽅程的两个实数根,第三边BC的长为5,当△ABC是等腰三⾓形时,求k的值. 解:(1)∵Δ=(2k+1)2-4(k2+k)=1>0,∴⽅程有两个不相等的实数根 (2)⼀元⼆次⽅程x2-(2k+1)x+k2+k=0的解为x1=k,x2=k+1,当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三⾓形,则k=5;当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三⾓形,则k+1=5,解得k=4,所以k的值为5或4 22.(7分)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3). (1)求抛物线的解析式和顶点坐标; (2)请你写出⼀种平移的⽅法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式. 解:(1)抛物线解析式为y=-x2+4x-3,即y=-(x-2)2+1,∴顶点坐标(2,1)(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上 23.(8分)(2016•济宁)某地2014年为做好“精准扶贫”,投⼊资⾦1280万元⽤于异地安置,并规划投⼊资⾦逐年增加,2016年在2014年的基础上增加投⼊资⾦1600万元. (1)从2014年到2016年,该地投⼊异地安置资⾦的年平均增长率为多少? (2)在2016年异地安置的具体实施中,该地计划投⼊资⾦不低于500万元⽤于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地⾄少有多少户享受到优先搬迁租房奖励? 解:(1)设该地投⼊异地安置资⾦的年平均增长率为x,根据题意得1280(1+x)2=1280+1600,解得x1=0.5,x2=-2.5(舍去),则所求年平均增长率为50% (2)设今年该地有a户享受到优先搬迁租房奖励,根据题意得1000×8×400+(a-1000)×5×400≥5000000,解得a≥1900,则今年该地⾄少有1900户享受到优先搬迁租房奖励 24.(8分)如图,已知⼆次函数经过点B(3,0),C(0,3),D(4,-5). (1)求抛物线的解析式; (2)求△ABC的⾯积; (3)若P是抛物线上⼀点,且S△ABP=12S△ABC,这样的点P有⼏个?请直接写出它们的坐标. 解:(1)y=-x2+2x+3 (2)由题意得-x2+2x+3=0,解得x1=-1,x2=3,∴A(-1,0),∵AB=4,OC=3,∴S△ABC=12×4×3=6(3)点P有4个,坐标为(2+102,32),(2-102,32),(2+222,-32),(2-222,-32) 25.(10分)⼤学毕业⽣⼩王响应国家“⾃主创业”的号召,利⽤银⾏⼩额⽆息贷款开办了⼀家饰品店,该店购进⼀种今年新上市的饰品进⾏销售,饰品的进价为每件40元,售价为每件60元,每⽉可卖出300件.市场调查反映:调整价格时,售价每涨1元每⽉要少卖10件;售价每下降1元每⽉要多卖20件,为了获得更⼤的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每⽉饰品销量为y(件),⽉利润为w(元). (1)直接写出y与x之间的函数解析式; (2)如何确定销售价格才能使⽉利润?求⽉利润; (3)为了使每⽉利润不少于6000元应如何控制销售价格? 解:(1)由题意可得y=300-10x(0≤x≤30)300-20x(-20≤x<0) (2)由题意可得w=(20+x)(300-10x)(0≤x≤30),(20+x)(300-20x)(-20≤x<0),即w=-10(x-5)2+6250(0≤x≤30),-20(x+52)2+6125(-20≤x<0),由题意可知x应取整数,故-20≤x<0中,当x=-2或x=-3时,w=6120;0≤x≤30中,当x=5时,w=6250,故当销售价格为65元时,利润,利润为6250元(3)由题意w≥6000,令w =6000,即6000=-10(x-5)2+6250,6000=-20(x+52)2+6125,解得x1=10,x2=0,x3=-5,∴-5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每⽉利润不少于6000元 26.(12分)如图,在平⾯直⾓坐标系xOy中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的⼀部分C1与经过点A,D,B的抛物线的⼀部分C2组合成⼀条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,-32),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点. (1)求A,B两点的坐标; (2)“蛋线”在第四象限上是否存在⼀点P,使得△PBC的⾯积?若存在,求出△PBC⾯积的值;若不存在,请说明理由; (3)当△BDM为直⾓三⾓形时,求m的值. 解:(1)y=mx2-2mx-3m=m(x-3)(x+1),∵m≠0,∴当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0) (2)C1:y=12x2-x-32.如图,过点P作PQ∥y轴,交BC于Q,由B,C的坐标可得直线BC的解析式为y=12x-32.设P(x,12x2-x-32),则Q(x,12x-32),PQ=12x-32-(12x2-x-32)=-12x2+32x,S△PBC=12PQ•OB=12×(-12x2+32x)×3=-34(x-32)2+2716, 当x=32时,S△PBC有值,S=2716,此时12×(32)2-32-32=-158,∴P(32,-158) (3)y=mx2-2mx-3m=m(x-1)2-4m,顶点M的坐标为(1,-4m).当x=0时,y=-3m,∴D(0,-3m).⼜B(3,0),∴DM2=(0-1)2+(-3m+4m)2=m2+1,MB2=(3-1)2+(0+4m)2=16m2+4,BD2=(3-0)2+(0+3m)2=9m2+9.当△BDM为直⾓三⾓形时,有DM2+BD2=MB2或DM2+MB2=BD2,①DM2+BD2=MB2时,有m2+1+9m2+9=16m2+4,解得m=-1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时,有m2+1+16m2+4=9m2+9,解得m=-22(m =22舍去).综上,m=-1或-22时,△BDM为直⾓三⾓形 【篇⼆】 ⼀、选择题(每题3分,共18分) 1.⼀元⼆次⽅程x(x﹣1)=0的根是() A.1B.0C.0或1D.0或﹣1 2.已知⊙O的半径为10,圆⼼O到直线l的距离为6,则反映直线l与⊙O的位置关系的图形是() A.B.C.D. 3.某款⼿机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x,则依题意列出的⽅程为() A.1185x2=580B.1185(1﹣x)2=580C.1185(1﹣x2)=580D.580(1+x)2=1185 4.如图,⊙O为△ABC的外接圆,∠A=30°,BC=6,则⊙O的半径为() A.6B.9C.10D.12 5.边长分别为5、5、6的三⾓形的内切圆的半径为() A.B.C.D. 6.在Rt△ABC中,∠ACB=90°,CD是△ABC的⾼,E是AC的中点,ED、CB的延长线相交于点F,则图中相似三⾓形有()A.3对B.4对C.5对D.6对 ⼆、填空题:(每题3分,共30分) 7.已知,则=. 8.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于. 9.已知是⼀元⼆次⽅程x2﹣2x﹣1=0的两根,则=. 10.如图,⼀个正n边形纸⽚被撕掉了⼀部分,已知它的中⼼⾓是40°,那么n=. 11.已知75°的圆⼼⾓所对的弧长为5,则这条弧所在圆的半径为. 12.已知点C是AB的黄⾦分割点(AC<BC),AB=4,则BC的长为.(保留根号) 13.圆锥的底⾯的半径为3,母线长为5,则圆锥的侧⾯积为. 14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F =. 15.如图,P为⊙O外⼀点,PA与⊙O相切于点A,PO交⊙O于点B,BC⊥OP交PA于点C,BC=3,PB=4,则⊙O的半径为. 16.已知Rt△ABC中,∠ACB=90°,中线BD、CE交于G点,∠BGC=90°,CG=2,则BC=. 三、解答题:(共102分) 17.(本题满分10分) 解⽅程:(1)(2) 18.(本题满分8分) 已知,关于x的⽅程x2﹣2mx+m2﹣1=0. (1)不解⽅程,判断此⽅程根的情况; (2)若x=2是该⽅程的⼀个根,求代数式的值. 19.(本题满分8分) 如图所⽰的格中,每个⼩⽅格都是边长为1的正⽅形,B点的坐标为(﹣1,﹣1). (1)把格点△ABC绕点B按逆时针⽅向旋转90°后得到△A1BC1,请画出△A1BC1,并写出点A1的坐标; (2)以点A为位似中⼼放⼤△ABC,得到△AB2C2,使放⼤前后的⾯积之⽐为1:4请在下⾯格内画出△AB2C2. 20.(本题满分10分) 如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°. (1)求BD的长; (2)求图中阴影部分的⾯积. 21.(本题满分10分) 如图,在⊙O的内接四边形ABCD中,AB=AD,E在弧AD上⼀点. (1)若∠C=110°,求∠E的度数; (2)若∠E=∠C,求证:△ABD为等边三⾓形. 22.(本题满分10分) 某商场将进货价为每只30元的台灯以每只40元售出,平均每⽉能售出600只.调查表明,这种台灯的售价每上涨1元,其⽉销售量将减少10只.当这种台灯的售价定为多少元时,每个⽉的利润恰为10000元? 23.(本题满分10分) 李华晚上在两根相距40m的路灯杆下来回散步,已知李华⾝⾼AB=1.6m,灯柱CD=EF=8m. (1)若李华距灯柱CD的距离DB=16m,求他的影⼦BQ的长. (2)若李华的影⼦PB=5m,求李华距灯柱CD的距离. 24.(本题满分10分) 已知∠ADE=∠C,AG平分∠BAC交DE于F,交BC于G. (1)△ADF∽△ACG;(2)连接DG,若DG∥AC,,AD=6,求CE的长度. 25.(本题满分12分) 如图,正⽅形ABCD中,对⾓线AC、BD交于点P,O为线段BP上⼀点(不与B、P重合),以O为圆⼼OA为半径作⊙O交直线AD、AB于E、F. (1)求证:点C在⊙O上; (2)求证:DE=BF; (3)若AB=,DE=,求BO的长度. 26.(本题满分14分) 已知,在平⾯直⾓坐标系中,A点坐标为(0,m)(),B点坐标为(2,0),以A点为圆⼼OA为半径作⊙A,将△AOB绕B 点顺时针旋转⾓(0°<<360°)⾄△A/O/B处. (1)如图1,,=90°,求O/点的坐标及AB扫过的⾯积; (2)如图2,当旋转到A、O/、A/三点在同⼀直线上时,求证:O/B是⊙O的切线; (3)如图3,,在旋转过程中,当直线BO/与⊙A相交时,直接写出的范围. 2016—2017学年度第⼀学期期中考试 九年级数学试题参考答案 ⼀、选择题(每题3分,共18分)1.C2.B3.B4.A5.B6.B ⼆、填空题:(每题3分,共30分) 7.8.30°9.210.911.1212.13.14.80°15.616. 三、解答题:(共102分) 17.(1).......(5分)(2).......(10分) 23.(1),所以⽅程两个不相等的实数根;.......(4分) (2)3.......(8分) 24.(1)如图.......(2分),(-4,3).......(4分)(2)如图.......(8分)(每图2分) 25.(1);.......(5分)(2).......(10分) 21.(1)125°.......(5分)(2)因为四边形ABCD是⊙O的内接四边形,所以∠BAD+∠C=180°,因为四边形ABDE是⊙O的内接四边形,所以∠ABD+∠E=180°,⼜因为∠E=∠C,所以∠BAD=∠ABD,所以AD=BD,.......(8分) 因为AB=AD,所以AD=BD=AD,所以△ABD为等边三⾓形........(10分) 22.设这种台灯的售价定为x元时,每个⽉的利润恰为10000元. ................................(5分) 解之得................................(9分) 答:这种台灯的售价定为50或80元时,每个⽉的利润恰为10000元......(10分) 23.(1)4m.................(5分)(2)20m.................(10分) 24.(1)因为AG平分∠BAC,所以∠DAF=∠CAG,⼜因为∠ADE=∠C,所以△ADF∽△ACG;...............(5分) (2)求到AC=15........(7分)求到AE=4.........(9分)CE=11.......(10分) 25.(1)连接OC,因为正⽅形ABCD,所以BD垂直平分AC,所以OC=OA,所以点C在⊙O上;...............(4分) (2)连接CE、CF,因为四边形AFCE是⊙O的内接四边形,所以∠BFC+∠AEC=180°,因为∠DEC+∠AEC=180°,所以∠BFC=∠DEC,因为CD=BC,∠ADC=∠FBC=90°, 所以△FBC≌△EDC,所以DE=BF;...............(8分) (3)3...............(12分) 26.(1)(2,2)...............(2分)...............(4分) (2)证AO/=AO即可;...............(10分) (3)0°<<90°或180°<<270°...............(14分) 【篇三】 ⼀、选择题(每⼩题3分,共30分) 1.下列⽅程中,⼀定是关于x的⼀元⼆次⽅程的是()A.ax2+bx+c=0B.2(x-x2)-1=0C.x2-y-2=0D.mx2-3x=x2+2 【答案】B 【解析】试题解析:A、不是⼀元⼆次⽅程,故此选项错误; B、是⼀元⼆次⽅程,故此选项正确; C、不是⼀元⼆次⽅程,故此选项错误; D、不是⼀元⼆次⽅程,故此选项错误. 故选B. 2.剪纸艺术是中华⽂化的瑰宝,下列剪纸图案中,既不是中⼼对称图形也不是轴对称图形的是() A.B.C.D. 【答案】B 3.⼀元⼆次⽅程x2﹣2x﹣3=0的⼆次项系数、⼀次项系数、常数项分别是()A.1,2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣2,﹣3 【答案】D 【解析】⼀元⼆次⽅程的⼀般式为ax2+bx+c=0,⼆次项系数a,⼀次项系数b,常数项c,由题:x2﹣2x﹣3=0知:a=1,b=−2,c=−3, 4.在平⾯直⾓坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为(). A.点A和点BB.点B和点CC.点C和点DD.点D和点A 【答案】D. 【解析】 试题分析:根据关于原点对称,横纵坐标都互为相反数即可得出答案.A(2,﹣1)与D(﹣2,1)关于原点对称. 故选:D. 考点:关于原点对称的点的坐标. 5.将抛物线y=2x2平移后得到抛物线y=2x2+1,则平移⽅式为()A.向左平移1个单位B.向右平移1个单位C.向上平移1个单位D.向下平移1个单位 【答案】C 点睛: 本题考查了⼆次函数图象平移的相关知识.⼆次函数图象向上或向下平移时,应将平移量以“上加下减”的⽅式作为常数项添加到原解析式中;⼆次函数图象向左或向右平移时,应先以“左加右减”的⽅式将⾃变量x和平移量组成⼀个代数式,再⽤该代数式替换原解析式中的⾃变量x.要特别注意理解和记忆⼆次函数图象左右平移时其解析式的相关变化. 6.在数1、2、3和4中,是⽅程+x﹣12=0的根的为(). A.1B.2C.3D.4 【答案】C. 【解析】 试题分析:解得⽅程后即可确定⽅程的根.⽅程左边因式分解得:(x+4)(x﹣3)=0,得到:x+4=0或x﹣3=0,解得:x=﹣4或x=3, 故选:C. 考点:⼀元⼆次⽅程的解. 7.若关于的⼀元⼆次⽅程的两个根为,,则这个⽅程是() A.B.C.D. 【答案】B. 考点:根与系数的关系. 8.某经济开发区今年⼀⽉份⼯业产值达到80亿元,第⼀季度总产值为275亿元,问⼆、三⽉平均每⽉的增长率是多少?设平均每⽉的增长率为x,根据题意所列⽅程是()A.80(1+x)2=275B.80+80(1+x)+80(1+x)2=275C.80(1+x)3=275D.80(1+x)+80(1+x)2=275 【答案】B 【解析】∵某经济开发区今年⼀⽉份⼯业产值达到80亿元,平均每⽉的增长率为x, ∴⼆⽉份的⼯业产值为80×(1+x)亿元, ∴三⽉份的⼯业产值为80×(1+x)×(1+x)=80×(1+x)2亿元, ∴可列⽅程为:80+80(1+x)+80(1+x)2=275, 【点睛】求平均变化率的⽅法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第⼀季度总产值的等量关系是解决本题的关键. 9.如图,在Rt△ABC中,∠BAC=90°,AB=AC,将△ABP绕点A逆时针旋转后,能与△重合,如果AP=3,那么的长等于(). A.B.C.D. 【答案】A 【解析】 试题分析:根据旋转图形的的性质可得:△APP′为等腰直⾓三⾓形,则PP′=3 考点:旋转图形 10.⼆次函数()的图像如图所⽰,下列结论:①;②当时,y随x的增⼤⽽减⼩;③;④;⑤,其中正确的个数是()A.1B.2C.3D.4 【答案】B 第II卷(⾮选择题) 评卷⼈得分 ⼆、填空题(每⼩题3分,共30分) 11.在平⾯直⾓坐标系内,若点A(a,﹣3)与点B(2,b)关于原点对称,则a+b的值为. 【答案】1 【解析】 试题分析:根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,进⽽可得a+b的值. 解:∵点A(a,﹣3)与点B(2,b)关于原点对称, ∴a=﹣2,b=3, ∴a+b=1. 故答案为:1. 考点:关于原点对称的点的坐标. 12.已知关于x的⽅程x2+mx﹣6=0的⼀个根为2,则这个⽅程的另⼀个根是. 【答案】﹣3 考点:根与系数的关系. 13.如图所⽰的风车图案可以看做是由⼀个直⾓三⾓形通过五次旋转得到的,那么每次需要旋转的最⼩⾓度为. 【答案】72° 【解析】 根据所给出的图,5个⾓正好构成⼀个周⾓,且5个⾓都相等,求出即可. 解:设每次旋转⾓度x°, 则5x=360, 解得x=72, 故每次旋转⾓度是72°. 故答案为:72°. 14.⼀元⼆次⽅程(x+1)(3x-2)=8的⼀般形式是. 【答案】3x2+x-10=0 【解析】 试题分析:⾸先进⾏去括号可得:+x-2=8,则转化成⼀般式可得:+x-10=0. 考点:⽅程的⼀般式 15.⽤配⽅法解⽅程x2﹣4x=5时,⽅程的两边同时加上,使得⽅程左边配成⼀个完全平⽅式. 【答案】4 考点:解⼀元⼆次⽅程-配⽅法 16.如图,在直⾓△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到,则∠=. 【答案】70°. 【解析】 试题分析:直接根据图形旋转的性质进⾏解答即可.∵将△OAB绕点O逆时针旋转100°得到,∠AOB=30°,∴△OAB≌,∴∠=∠AOB=30°.∴∠=∠﹣∠AOB=70°. 故答案为:70. 考点:旋转的性质. 17.已知抛物线的顶点为(1,-1),且过点(2,1),求这个函数的表达式为. 【答案】 【解析】 试题分析:由题意可得,设抛物线的解析式为,将点代⼊即可求出的值,化成⼀般式即可. 考点:利⽤顶点式求抛物线解析式. 18.关于x的⼀元⼆次⽅程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是. 【答案】k≥ 【解析】 试题分析:由于已知⽅程有实数根,则△≥0,由此可以建⽴关于k的不等式,解不等式就可以求出k的取值范围. 解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥. 考点:根的判别式. 19.如图所⽰,在⼀块正⽅形空地上,修建⼀个正⽅形休闲⼴场,其余部分(即阴影部分)铺设草坪,已知休闲⼴场的边长是正⽅形空地边长的⼀半,草坪的⾯积为147m2,则休闲⼴场的边长是m. 【答案】7. 【解析】 试题解析:设正⽅形休闲⼴场的边长为xm,则正⽅形空地的边长为2xm,根据题意列⽅程得, (2x)2-x2=147, 解得x1=7,x2=-7(不合题意,舍去); 故休闲⼴场的边长是7m. 考点:⼀元⼆次⽅程的应⽤. 20.⼆次函数y=ax2+bx+c(a≠0)的部分对应值如下表: 则⼆次函数y=ax2+bx+c在x=2时,y=. 【答案】-8 【解析】试题解析:∵x=-3时,y=7;x=5时,y=7, ∴⼆次函数图象的对称轴为直线x=1, ∴x=0和x=2时的函数值相等, ∴x=2时,y=-8. 考点:⼆次函数图象上点的坐标特征. 评卷⼈得分 三、解答题(共60分) 21.(本题6分)解⽅程: (1)(⽤配⽅法解) (2)3x(x-1)=2-2x(⽤适当的⽅法解) 【答案】(1)(2) 考点:解⼀元⼆次⽅程 22.(本题6分)如图所⽰的正⽅形格中,△ABC的顶点均在格点上,请在所给直⾓坐标系中按要求画图和解答下列问题: (1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1. (2)作△ABC关于坐标原点成中⼼对称的△A2B2C2. (3)求B1的坐标C2的坐标. 【答案】(1)(2)图解见解析(3)(﹣1,2),(4,1) 【解析】 试题分析:(1)根据关于x轴对称的点的坐标特征和点平移后的坐标规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1; (2)根据关于原点对称的点的坐标,写出点A、B、C的对应点A2、B2、C2的坐标,然后描点得到△A2B2C2; (3)由(1)可得B1的坐标,由(2)得C2的坐标. 解:(1)如图,△A1B1C1为所作; (2)如图,△A2B2C2为所作; (3)B1(﹣1,2)C2(4,1). 故答案为(﹣1,2),(4,1).。

江苏南京2016年-2017年初三数学[上册]期末试题2套和答案解析

江苏南京2016年-2017年初三数学[上册]期末试题2套和答案解析

玄武区2016届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结 论正确的是 ( ) A .a <c <b B . b <a <cC .c <b <aD . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8二、填空题(本大题共10小题,每小题2分,共20分)7.若b a =3,则b +a a= .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6cm ,母线长为8cm ,它的侧面积为 cm 2. 13.如图,根据所给信息,可知BCB ′C ′的值为 .B(第6题)14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14D C .若AB=16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.BN CQP (第16题)G(第15题)(第13题)O19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;A (第21题)22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =ACAD.(1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△AC D .ABCDF E(第23题)24.(7分)课本1.4有这样一道例题:据此,一位同学提出问题:“用这根长22 cm的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.(第25题)26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC ⊥x 轴,与二次函数y =ax (x -2)的图象交于点C . (1)求a 、b 的值(2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,请直接写出点P 的坐标.27.(9分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .(第26题)ABCDMNE FG(第27题)2015-2016学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.12 14.13 15.4- 2 16.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分 18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分 20.(本题7分)解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P (A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2= 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0.∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AE D .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CA D .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△AC D . ………………………………………………… 8分24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分 ∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考. 证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥B D .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥A C .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥B D .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥A C .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△AB D .………………………… 6分∴AO AB =OE BD ,即10-r 10=r6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上, ∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°, ∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°, ∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中, ∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分 (2)∵M 为AB 中点,∴BM =AM =a2.设BE =x ,则ME =CE =a -x . 在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a2)2+x 2=(a -x )2,∴x =38a ,∴BE =38a ,ME =58a .由(1)知,△AGM ∽△BME , ∴AG BM =GM ME =AM BE =43.∴AG =43BM =23a ,GM =43ME =56a ,∴AM 3=AG 4=MG5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE . 在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a2-x 22a.由(1)知,△AGM ∽△BME , ∴C △AGM C △BME =AM BE =2aa +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x , ∴C △AGM =C △BME ·AM BE=(a +x )·2aa +x=2a .……………………… 9分南京市江宁区2015-2016学年第一学期期末考试九年级数学(满分:120分 考试时间:120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.方程x (x+2)=0的解是( ▲ )2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是 ( ▲ )3.如图,已知AB //CD //EF ,直线AF 与直线BE 相交于点O ,下列结论错误的是 ( ▲ )4.已知A (-1,y 1 ),B (2,y 2 )是抛物线y=-(x +2)2+3上的两点,则y 1,y 2的大小关系为 ( ▲ )5.如图,小明为检验M 、N 、P 、Q 四点是否共圆,用尺规分别作了MN 、MQ 的垂直平分线交于点O ,则M 、N 、P 、Q 四点中,不一定...在以O 为圆心,OM 为半径的圆上的点是 ( ▲ )6.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是 ( ▲ )二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.一组数据-2,-1,0,3,5的极差是 ▲ .8.某车间生产的零件不合格的概率为11 000.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说, ▲ 天会查出1个次品.9.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是 ▲ .A .-2B .0,-2C .0,2D .无实数根A .2:3B .2:3C .2:5D .4:9A .AD DF =BCCEB .OA OC =OB ODC .CD EF =OC OED .OA OF =OB OEA .y 1>y 2B .y 1<y 2C .y 1≥y 2D .y 1≤y 2A .点MB .点NC .点PD .点QA .r ≥1B .1≤r ≤5C .1≤r ≤10D .1≤r ≤4(第3题)5题)(第6题)10.某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图统计表.根据表中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数为 ▲ 人.11.如图,PA 、PB 分别切⊙O 于点A 、B ,∠P =70°,则∠C 的度数为 ▲ °. 12.如图,在正八边形ABCDEFGH 中,AC 、GC 是两条对角线,则∠ACG = ▲ °.13.沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°,则该圆锥的母线长为 ▲ cm .14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 ▲ .15.如图,四边形ABCD 内接于⊙O ,若⊙O 的半径为6,∠A =130°,则扇形OBAD 的面积为 ▲ . 16.某数学兴趣小组研究二次函数y =mx 2-2mx +1(m ≠0)的图像时发现:无论m 如何变化,该图像总经过两个定点(0,1)和( ▲ , ▲ ).三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)解方程:3x (x -2)=x -2 (2)x 2-4x -1=018.(6分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE 长1.2m ,测得AB=1.6m , BC=8.4m ,楼高CD 是多少?G FE D C B A H (第 12题)(第11题)(第15题)B19.(6分)赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦)长为37.4 m ,拱高(弧的中点到弦的距离)为7.2 m ,请求出赵州桥的主桥拱半径(结果保留小数点后一位).20.(8分)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.21.(8分)一个不透明的袋子中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由转动的转盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小亮和小丽想通过游戏来决定谁代表学校参加歌咏比赛.游戏规则为:一人从袋子中摸出一个小球,另一个人转动转盘,如果从袋中所摸球上的数字与转盘上转出数字之和小于4,那么小丽去,否则小亮去.(1)请用适当的方法求小丽参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(8分)已知关于x的一元二次方程x2-x+m=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且2x1·x2=m2-3,求实数m的值.23.(7分)用40cm长的铁丝围成一个扇形,求此扇形面积的最大值.24.(8分)已知二次函数y=-x2+(m-1)x+m.(1)证明:不论m取何值,该函数图像与x轴总有公共点;(2)若该函数的图像与y轴交点于(0,3),求出顶点坐标并画出该函数;(3)在(2)的条件下,观察图像,不等式-x2+(m-1)x+m>3的解集是▲ .25.(8分)如图,要设计一本画册的封面,封面长40cm ,宽30cm ,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的15,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:5≈2.236).26.(10分)如图①,A 、B 、C 、D 四点共圆,过点C 的切线CE ∥BD ,与AB 的延长线交于点E . (1)求证:∠BAC =∠CAD ;(2)如图②,若AB 为⊙O 的直径,AD =6,AB =10,求CE 的长; (3)在(2)的条件下,连接BC ,求CBAC的值.图①图②27.(11分)如图①,已知抛物线C 1:()412-+=x a y 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1. (1)求点C的坐标及 a 的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P作y轴的平行线,交CE 于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.图②九年级数学评分细则一、选择题(本大题共6二、填空题(共10小题,每小题2分,共20分)7.7; 8.100; 9.14; 10.520; 11.55;12.45; 13.6; 14.8100(1-x )2=7800; 15.10π; 16.(2,1)三、解答题(本大题共11小题,共88分)17.(8分)(1)解:3x (x -2)-(x -2)=0……………………………………2分(3x -1)(x -2)=0……………………………………3分 ∴x 1=13,x 2=2………………………………………….…4分(2)解一:(x -2)2=5…………………………………………………………2分x =±5+2 ……………………………………………………….…3分 ∴x 1=2+5,x 2=2-5………………………………………….…4分 解二:∵a =1,b =-4,c =-1∴b 2-4ac =20>0(不写不扣分)……………………………………1分 ∴x =4± 202……………………………………………………3分∴x =2± 5∴x 1=2+5,x 2=2-5…………………………………………………………4分18.(6分)解法一:相似;∵EB ⊥AB ,DC ⊥AB ,∴EB ∥DC ,∴△AEB ∽△ADC ,-------------------------------------------------------2分 ∴EB DC =AB AC ,即1.2DC = 1.61.6+8.4,----------------------------------------------4分 ∴DC =7.5m .-------------------------------------------------------------------6分解法二:三角函数;∵EB ⊥AB ,DC ⊥AB ,∴tan ∠A = EB AB = DCAC,-------------------------------------------------------3分 即1.21.6=DC 1.6+8.4,------------------------------------------------------4分 ∴DC =7.5m .---------------------------------------------6分19.(6分)设半径为r ,圆心为O ,作OC ⊥AB ,垂足为点D ,交弧AB 于点C ,--------1分∴ AD =DB =18.7,CD 是拱高.在Rt △AOD 中,由勾股定理,得OA 2=OD 2+ AD 2,即r 2=(r -7.2)2+18.72,-----------------4解得r ≈27.9 m .因此,赵州桥的主桥拱半径约为27.9 m .20.(8分)解:(1)甲组:中位数7; 乙组:平均数7;分)(2)(答案不唯一,写出两条即可)O①因为乙组学生的平均分高于甲组学生的平均分,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.----------------------------------------------------------------------------------8分(每条2分) 21.(8分)解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,―――――――――2分 ∴P (和小于4)==,∴小丽参加比赛的概率为;―――――――――――4分(2)不公平.--------------------------------------------------------------------------------------5分∵P (小颖)=,P (小亮)=.∴P (和小于4)≠P (和大于等于4),--------------------------------------------------------6分 ∴游戏不公平;可改为:若两个数字之和小于5,则小丽去参赛;否则,小亮去参赛.――――――8分 (答案不唯一)22.(8分)解:(1)∵方程有两个不相等的实数根,∴b 2-4ac =1-4m>0,………………2分 即m<14;………………3分(2)由根与系数的关系可知:x 1·x 2=m ,………………4分∴2m =m 2-1, 整理得:m 2-2m -1=0,…………5分 解得:m =1±2.…………7分 ∵m<14∴ 所求m 的值为1- 2 ……………………………….8分23.(7分)解一:设半径为r ,弧长为l ,则40=2r + l ,---------------------------------1分∴l =40-2r ,------------------------------------------------------------------2分∴S 扇形=12lr =12r (40-2r ) -----------------------------------------------4分=-r 2+20r =-(r -10)2+100 -------------------------------------6分∴当半径为10时,扇形面积最大,最大值为100cm 2.-----------7分解二:设半径为r ,圆心角为n °,则40=2r +n πr180,---------------------------2分∴n =(40r -2)180π,------------------------------------------------------------3分∴S 扇形=n πr 2360 = 12 r 2(40r-2) -----------------------------------------------4分 =-r 2+20r =-(r -10)2+100 ---------------------------------------6分∴当半径为10时,扇形面积最大,最大值为100cm 2.---------------7分 24.(8分)解:(暂略)---------------8分 25.(8分)解一:设上、下边衬宽均为4xcm ,左、右边衬宽均为3xcm , ----------1分则(40-8x )(30-6x )=45×40×30----------------------------------------------------------4分整理,得x 2﹣10x +5=0,解之得x =5±25 ----------------------------------------6分 ∴x 1≈0.53,x 2≈9.47(舍去),--------------------------------------------------------8分答:上、下边衬宽均为2.1cm ,左、右边衬宽均为1.6cm .解二:设中央矩形的长为4xcm ,宽为3xcm , ----------------------------------------1分则4x ×3x =45×40×30-----------------------------------------------------------------------4分解得x 1=45,x 2=-45(舍去)---------------------------------------------------6分∴上、下边衬宽为20-85≈2.1,左、右边衬宽均为15-65≈1.6,--------8分 答:上、下边衬宽均为2.1cm ,左、右边衬宽均为1.6cm . 25.(10分)(1)解一:连接OC ,∵CE 为⊙O 的切线,∴OC ⊥CE .……………………………………1分 ∵BD ∥CE ,∴OC ⊥B D .………………………2分 ∴OC 平分弧B D. ………………………………3分 ∴∠BAC =∠CA D. ………………………………4分 (2)连接OC ,∵AB 为直径,∴∠ADB =90°. ∴∠ADB =∠OCE =90°∵AD =6,AB =10,∴BD=8,OC=5, ∵BD ∥CE ,∴∠ABD =∠E .∴△ABD ∽△OEC ………………………………6分∴AD OC =BD CE ,即 65= 8CE完美WORD 格式专业整理 知识分享 ∴CE = 203. ……………………………………7分 (3)∵AB 为直径,∴∠ACB =90°,∵∠ACO+∠OCB =∠OCB+∠BCE =90°,∴∠CAO=∠ACO =∠BCE∵∠E =∠E °,∴△CBE ∽△ACE ,即CB AC = CE AE…………………8分 ∵△ABD ∽△OEC ,∴ AD OC =AB OE ,∴OE = 253…………………9分 ∴CB AC = 203253+5 = 12. …………………………….…10分 27.(11分)解:(1)顶点C 为(-1,-4) ………………………………………1分∵点B (1,0)在抛物线C 1上,∴()41102-+=a ,解得,a =1 ………2分 (2)①∵C 2与C 1关于x 轴对称,∴抛物线C 2的表达式为()412++-=x y ……3分 抛物线C 3由C 2平移得到,∴抛物线C 3为()564322-+-=+--=x x x y ……4分 ∴E (5,0)设直线CE 的解析式为:y =kx +b ,则⎩⎨⎧-4=-k +b 0=5 k +b ,解得⎩⎨⎧k = 23 b =﹣103,…………………………………………………5分 ∴直线BC 的解析式为y =23x ﹣103, …………………………………………………6分 设P (x ,﹣x 2+6x ﹣5),则F (x ,23x ﹣103), ∴PF =(﹣x 2+6x ﹣5∴当x =83时,PF ②若PE =EF ,∵ PF ∴﹣x 2+6x ﹣5=-23x 解得x 1=53,x 2=5(舍去) ∴P (53,209).………………………………………………………………………11分。

【精品】2016年江苏省南京市玄武区九年级上学期期中数学试卷带解析答案

【精品】2016年江苏省南京市玄武区九年级上学期期中数学试卷带解析答案

2015-2016学年江苏省南京市玄武区九年级(上)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)用配方法解一元二次方程x2﹣6x+4=0,下列变形正确的是()A.(x﹣3)2=13 B.(x﹣3)2=5 C.(x﹣6)2=13 D.(x﹣6)2=52.(2分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数3.(2分)一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是()A.4 B.﹣4 C.1 D.﹣14.(2分)一个圆心角为36°,半径为20的扇形的面积为()A.40πB.20πC.4πD.2π5.(2分)在图①、图②中的两个等圆中,各有两条长分别为10和6的弦,两图阴影面积S的大小关系为()A.S①>S②B.S①<S②C.S①=S②D.无法确定6.(2分)如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是()A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变二、填空题(共10小题,每小题2分,满分20分)7.(2分)已知⊙O的半径为2,OP=1,则点P与⊙O的位置关系是:点P在⊙O.8.(2分)方程x2=﹣x的解是.9.(2分)某同学6次引体向上的测试成绩(单位:个)分别为:11、14、15、12、11、14,这组数据的中位数是.10.(2分)若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是.11.(2分)一个圆锥的母线长为13,底面圆的半径为5,则此圆锥的侧面积是.12.(2分)如图,AP为⊙O的切线,P为切点,OA交⊙O于点B.若∠A=40°,则∠ABP=°.13.(2分)如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH=.14.(2分)如图,EB,EC是⊙O的两条切线,与⊙O相切于B,C两点,点A,D在圆上.若∠E=46°,∠DCF=32°,则∠A的度数是°.15.(2分)某校篮球队9名主力队员中有4人调到省队学习训练,学校又从其它省市重新物色了4名球员加入主力队伍,新老队员的身体素质和技战术水平的综合能力得分如表所示:球队调整后与调整前相比,综合能力得分的方差(填“变小”、“不变”或“变大”).16.(2分)如图,圆心O恰好为正六边形ABCDEF的中心,已知AB=2,⊙O 的半径为1,现将⊙O在正六边形内部沿某一方向平移,当它与正六边形ABCDEF 的某条边相切时停止平移,设此时平移的距离为d,则d的取值范围是.三、解答题(共11小题,满分88分)17.(8分)解下列方程:(1)(x+1)2﹣9=0(2)2x2﹣5x+3=0.18.(6分)房产统计数据显示2012年某小区市场均价为15000元/m2,到2014年市场均价变为18150元/m2.若每年均价变动的增长率相同,求该小区这两年房价的年平均增长率.19.(6分)如图,四边形ABCD是平行四边形,∠C=45°,以AB为直径的⊙O经过点D,求证:CD是⊙O的切线.20.(8分)某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;(2)请你将表格补充完整:(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.21.(8分)如图,所给两圆的圆心分别为O1,O2,半径都为3,根据要求完成作图(保留作图痕迹,不写作法).(1)在图①中,仅用无刻度直尺作出圆上的两点A,B,使得=3π;(2)在图②中,仅用圆规作出圆上的两点A,B,使得=2π22.(8分)如图,在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点D、E、F,(1)求证:四边形OECF是正方形;(2)若AF=10,BE=3,求⊙O的面积.23.(8分)我们知道,求圆环的面积可以转化为求大圆与小圆面积的差.(1)如图①,直线l与小圆相切于点P,与大圆相交于点A,B.①求证:AP=BP;②若AB=10,求圆环的面积;(2)如图②,直线l与大圆、小圆分别交于点A,B,C,D,若AB=10,AC=2,则圆环的面积为.24.(8分)已知,在Rt△ABC中,∠ACB=90°,CD是AB上的中线,⊙O经过A,C,D三点,BC的延长线交⊙O于点E.(1)请利用直尺和圆规将图补充完整;(要求:标明字母,保留作图痕迹,不写作法)(2)连结AE,求证:AE=BE.25.(8分)已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+px+n=0必有实数根;(2)若x=﹣1是一元二次方程mx2+px+n=0的一个根,且Rt△ABC的周长为2+2,求Rt△ABC的面积.26.(10分)某装备企业采用订单式生产销售某种产品,保证其销售量与产量相等,图中的线段AB,线段CD分别表示该产品每万台生产成本y1(单位:万元)、销售价y2(单位:万元)与产量x(单位:台)之间的函数关系,考虑企业的经济效益,当此种产品市场预定生产为75万台时,将停止订单生产销售,求当该产品产量为多少万台时,可实现2000万元利润?27.(10分)我们已经研究了“圆周角”,并且知道圆周角的角度等于它所对弧的度数的一半,如图1,∠A=.现将研究对象“顶点在圆上的角”改为“顶点在圆外的角”.定义:顶点在圆外,并且两边都和圆有公共点的角叫做圆外角,例如:图2,∠P为圆外角.(1)如果以圆外角的两边与圆的公共点的个数作为分类标准,参照图2,请画出其它类型圆外角的示意图(要求:(请按需要选择下面的备用图,每一种类型画出一个示意图,标示相应字母,与图2同类型的不用再画)(2)如果圆外角所夹的两条弧的度数分别为α、β(α>β),例如,图2中,圆外角∠P所夹的弧的度数为α,的度数为β,试结合你所画的图形探究∠P 与α、β之间的数量关系,将发现的结论直接写在对应图形下方的横线上.(3)如图2,点P在⊙O外,PC边与⊙O相交于B,C两点,PA与⊙O相切于点A,所夹的弧,的度数分别为α、β(α>β),求证:∠P=.(4)如图3,AB为半圆直径,P为AB延长线上一个动点,过P作⊙O的切线,设切点为C,连接AC,作∠APC平分线交AC于D,猜想∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?并对猜想加以证明.2015-2016学年江苏省南京市玄武区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)用配方法解一元二次方程x2﹣6x+4=0,下列变形正确的是()A.(x﹣3)2=13 B.(x﹣3)2=5 C.(x﹣6)2=13 D.(x﹣6)2=5【解答】解:由原方程,得x2﹣6x=﹣4,配方,得x2﹣6x+9=5,即(x﹣3)2=5.故选:B.2.(2分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:D.3.(2分)一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是()A.4 B.﹣4 C.1 D.﹣1【解答】解:∵一元二次方程x2﹣4x+1=0的两根是x1,x2,∴x1•x2=1,故选:C.4.(2分)一个圆心角为36°,半径为20的扇形的面积为()A.40πB.20πC.4πD.2π【解答】解:由题意得,n=36°,r=20,故S===40π.扇形故选:A.5.(2分)在图①、图②中的两个等圆中,各有两条长分别为10和6的弦,两图阴影面积S的大小关系为()A.S①>S②B.S①<S②C.S①=S②D.无法确定【解答】解:∵图①、图②中的两个等圆中,各有两条长分别为10和6的弦,∴两条长分别为10和6的弦对应所对的圆心角相等,半径相等,∴对应的扇形面积相等,两条半径和弦构成的三角形面积相等,则对应空白弓形的面积相等,∴两图阴影面积S相等.故选:C.6.(2分)如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是()A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变【解答】解:不发生变化.连接OP,∵OP=OC,∴∠P=∠OCP,∵∠OCP=∠DCP,∴∠P=∠DCP,∴CD∥OP,∵CD⊥AB,∴OP⊥AB,∴=,∴点P为的中点不变.故选:D.二、填空题(共10小题,每小题2分,满分20分)7.(2分)已知⊙O的半径为2,OP=1,则点P与⊙O的位置关系是:点P在⊙O内.【解答】解:由题意,得d=1,r=2.d<r,点P在⊙O内,故答案为:内.8.(2分)方程x2=﹣x的解是0或﹣1.【解答】解:原方程变形为:x2+x=0x(x+1)=0x=0或x=﹣1.9.(2分)某同学6次引体向上的测试成绩(单位:个)分别为:11、14、15、12、11、14,这组数据的中位数是13.【解答】解:这组数据按照从小到大的顺序排列为:11、11、12、14、14、15,则中位数为:=13.故答案为:13.10.(2分)若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是﹣3.【解答】解:设方程另一个根为t,根据题意得1+t=﹣2,解得t=﹣3,所以方程另一个根为﹣3.故答案为:﹣3.11.(2分)一个圆锥的母线长为13,底面圆的半径为5,则此圆锥的侧面积是65π.【解答】解:此圆锥的侧面积=×13×2π×5=65π.故答案为65π.12.(2分)如图,AP为⊙O的切线,P为切点,OA交⊙O于点B.若∠A=40°,则∠ABP=115°.【解答】解:连结OP,如图,∵AP为⊙O的切线,∴OP⊥AP,∴∠OPA=90°,∴∠O=90°﹣∠A=90°﹣40°=50°,∵OB=OP,∴∠OBP=∠OPB,∴∠OBP=(180°﹣∠O)=×(180°﹣50°)=65°,∴∠ABP=180°﹣∠OBP=180°﹣65°=115°.故答案为115.13.(2分)如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH=8.【解答】解:取AB的中点O,连接OD,设OD=r,则OH=r﹣2,在Rt△ODH中,∵OH2+DH2=OD2,即(r﹣2)2+42=r2,解得r=5,∴AH=AB﹣BH=10﹣2=8.故答案为:8.14.(2分)如图,EB,EC是⊙O的两条切线,与⊙O相切于B,C两点,点A,D在圆上.若∠E=46°,∠DCF=32°,则∠A的度数是99°.【解答】解:∵EB ,EC 是⊙O 的两条切线, ∴EB=EC , ∴∠ECB=∠EBC ,∴∠ECB=(180°﹣∠E )=×(180°﹣46°)=67°, ∴∠BCD=180°﹣∠ECB ﹣∠DCF=180°﹣67°﹣32°=81°, ∵四边形ABCD 为⊙O 的内接四边形, ∴∠A +∠BCD=180°, ∴∠A=180°﹣81°=99°. 故答案为99.15.(2分)某校篮球队9名主力队员中有4人调到省队学习训练,学校又从其它省市重新物色了4名球员加入主力队伍,新老队员的身体素质和技战术水平的综合能力得分如表所示:球队调整后与调整前相比,综合能力得分的方差 变小 (填“变小”、“不变”或“变大”).【解答】解:原来球队的平均数=(72×2+77×2+78+80+86×2+92)=80, 现在球队的平均数=(72×2+77×2+78+93+84×2+83)=80,则原来球队的方差S 2=([2×(72﹣80)2+2×(77﹣80)2+(78﹣80)2+(80﹣80)2+2×(86﹣80)2+(92﹣80)2]=40,现在球队的方差S2=([2×(72﹣80)2+2×(77﹣80)2+(78﹣80)2+(93﹣80)2+2×(84﹣80)2+(83﹣80)2]=40.所以球队调整后与调整前相比,综合能力得分的方差变小.故答案为:变小.16.(2分)如图,圆心O恰好为正六边形ABCDEF的中心,已知AB=2,⊙O 的半径为1,现将⊙O在正六边形内部沿某一方向平移,当它与正六边形ABCDEF 的某条边相切时停止平移,设此时平移的距离为d,则d的取值范围是2≤d≤.【解答】解:连接OB、OE,如图所示:根据题意得:OB=OE=AB=2,当圆O运动到圆P处时,运动距离最短,由正六边形的性质得:PO=OM﹣PM=OB•sin60°﹣1=3﹣1=2,;当圆O运动到与DE、EF相切时,运动距离最长,由正六边形的性质得:OQ=OE﹣QE=2﹣=2﹣=;∴2≤d≤.故答案为:2≤d≤.三、解答题(共11小题,满分88分)17.(8分)解下列方程:(1)(x+1)2﹣9=0(2)2x2﹣5x+3=0.【解答】解:(1)移项得,(x+1)2=9,开方得,x+1=±3,解得x1=2,x2=﹣4.(2)由原方程,得(2x﹣3)(x﹣1)=0,所以2x﹣3=0,或x﹣1=0,解得x1=,x2=1.18.(6分)房产统计数据显示2012年某小区市场均价为15000元/m2,到2014年市场均价变为18150元/m2.若每年均价变动的增长率相同,求该小区这两年房价的年平均增长率.【解答】解:设这两年房价的年平均增长率为x、依题意得:15000(1+x)2=18150(1+x)2=1.211+x=±1.1x1=0.1,x2=﹣2.1(舍去)答:这两年房价的年平均增长率10%.19.(6分)如图,四边形ABCD是平行四边形,∠C=45°,以AB为直径的⊙O经过点D,求证:CD是⊙O的切线.【解答】证明:连结OD,如图,∵四边形ABCD是平行四边形,∴∠A=∠C=45°,AB∥CD,∵OA=OD,∴∠ODA=∠A=45°,∴∠AOD=90°,∴OD⊥AB,∵CD∥AB,∴OD⊥CD,∴CD是⊙O的切线.20.(8分)某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为17;(2)请你将表格补充完整:(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.【解答】解:(1)此次竞赛二班成绩在C级以上(包括C级)的人数=(5+9+2+4)×(35%+5%+45%)=17(人);(2)1班平均分:(5×100+9×90+2×80+4×70)÷20=87.5,2班A等级人数:20×45%=9(人),B等级人数:20×5%=1(人),C等级人数:20×35%=7(人),D等级人数:20×15%=3(人),把数据从大到小排列位置处于中间的是90分和80分,故中位数是:(90+80)÷2=85,(3)①从平均数的角度看两班成绩(2)班好一点;从中位数的角度看一班比二班的成绩好,所以一班成绩好.21.(8分)如图,所给两圆的圆心分别为O1,O2,半径都为3,根据要求完成作图(保留作图痕迹,不写作法).(1)在图①中,仅用无刻度直尺作出圆上的两点A,B,使得=3π;(2)在图②中,仅用圆规作出圆上的两点A,B,使得=2π【解答】解:(1)如图①,为所作;(2)如图②,为所作;22.(8分)如图,在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点D、E、F,(1)求证:四边形OECF是正方形;(2)若AF=10,BE=3,求⊙O的面积.【解答】解:(1)∵点E、F是圆的切点,∴OE⊥BC,OF⊥AC.∴∠OFC=∠OEC=∠C=90°.∴四边形OECF是矩形.∵OE=OF,∴四边形OECF是正方形.(2)∵⊙O是△ABC的内切圆,∴AF=AD,BE=DB.∴AB=AD+BD=10+3=13.设圆O的半径为r,则AC=10+r,BC=3+r.在Rt△ABC中,由勾股定理得;AC2+BC2=AB2,即(10+r)2+(r+3)2=132.解得:r=2或r=﹣15(舍去).∴⊙O的面积=4π.23.(8分)我们知道,求圆环的面积可以转化为求大圆与小圆面积的差.(1)如图①,直线l与小圆相切于点P,与大圆相交于点A,B.①求证:AP=BP;②若AB=10,求圆环的面积;(2)如图②,直线l与大圆、小圆分别交于点A,B,C,D,若AB=10,AC=2,则圆环的面积为16π.【解答】(1)①证明:连结OP,如图①,∵直线l与小圆相切于点P,∴OP⊥AB,∴AP=BP;②解:连结OA,如图①,AP=BP=AB=5,在Rt△OPA中,OA2﹣OP2=AP2=25,∴圆环的面积=S大圆﹣S小圆=π•OA2﹣π•OP2=π(OA2﹣OP2)=25π;(2)解:作OE⊥CD于E,如图②,∵AB=10,AC=2,∴AE=AB=5,∴CE=AE﹣AC=5﹣2=3,∵OA2=OE2+AE2,OC2=OE2+CE2,∴圆环的面积=S大圆﹣S小圆=π•OA2﹣π•OC2=π(AE2﹣CE2)=(25﹣9)π=16π.故答案为16π.24.(8分)已知,在Rt△ABC中,∠ACB=90°,CD是AB上的中线,⊙O经过A,C,D三点,BC的延长线交⊙O于点E.(1)请利用直尺和圆规将图补充完整;(要求:标明字母,保留作图痕迹,不写作法)(2)连结AE,求证:AE=BE.【解答】(1)解:如图,⊙O为所作;(2)证明:连结ED,如图,∵∠ACE=90°,∴AE为直径,∴∠ADE=90°,∴ED⊥AB,∵CD是斜边AB上的中线,∴AD=BD,即DE垂直平分AB,∴AE=BE.25.(8分)已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+px+n=0必有实数根;(2)若x=﹣1是一元二次方程mx2+px+n=0的一个根,且Rt△ABC的周长为2+2,求Rt△ABC的面积.【解答】(1)证明:∵m、n、p分别是Rt△ABC的三边长,且m≤n<p,∴p2=m2+n2,∴b2﹣4ac=2p2﹣4mn=2(m2+n2)﹣4mn=2(m﹣n)2≥0,∴关于x的一元二次方程mx2+px+n=0必有实数根;(2)解:∵x=﹣1是一元二次方程mx2+px+n=0的一个根,∴m﹣p+n=0①,∵Rt△ABC的周长为2+2,∴m+n+p=2+2②,由①、②得:m+n=2,p=2,∴(m+n)2=8,∴m2+2mn+n2=8,又∵m2+n2=p2=4,∴2mn=4,∴mn=1,∴Rt△ABC的面积是1.26.(10分)某装备企业采用订单式生产销售某种产品,保证其销售量与产量相等,图中的线段AB,线段CD分别表示该产品每万台生产成本y1(单位:万元)、销售价y2(单位:万元)与产量x(单位:台)之间的函数关系,考虑企业的经济效益,当此种产品市场预定生产为75万台时,将停止订单生产销售,求当该产品产量为多少万台时,可实现2000万元利润?【解答】解:设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(75,45),∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤75);设线段CD所表示y2与x之间的函数关系式为y=k2x+b2,∵y=k2x+b2的图象过点(0,120)与(75,75),∴这个一次函数的表达式为;y=﹣0.6x +120(0≤x ≤75); 设该产品产量x 万台时,可实现2000万元利润,由题意得 x (﹣0.6x +120)﹣x (﹣0.2x +60)=2000 解得:x 1=50,x 2=100(不合题意,舍去),答:当该产品产量为50万台时,可实现2000万元利润.27.(10分)我们已经研究了“圆周角”,并且知道圆周角的角度等于它所对弧的度数的一半,如图1,∠A=.现将研究对象“顶点在圆上的角”改为“顶点在圆外的角”.定义:顶点在圆外,并且两边都和圆有公共点的角叫做圆外角,例如:图2,∠P 为圆外角.(1)如果以圆外角的两边与圆的公共点的个数作为分类标准,参照图2,请画出其它类型圆外角的示意图(要求:(请按需要选择下面的备用图,每一种类型画出一个示意图,标示相应字母,与图2同类型的不用再画)(2)如果圆外角所夹的两条弧的度数分别为α、β(α>β),例如,图2中,圆外角∠P所夹的弧的度数为α,的度数为β,试结合你所画的图形探究∠P与α、β之间的数量关系,将发现的结论直接写在对应图形下方的横线上. (3)如图2,点P 在⊙O 外,PC 边与⊙O 相交于B ,C 两点,PA 与⊙O 相切于点A ,所夹的弧,的度数分别为α、β(α>β),求证:∠P=.(4)如图3,AB 为半圆直径,P 为AB 延长线上一个动点,过P 作⊙O 的切线,设切点为C,连接AC,作∠APC平分线交AC于D,猜想∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?并对猜想加以证明.【解答】解:(1)如图1,∠P=,,如图2,∠P=,,如图3,∠P=,(2)故答案为:,,;(3)证明:连接OB、OA、OC、AB,如图4,∵PA切⊙O于A,∴∠CAD=∠ABC=∠AOC=的度数=,∵∠ACP=∠AOB=的度数=,∴∠P=∠CAD﹣∠ACP=,故答案为:;(4)∠CDP的度数不随点P在AB延长线上的位置的变化而变化,如图5,证明:由(3)可知:∠APC=的度数﹣的度数,∵PD平分∠APC,∴∠APD=∠APC=的度数﹣的度数,∵∠CAP=的度数,∴∠CDP=∠CAP+∠APD=的度数﹣的度数+的度数=的度数+的度数,即不论P点如何运动,∠CDP的度数总等于的度数+的度数,所以∠CDP的度数不随点P在AB延长线上的位置的变化而变化.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)

2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。

江苏省南京市玄武区2016届九年级上期中考试数学试题及答案(1)

2015-2016学年度上学期质量监测(一)八年级数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.B 2.C 3.D4.D 5.B 6.B 7.A 8.A二、填空题(每小题3分,共18分)9.2 10.)1(+b a 11.-5 12.∠A =∠C (或∠ADO =∠CBO 等)13.22))((b a b a b a -=-+ 14.1三、解答题(本大题共10小题,共78分)15.解:原式=3212++……………………4分 =215.……………………6分 16.解:原式=x x x 82623+--.……………………6分17.解:原式134-+=y x ……………………6分18.证明:∵∠3+∠ABC =180°,∠4+∠ABD =180°,∠3=∠4,∴∠ABC =∠ABD . ……………………3分∵∠1=∠2,AB = AB ,∴△ABC ≌△ABD . ……………………6分∴AD AC =……………………7分19.解:原式2(3)(21)x x x x =+-++ ……………………2分22321x x x x =+--- 1.x =-……………………4分当1x =时,原式11=-……………………7分20.证明:∵∠BAC =∠DAE ,BAE BAC CAE BAE DAE BAD ∠-∠=∠∠-∠=∠,, ∴∠DAB =∠CAE , ……………………4分∵AB = AE ,AC = AD , ……………………6分∴△ABD ≌△AEC .……………………7分21.以下答案供参考:(每图4分)22.解:(1)18202)910(2)9)(1(222+-=+-=--x x x x x x .……………………3分 16122)86(2)4)(2(222+-=+-=--x x x x x x .……………………6分 ∴原来的二次三项式为181222+-x x .……………………7分(2)222)3(2)96(218122-=+-=+-x x x x x .……………………9分23.解:(1)S 阴影=S 正方形ABCD +S 正方形EFGC ﹣S △ABD ﹣S △BGF=a 2+b 2-21a 2-b b a ⋅+)(21 ……………………4分 =a 2+b 2-21a 2-22121b ab -=21a 2+21b 2-21ab . ……………………7分 (2)∵a +b =8,ab =15,∴阴影部分的面积为219……………………10分 24.感知:∵AB ⊥AD ,BF ⊥AF ,DG ⊥AF ,∴︒=∠=∠=∠90DAB BFA DGA .……………………1分︒=∠+∠∴90FAB DAG .︒=∠+∠90FAB B ,DAG B ∠=∠∴.……………………3分∵AB =AD ,∴△ADG ≌△BAF . ……………………4分拓展:∵1ABE BAE ∠=∠+∠, BAC CAF BAE ∠=∠+∠,又∵1BAC ∠=∠,∴ABE CAF ∠=∠. ……………………6分∵∠1 =∠2, 1180AEB ∠+∠=︒,2180CFA ∠+∠=︒,∴AEB CFA ∠=∠. ……………………8分又∵AB =AC ,∴△ABE ≌△CAF . ……………………9分应用: 8 ……………………12分。

南京1中 2016-2017学年度第一学期质量检测九年级数学试题

2016-2017学年度第一学期质量检测九年级数学试题一、选择题1.下列方程中是关于x 的一元二次方程的是() A.2210x x+= B.20ax bx c ++= C.(1)(2)1x x -+= D.223250x xy y --= 2.已知一元二次方程2430x x --=,下列配方正确的是()A.2(2)3x +=B.2(2)3x -=C.2(2)7x +=D.2(2)7x -=3.关于x 的一元二次方程22(2)(21)40m x m x m -+-+-=的一个根是0,则m 的值是()A.2B.2-C.2或2-D.124.若O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与O 的位置关系是()A.点A 在圆内B.点B 在圆上C.点A 在圆外D.不能确定5.如图,AB 是半圆的直径,D 是 AC 的中点,50ABC ∠=︒,则DAB ∠等于()A.55︒B.60︒C.65︒D.75︒6.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x ,则由题意列方程为()A.2200(1)1000x +=B.20020021000x +⨯⨯=C.20020031000x +⨯⨯=D.2200[1(1)(1)]1000x x ++++=7.已知2222(1)(3)8x y x y ++++=,则22x y +的值为()A.5-或1B.1C.5D.5或1-8.如图,在平面直角坐标系中,P 的圆心坐标系是(3,0)(3a >),半径为3,函数y x =的图象被P 截得的弦AB的长为a 的值是()A.4B.3C.D.3二、填空题9.方程241x =的解是______________.10.已知关于x 的方程2(2)450a x x ---=是一元二次方程,那么a 的取值范围是___________.11.已知方程220x x m ++=的一个根为1,则方程的另一个根为________________.12.已知一元二次方程22310x x -+=的两根为a 、b ,则11a b+=_____________. 13.要组织一次篮球联赛,赛制为单循环形式(每两队之间都比赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?设有x 个球队参赛,列出正确的方程____________.14.如图AB 为O 的直径,AC AD =,70ABC ∠=︒,则BAD ∠的度数是____________. DC BA15.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为____________cm .16.如图,过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果63A ∠=︒,那么B ∠=_____________.三、解答题17.(1)解方程①2(2)80x +-=; ②(3)x x x -=;③212270x x -+=; ④2540x x +-=.(2)直接写出方程22(64)(56)0x x x x ---+=的解为______________.18.先化简,再求值:2224124422a a a a a a⎛⎫--+ ⎪-+--⎝⎭,其中,a 是方程2310x x ++=的根. 19.如图,ABC △是O 的内接三角形,CE 是O 的直径,CF 是O 的弦,CF AB ⊥,垂足为D ,若20BCE ∠=︒,求ACF ∠的度数.20.某超市礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张可盈利0.3元,为了尽快减少库存,超市决定采取适当的降价措施,调查发现,如果这中贺年卡的售价每降低0.1元,那么超市平均每天可多售出100张,超市要想平均每天盈利120元,每张贺年卡应降价多少元?21.如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D .已知;24cm AB =,8cm CD =.(1)求作此残片所在的圆;(2)求残片所在圆的面积.D CBAE DCBA22.要建一个面积为2150cm的长方形养鸡场,为了节省材料,养鸡场的一边靠着原有的一条墙,墙长ma,另三边用竹篱笆围成,如果篱笆的总长为40m,设养鸡场垂直于墙的一边长mx,求养鸡场的长和宽. 附加题如图,客轮沿折线A B C——出发经B再到C匀速航行,货轮从AC的中点D出发沿一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A B C——上的某点E处,已知∠=︒,客轮速度是货轮速度的2倍.ABCAB BC==海里,90200(1)两船相遇之处E点_____________(填序号)①在线段AB上;②在线段BC上;③可以在线段AB上,也可以在线段BC上.(2)求货轮从出发到两船相遇共航行了多少海里?B。

江苏省南京市九年级上学期数学期中考试试卷

江苏省南京市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题10小题,每小题3分,共30分) (共10题;共30分)1. (3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (3分)(2018·乌鲁木齐) 在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A . (1,2)B . (﹣1,2)C . (﹣1,﹣2)D . (1,﹣2)3. (3分)已知a是一元二次方程x2﹣2x﹣1=0较大的实数根,则对a的值估计正确的是()A . 0<a<1B . 1<a<2C . 2<a<3D . 3<a<44. (3分) (2015九上·宜昌期中) 抛物线y=﹣2(x﹣1)2+3的顶点坐标是()A . (﹣1,3)B . (1,3)C . (1,﹣3)D . (﹣1,﹣3)5. (3分)下列说法正确的是()A . 0和1的平方根等于本身B . 0和1的算术平方根等于本身C . 立方根等于本身的数是0D . ﹣9的立方根是﹣36. (3分) (2016九上·永泰期中) 将抛物线y=x2先向右平移2个单位,再向下平移3个单位,那么所得到抛物线的函数关系式是()A . y=(x﹣2)2﹣3B . y=(x+2)2﹣3C . y=(x﹣2)2+3D . y=(x+2)2+37. (3分)关于x的一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法判断8. (3分)以﹣2和3为两根的一元二次方程是()A . x2+x﹣6=0B . x2﹣x﹣6=0C . x2+6x﹣1=0D . x2﹣6x+1=09. (3分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A . 1B . 2C . 3D . 410. (3分) (2018九下·潮阳月考) 二次函数()的图像如图所示,下列结论:① ;②当时,y随x的增大而减小;③ ;④ ;⑤ ,其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题(本大题6小题,每小题4分,共24分) (共6题;共24分)11. (4分) (2016九上·仙游期末) 已知点M的坐标为(-2,-3),则点M关于原点对称的坐标为________.12. (4分)(2011·常州) 已知关于x的方程x2+mx﹣6=0的一个根为2,则m=________,另一个根是________.13. (4分)(2020·武汉模拟) 已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm 恒成立,则关于x的方程ax2+bx+c=5的解为________.14. (4分)若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是________15. (4分) (2019八下·锦江期中) 如图,在等边三角形ABC中,AB=9,D是BC边上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为________,旋转的角度为________.16. (4分) (2016九上·大石桥期中) 一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为________.(写出一个即可)三、解答题(一)(本大题3小题,每小题6分,共18分) (共3题;共18分)17. (6分)(2018·湘西) 解方程组:18. (6分)(2019·南通) 已知:二次函数 (a为常数).(1)请写出该二次函数图象的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在的部分与一次函数的图象有两个交点,求的取值范围.19. (6分)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).(1)画出关于点O成中心对称的,并写出点B1的坐标;(2)求出以点B1为顶点,并经过点B的二次函数关系式四、解答题(二)(本大题3小题,每小题7分,共21分) (共3题;共16分)20. (7.0分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:…销售价x(元/件) (110115*********)…销售量y(件) (5045403530)若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?21. (2分)△ABC中,AB=AC=1,∠BAC=45°,将△ABC绕点A按顺时针旋转α得到△AEF,连接BE,CF,它们交于D点,①求证:BE=CF.②当α=120°,求∠FCB的度数.③当四边形ACDE是菱形时,求BD的长.22. (7.0分)(2020·东城模拟) 在平面直角坐标系xOy中,抛物线y=ax2﹣4ax﹣2a(a≠0)的对称轴与x 轴交于点A,将点A向右平移2个单位长度再向上平移3个单位长度得到点 B.(1)求抛物线的对称轴及点B的坐标;(2)已知点C(1,﹣2a).若抛物线与线段BC有公共点,结合函数图象,求a的取值范围.五、解答题(三)(本大题3小时,每小题9分,共27分) (共3题;共23分)23. (9.0分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为(m2),种草所需费用 1(元)与(m2)的函数关系式为,其图象如图所示:栽花所需费用 2(元)与x(m2)的函数关系式为 2=﹣0.01 2﹣20 +30000(0≤ ≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.24. (7.0分)(2017·安丘模拟) 将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,如图①所示,∠BAB′=θ, = = =n,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°, ]得到△AB′C′,则S△AB'C:S△ABC=________;直线BC与直线B′C′所夹的锐角为________度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、C′在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.25. (7.0分) (2018九上·广州期中) 在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为 D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共25页) 2016-2017学年江苏省南京市江宁区九年级(上)期中数学试卷 一、选择题(每题2分) 1.(2分)下列方程中,是关于x的一元二次方程的是( ) A.ax2+bx+c=0 B.x2﹣2x﹣1 C.x2+=0 D.(x﹣1)(x+2)=1

2.(2分)用配方法解方程x2﹣6x+7=0时,原方程应变形为( ) A.(x﹣6)2=2 B.(x﹣6)2=16 C.(x﹣3)2=2 D.(x﹣3)2=16 3.(2分)关于x的方程x2+kx+k2=0(k≠0)的根的情况描述正确的是( ) A.方程没有实数根 B.方程有两个不相等的实数根 C.方程有两个相等的实数根 D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 4.(2分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得( ) A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9 5.(2分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )

A.点P B.点Q C.点R D.点M 6.(2分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( ) 第2页(共25页)

A.60° B.50° C.40° D.25° 二、填空题(每题2分) 7.(2分)方程x2+x=0的根是 . 8.(2分)一元二次方程x2+3x+1=0的两个根的和为 ,两个根的积为 . 9.(2分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于 . 10.(2分)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=62°,则∠BDC= .

11.(2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为( )

A.35° B.45° C.55° D.75° 12.(2分)如图,⊙O经过五边形OABCD的四个顶点,若∠AOD=150°,∠A=65°,∠D=60°,则的度数为 °. 第3页(共25页)

13.(2分)已知正六边形的外接圆半径为2,则它的内切圆半径为 . 14.(2分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为 度(写出一个即可).

15.(2分)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是 .

16.(2分)如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为 .

三、解答题 17.(15分)解方程: (1)x2+4x+4=0 (2)(x﹣1)2=9x2 (3)x(x+1)=3(x+1) 18.(6分)一个直角三角形的两条直角边的和是14cm,面积为24cm2,求两条直角边的长. 第4页(共25页)

19.(7分)已知关于x的一元二次方程x2﹣mx﹣2=0. (1)对于任意的实数m,判断方程的根的情况,并说明理由; (2)若方程的一个根为1,求出m的值及方程的另一个根. 20.(7分)如图,AB和CD分别是⊙O上的两条弦,圆心O到它们的距离分别是OM和ON,如果AB=CD,求证:OM=ON.

21.(8分)如图,已知四边形ABCD内接于圆O,∠A=105°,BD=CD. (1)求∠DBC的度数; (2)若⊙O的半径为3,求的长.

22.(8分)如图,在⊙O中,AB是⊙O的弦,BC经过圆心,∠B=25°,∠C=40°. (1)求证:AC与⊙O相切; (2)若 BC=a,AC=b,求⊙O的半径(用含a、b的代数式表示).

23.(8分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计为多高? 24.(10分)用一条长40cm的绳子怎样围成一个面积为75cm2的长方形?能围成一个面积为101cm2的矩形吗?如能,说明围法;若不能,说明理由. 25.(10分)如图,⊙O是△ABC的外接圆,直线l与⊙O相切于点D,且l∥BC. (1)求证:AD平分∠BAC; 第5页(共25页)

(2)作∠ABC的平分线BE交AD于点E,求证:BD=DE. 26.(9分)在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅. (1)如图1,△ABC中,∠A=30°,BC=2,则△ABC的外接圆的半径为 ; (2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P,点P满足;∠BPC=∠BEC,且PB=PC;(要求:用直尺与圆规作出点P,保留作图痕迹.) (3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m),过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为 . 第6页(共25页)

2016-2017学年江苏省南京市江宁区九年级(上)期中数学试卷 参考答案与试题解析

一、选择题(每题2分) 1.(2分)下列方程中,是关于x的一元二次方程的是( ) A.ax2+bx+c=0 B.x2﹣2x﹣1 C.x2+=0 D.(x﹣1)(x+2)=1

【解答】解:A、a=0时是一元一次方程,故A错误; B、是多项式,故B错误; C、是分式方程,故C错误; D、是一元二次方程,故D正确; 故选:D.

2.(2分)用配方法解方程x2﹣6x+7=0时,原方程应变形为( ) A.(x﹣6)2=2 B.(x﹣6)2=16 C.(x﹣3)2=2 D.(x﹣3)2=16 【解答】解:x2﹣6x+7=0, x2﹣6x=﹣7, x2﹣6x+9=﹣7+9, 即(x﹣3)2=2, 故选:C.

3.(2分)关于x的方程x2+kx+k2=0(k≠0)的根的情况描述正确的是( ) A.方程没有实数根 B.方程有两个不相等的实数根 C.方程有两个相等的实数根 D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 【解答】解:∵△=k2﹣4k2=﹣3k2<0,且k≠0, 第7页(共25页)

∴方程没有实数根, 故选:A.

4.(2分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得( ) A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9 【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x, 根据题意,可列方程:10(1+x)2=16.9, 故选:A.

5.(2分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )

A.点P B.点Q C.点R D.点M 【解答】解:连结BC, 作AB和BC的垂直平分线,它们相交于Q点. 故选:B. 第8页(共25页)

6.(2分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )

A.60° B.50° C.40° D.25° 【解答】解:连接OC, ∵CD为⊙O的切线, ∴OC⊥CD, ∴∠OCD=90°, ∵OC=OA,∠A=25°, ∴∠OCA=∠A=25°, ∴∠DOC=∠A+∠OCA=25°+25°=50°, ∴∠D=90°﹣50°=40°, 故选:C.

二、填空题(每题2分) 7.(2分)方程x2+x=0的根是 x1=0,x2=﹣1 . 【解答】解:∵x(x+1)=0, ∴x=0或x+1=0, ∴x1=0,x2=﹣1. 故答案为x1=0,x2=﹣1.

8.(2分)一元二次方程x2+3x+1=0的两个根的和为 ﹣3 ,两个根的积为 1 . 【解答】解:设方程的两根为m、n, 第9页(共25页)

则有:m+n=﹣3,mn=1. 故答案为:﹣3;1.

9.(2分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于 24πcm2 . 【解答】解:它的侧面展开图的面积=•2π•4•6=24π(cm2). 故答案为24πcm2.

10.(2分)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=62°,则∠BDC= 31° .

【解答】解:∵=,∠AOB=62°, ∴∠BDC=AOB=31°, 故答案为:31°,

11.(2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为( )

A.35° B.45° C.55° D.75° 【解答】解:连接AD, ∵AB是⊙O的直径, ∴∠ADB=90°,

相关文档
最新文档