函数概念基本初等函数8函数的单调性配套练习

函数概念基本初等函数8函数的单调性配套练习
函数概念基本初等函数8函数的单调性配套练习

第8课 函数的最值

分层训练

1.函数b x k y ++=)12(在实数集上是增函数,则

( )

A .21->k

B .2

1-b D .0>b 2.已知函数f(x)在区间[a,b]上单调且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内 ( )

A . 至少有一实根

B . 至多有一实根

C .没有实根

D .必有唯一的实根

3.已知f(x)=8+2x -x 2,如果g(x)=f( 2-x 2 ),那么g(x) ( )

A .在区间(-1,0)上是减函数

B .在区间(0,1)上是减函数

C .在区间(-2,0)上是增函数

D .在区间(0,2)上是增函数

考试热点

4.函数22[0,2]()2[3,0)

x x x f x x x ?-∈=?∈-?的最小值是 . 5.已知x ∈[0,1],则函数y=22+x -x -1 的最大值为_____.最小值为_____.

6.函数||2x x y +-=,单调递减区间为 ,最大值为 .

7..已知函数2122

y x x =- 求: (1) 当03x <≤时, 函数的最值;

(2) 当35x ≤<时, 函数的最值.

8.已知函数22(),[1,)x x a f x x x

++=∈+∞. (1)当0.5a =时,求函数()f x 的最小值;

(2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围.

拓展延伸

9.已知3

1≤a ≤1,若函数()221f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-.

(1)求()g a 的函数表达式;

(2)判断函数()g a 在区间[3

1,1]上的单调性,并求出()g a 的最小值 .

10.在经济学中,函数)(x f 的边际函数为)(x Mf ,定义为)()1()(x f x f x Mf -+=,某公司每月最多生产100台报警系统装置。生产x 台的收入函数为2

203000)(x x x R -=(单位元),其成本函数为4000500)(+=x x C (单位元),利润的等于收入与成本之差. ①求出利润函数)(x p 及其边际利润函数)(x Mp ;

②求出的利润函数)(x p 及其边际利润函数)(x Mp 是否具有相同的最大值;

③你认为本题中边际利润函数)(x Mp 最大值的实际意义.

本节学习疑点:

8课函数的最值

1.()A;2.()

D;3.()A4.6-;

5.2,1

2-;6.]0,

2

1

[-和)

,

2

1

[+∞,

4

1

7.函数即2

1

(2)2

2

y x

=--,抛物线的对称轴为直线2

x=.

(1) 当03

x

<≤时,

由图象知,当2

x=时,

min

2

y=-;函数无最大值;

(2) 当35

x

≤<时,由图象知,当3

x=时,

min

3

2

y=-;函数无最大值。8.(1)当0.5

a=时,

1

()2

2

f x x

x

=++, )

,1[+∞

x.

任设

12

1x x

≤<,则

2121

21

11

()()(2)(2)

22

f x f x x x

x x

-=++-++

2112

12

()(21)

2

x x x x

x x

--

=

12

1x x

≤<,∴

12

x x

-<,且

12

1

x x>,∴

12

x x>,

12

210

x x->,

21

()()0

f x f x

->,即

21

()()

f x f x

>,

∴()

f x在)

,1[+∞上是增函数,

∴()

f x在)

,1[+∞上的最小值是

7

(1)

2

f=.

学生质疑

教师释疑

(2)∵),1[+∞∈x ,∴()0f x >恒成立?2

20x x a ++>恒成立. ∵函数22()2(1)(1)y f x x x a x a ==++=++-在),1[+∞上是增函数, ∴当1x =时,min 3y a =+,令30a +> 得3a >-.

∴当(3,)a ∈-+∞时,()0f x >恒成立. 9.(1)∵

)(,131x f a ∴≤≤的图像为开口向上的抛物线,且对称轴为].3,1[1∈=a

x ∴()f x 有最小值a

a N 11)(-= . 当2≤a 1≤3时,a ∈[)(],2

1,31x f 有最大值()()11M a f a ==-; 当1≤a 1<2时,a ∈()(],1,2

1x f 有最大值M (a )=f (3)=9a -5; ???

????≤<+-≤≤+-=∴).121(169),2131(12)(a a a a a a a g (2)设1211,32

a a ≤<≤则 121212121()()()(1)0,()(),g a g a a a g a g a a a -=-->∴> ]2

1,31[)(在a g ∴上是减函数. 设1211,2

a a <<≤ 则121212121()()()(9)0,()(),g a g a a a g a g a a a -=--<∴< ()11(,1]2g a ∴在上是增函数.∴当12a =时,()g a 有最小值21. 10.N x x x x x C x R x p ∈∈-+-=-=],100,1[,4000250020)()()(2.

)(x Mp )()1(x p x p -+=

),4000250020(]4000)1(2500)1(20[22-+---+++-=x x x x

x 402480-=

N x x ∈∈],100,1[;

N x x x x p ∈∈+--=],100,1[,74125)2125(20)(2,故当=x

62或63时,=max )(x p 74120(元)。

∵)(x Mp x 402480-=为减函数,当1=x 时有最大值2440,故不具有相等的最大值。 边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大。

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

(完整版)函数的单调性练习题及答案

函数的单调性练习题 一 选择题: 1. 函数f (x )=x 2+2x-3的递增区间为 ( ) A .(-∞,-3] B .[-3,1] C .(-∞,-1] D .[-1,+∞) 2. 如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A.[-3,+∞) B.(-∞,-3] C.(-∞,5] D.[3,+∞) 3. 函数111 y x =-- ( ) A .在(-1,+∞)内是单调递增 B .在(-1,+∞)内是单调递减 C .在(1,+∞)内是单调递减 D .在(1,+∞)内是单调递增 4. 如果函数()f x kx b =+在R 上单调递减,则( ) A. 0k > B. 0k < C. 0b > D. 0b < 5. 在区间(,0)-∞上为增函数的是( ) A .2y x =- B .2y x = C .||y x = D .2y x =- 6. 函数2()2f x x x =-的最大值是( ). A. -1 B. 0 C. 1 D. 2 7. 函数y x =+ ). A. 0 B. 2 C. 4 D. 二 填空题: 8. 函数f (x )=2x 2一mx+3,在(一∞,一1)上是减函数,在[一1,+∞)上是增函数,则m=_______。 9.已知()x f 是定义在()2,2-上的减函数,并且()()0211>---m f m f ,则实数m 的取值范围______________。 三 解答题: 10. 利用单调函数的定义证明:函数)2,0(2)(在区间x x x f + =上是减函数.

11.已知定义在区间(0,+∞)上的函数()x f 满足()()2121x f x f x x f -=???? ??,且当1>x 时 ()0

《解函数的单调性时需注意的几个概念》

解函数的单调性时需注意的几个概念 函数的单调性是函数的一个很重要的性质,也是历年高考命题的重点。但是不少同学由于对概念认识不足,审题不清,在解答这类题时容易出现错解。下面对做这类题时需注意的事项加以说明,以引起同学们的重视。 一、应用定义证明,要注意步骤的严密性 例1. 证明函数f x x ()=-+31在R 上是减函数。 解:任取x x R 12,∈,且x x 12<,则 f x f x x x x x ()()()()121323231 311-=-+--+=- =-++()()x x x x x x 21222112 ∵x x x x x x x x x 1222121212222234 0<++=++>,() ∴x x f x f x f x f x 21121200->->>,,即()()()() ∴函数f x x ()=-+31在R 上是减函数。 提示:有的同学证明时,没有说明x x x x x x x 12122212222234 0++=++>(),就直接说f x f x ()()12>,这个过程不能省。 二、对函数单调性的概念理解不正确 例2. 若αβππ,,∈()2 ,且tan α<cot β,则有( ) A. αβπ+> 2 B. αβπ+<2 C. αβπ+<32 D.αβπ+>32 错解:因为tan tan()απ β<-2,所以απ β<-2,故选B 。 剖析:∵βππ∈()2 ,

∴π βπ 220-∈-(),。显然,απ β,2-不在同一单调区间,故此时不能使用 函数的单调性。 正确解法:∵βππ∈()2 , ∴322πβππ-∈(),,由题意知,tan tan()απβ<-32,又y x =tan 在()ππ2,上单调递增,故选C 。 三、研究函数的单调性千万不要忘记函数的定义域 例3. 函数y x x =--lg()223的单调递增区间是( ) A. [)1,+∞ B. (3,+∞) C. (-∞,1] D. (-∞,-1) 错解:∵令t x x x x =--=-->2223141(),时,t 为增函数,而y =lgt 在t ∈+∞()0,上是增函数, ∴函数y x x =--lg()223的单调增区间是[1,+∞)。故选A 。 剖析:此题除注意两个函数的单调性外,函数的定义域也不要忘记。 正确解法:此函数的定义域为(-∞,-1) ()3,+∞。 令t x x x x =--=--∈-∞-+∞22231413()()(),,, ∵y =lgt 在t ∈+∞()0,上是增函数,t x x x =--=--222314(),而x ∈-∞-+∞()(),,13 的单调增区间为(3,+∞), ∴选B 。 例4. 已知函数f x x x x ()sin ()=+∈-511,,,如果f a f a ()()1102-+-<,则实数a 的取值范围是__________。 错解:由题意知f(x)是奇函数且在(-1,1)上单调递增,又由 f a f a ()()1102-+-<, 得f a f a f a ()()()11122-<--=-,因此,112-<-a a ,即a >1或a <-2。 剖析:忽略了复合函数的定义域,从而导致解题错误。 正确解法:由题意知f(x)是奇函数且在(-1,1)上单调递增,又由

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

用函数单调性定义证明

用函数单调性定义证明 例1、用函数单调性定义证明: (1)为常数)在上是增函数. (2)在上是减函数. 分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论. 证明: (1)设是上的任意两个实数,且, 则 = 由得,由得, . ,,即 . 于是即 . 在上是增函数. (2) 设是上的任意两个实数,且, 则 由得,由得

.又 , . 于是 即 . 在 上是减函数. 小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号. 根据单调性确定参数 例1、函数 在 上是减函数,求 的取值集合. 分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究. 解:当 时,函数此时为 ,是常数函数,在 上不 具备增减性. 当 时, 为一次函数,若在 上是减函数,则有 ,解得 .故所求 的取值集合为 . 小结:此题虽比较简单,但渗透了对分类讨论的认识与使用. 例1、 设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在 区间[]+∞,0上是单调函数. 分析:由于函数的单调性不易直接判断,而且含有字母系数,求解过程中需要讨论字母的范围,因此可以从单调性定义出发,从定义求解释一种基本的方法,不可忽视. 解: 在[]+∞,0上任取1x ,2x ,使得21x x < )()(21x f x f -

)(11212 221x x a x x --+-+= )(1 12122 212 2 21x x a x x x x --+++-= )1 1)( (22 21 2121a x x x x x x -++++-= (Ⅰ)当1≥a 时,因为11 122 21 21<++++x x x x , 01 122 21 21<-++++a x x x x ,又 021<-x x , 所以0)()(21>-x f x f ,即)()(21x f x f > 所以当1≥a 时,函数)(x f 在区间[]+∞,0上是单调递减函数 (Ⅱ)当10<

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

高中数学必修一函数的性质单调性测试题含答案解析

函数的性质单调性 1.在区间(0,+∞)上不是增函数的函数是() 222xxyxyyyx+ 1 DC..B.A.==2=3+1 +=2+1 x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42) 上是减函数,f(1)等于(则) B.1 C.17 A.-7 D.25 fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间() 4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.( ,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已 知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没 有实根 D.必有唯一的实根 22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定 义域为tfff(13) <(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1) <1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增 区间依次是(.函数9 ) B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范 围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3 B.5 ≥-3 C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、 fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+

函数单调性

函数单调性及其应用 1.一元函数单调性及其应用 2.多元函数单调性及其应用 2.1 多元函数单调性的定义 一元函数)(x f y =在某个区间上的单调性,如该区间为),(+∞-∞时,可看成该函数在有向直线x 轴上的单调性;如该区间为[]b a ,或()b a ,时,可以看成该函数在x 轴上的一条有向线段(方向与x 轴正方向相同)上的单调性等等,类似地,可定义二元函数在xoy 面上的一条有向线段,有向直线或射线上的单调性。 定义 设AB 为xoy 面上的一条有向线段,二元函数),(y x f z =在AB 上有定义,对于AB 任意两点21,P P ,设21P P 与AB 同向。 若)()(21P f P f <,则称二元函数),(y x f z =在AB 上单调增加。 若)()(21P f P f >,则称二元函数),(y x f z =在AB 上单调减少。 2.2多元函数单调性的判别法 如果),(y x f u =在点),(y x P 可微,l 的方向余弦是βαcos ,cos ,则),(y x f u =在),(y x P 沿射线l 的方向导数存在,且 βαcos cos y f x f l f ??+??=??。其中l 是),(y x P 出发的一条射线,他的方向向量记作l 由二元函数的中值公式:),(),(0000y x f k y h x f -++ =k h y h x f h k y h x f y x ),(),(0000?+?++?+?+θθθθ 定理 1 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且),(y x f z =在),(B A 内每个点处都可微,则在),(B A 内至少存在一点C ,使得 AB l f A f B f C ???=-)()( 其中),(B A 表示有向线段AB 上不包括两个端点的所有点构成的点集。AB 表示AB 的长度,l 是点A 出发的并且经过点B 的一条射线。 定理2 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且

三角函数的单调性测试题(人教A版)(含答案)

三角函数的单调性(人教A版) 一、单选题(共13道,每道7分) 1.下列四个命题中,正确的个数是( )(1)在定义域内是增函数;(2) 在第一、第四象限是增函数;(3)与在第二象限都是减函数;(4) 在上是增函数. A.1个 B.2个 C.3个 D.4个 答案:A 解题思路: 试题难度:三颗星知识点:正切函数的单调性 2.的单调递增区间是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 3.函数的一个单调递增区间为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 4.在上,使为增函数,为减函数的区间为( ) A. B. C. D. 答案:A

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 5.在上,使为增函数,为减函数的区间为( ) A. B.或 C. D.或 答案:A 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 6.的单调递增区间是( )

A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:正切函数的单调性 7.关于函数,下列说法正确的是( ) A.在上递减 B.在上递增 C.在上递减 D.在上递减答案:C

解题思路: 试题难度:三颗星知识点:余弦函数的单调性 8.函数的最小正周期为,则( ) A.在上单调递减 B.在上单调递减 C.在上单调递增 D.在 上单调递增 答案:B 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 9.使函数为增函数的区间是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:正弦函数的单调性 10.函数的单调递减区间为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:余弦函数的单调性 11.已知函数,则在区间上的最大值与最小值

函数的单调性的题型分类及解析

函数的单调性 知识点 1、增函数定义、减函数的定义: (1)设函数)(x f y =的定义域为A ,区间M ?A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=?x x x 时,都有0)()(12>-=?x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=?x x x 时,都有0)()(12<-=?x f x f y ,那么就称 函 数)(x f y =在区间M 上是减函数,如图(2) 注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间. 1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)x 2) 2、我们来比较一下增函数与减函数定义中y x ??,的符号规律,你有什么发现没有? 3、如果将增函数中的“当012>-=?x x x 时,都有0)()(12>-=?x f x f y ”改为当 012<-=?x x x 时,都有0)()(12<-=?x f x f y 结论是否一样呢? 4、定义的另一种表示方法 如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若 0) ()(2 121>--x x x f x f 即 0>??x y ,则函数y=f(x)是增函数,若0)()(2 121<--x x x f x f 即0

函数的单调性教案课程(优秀)

课题:函数的单调性 授课教师:王青 【教学目标】 1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用 函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。 2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法, 培养学生的观察、归纳、抽象思维能力。 3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明. 【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习. 【使用教具】多媒体教学 【教学过程】 一、创设情境,引入课题 1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图. 引导学生识图,捕捉信息,启发学生思考. 问题: (1)当天的最高温度、最低温度以及何时达到; (3)哪些时段温度升高?哪些时段温度降低? 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容. 1.借助图象,直观感知 问题1:分别作出函数1+=x y ,1+-=x y ,2)(x x f =的图象,并且思考 (1) 函数1+=x y 的图象从左至右是上升还是下降,在区间_____上) (x f 的值随x 的增大而_______ (2) 函数1+-=x y 的图象从左至右是上升还是下降,在区间_____上 )(x f 的值随x 的增大而_______ (3) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而增大 (4) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而减小 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.抽象思维,形成概念 问题:你能用数学符号语言描述第(3)(4)题吗? 任取2121),,0[,x x x x <+∞∈且,因为0))((21212 221<-+=-x x x x x x ,即2 221x x <,所以()()21x f x f > 任意的x 1,x 2∈(0-,∞),x 1 任意的x 1,x 2∈(0-,∞),x 1

函数单调性的定义与应用之欧阳歌谷创作

函数的性质——单调性 欧阳歌谷(2021.02.01) 【教学目的】使学生了解增函数、减函数的概念,掌握判断函数增减性的方法步骤; 【重点难点】重点:函数的单调性的有关概念; 难点:证明或判断函数的单调性 一、增函数与减函数 ⒈增函数与减函数定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2. ⑴若当x1(fx2),则说f(x) 在这个区间上是减函数 说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数y=x2,当x∈[0,+∞)时是增函数,当x∈(-∞,0)时是减函数. ⒉单调性与单调区间 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.

在单调区间上,增函数的图象是上升的,减函数的图象是下降的. 说明:⑴函数的单调区间是其定义域的子集; ⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在x 1,x 2那样的特定位置上,虽然使得 f(x 1)<(fx 2),但显然此图象表示的函数不是一 个单调函数; ⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“f(x 1)<(fx 2) 或f(x 1)>(fx 2) ”改为“f(x 1)≤(fx 2) 或f(x 1)≥(fx 2)”即可; ⑷定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况;外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减. ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数. ⒊ 例题 例1图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数. 练习:1、函数11-=x y 的增减性的正确说 法是:

函数的单调性练习题

高一数学同步测试(6)—函数的单调性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2 +x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0, 2 1) B .( 2 1,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞

相关文档
最新文档