汽车的振动测试技术

汽车的振动测试技术
汽车的振动测试技术

汽车的振动测试技术 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

汽车的振动测试技术

前言

狭义地说,振动测试在于通过传感器、放大仪器以及显示或记录仪表,测量运动机械或工程结构在外界激励(包括环境激励)或运行工况中其重要部位的位移、速度、加速度等运动量,从而了解机械或结构的工作状态。广义地说,通过运动量的测量,我们希望了解机械或结构的动特性,如固有频率、固有振型、阻尼以及动刚度等特性参数,为机械或工程结构的动力设计服务。

无论是生产机械、运输机械或工程结构,均日益高速、高效、高精度和大型化发展。在许多情况下,限制其振动效应或提高其抗振性能成为设计成功与否的关键。在这种情况下,振动测试和设计计算是相辅相成的两种手段。在设计过程中,往往要通过模型试验或对已有相近设备的试验来考验计算方法的可靠性或改进计算方法。某些参数,只能通过试验来提供。

运动机械在运行中必然会产生振动。即使是那些我们视为不运动的工程结构,在环境激励的影响下,也会产生振动。

·振动现象对产品的主要影响:

结构性损坏(包括组成产品的各构件产生变形、弯曲裂纹、断裂以及疲劳损坏等),工作性能失灵(指在振动的影响下,系统造成不稳定性能越差,有些系统甚至不能工作),工艺性能破坏(这种破坏一般指产品的连接件松动,焊点脱焊,螺钉松动,印刷板插脚接触不良等)。无论那种破坏都将导致产品的工作不稳定,甚至损坏。为了提高产品的可靠性,需要通过振动试验来暴露产品的薄弱环节,改进产品设计,使产品在运行、使用过程中不出或者少出故障。这是振动试验的最终目的。目前在实验室中进行振动试验的形式最常用的是正弦振动和随机振动试验。振动信号可以反映机械的运行状态和结构的损伤。运行监测和故障诊断已逐渐成为由振动理论、振动测试和信号分析相结合而生成出来的一门重要的学科。其中,振动测试分析起着关键的作用。

·振动测试重要性:

许多情况下,机械振动会造成危害。它影响精密仪器设备的功能;降低加工零件的精度和表面质量;加剧构件的疲劳破坏和磨损,导致构件损坏造成事故。但也利用振动来作有益的事情,如钟表、清洗、超声振动切削等。振动问题在生产实践中一直占有相当重

要的地位。因此必须对机械振动进行观测、分析、研究,而测试始终是一个重要的、必不可少的手段。

·振动测试的分类:

①对正在工作的对象进行振动测量和分析。其目的是评定对象振动强度,结构的动载及动变形,寻找振源及其传递路径,监测设备状况。②给对象施加激励,使其产生振动,再作测试。其目的是测定对象的动态特性或评定抗振能力,如伺服控制频率扫描装置。振动量的一个重要特征是周期性,故常需对其作各种频域分析。此外,许多振动测试方法都以相关的振动理论为依据。从这两点来看,振动测试比其它机械量测试要复杂,所涉及的知识面较广泛。振动测试分析涉及信号描述方法和数字处理方法等,许多仪器的分析功能也是为振动(或动态过程)测试而设计的。

汽车供应商们采用先进的振动测试技术来保证汽车在行驶中的安静和平稳。汽车上的零件和组装件必须经受振动可控测试技术的检验。

汽车的振动及振动测试技术:

汽车在行驶时始终处于振动状态,由于路面不平,车速和运动方向的改变,发动机工作激励以及车轮、传动系统不平衡质量,产生整车和局部的强烈振动。这些振动严重影响汽车的平顺性、操纵稳定性等性能。汽车振动研究的传统方法主要是利用经典力学,将整车简化成3个集中质量子系统:簧载质量(车身、发动机),前非簧载质量(前悬架、前轴、前轮总成),后前非簧载质量(后悬架、后轴、后轮总成),并对轮胎、悬架的非线性特性以及内外激励进行不同程度的简化描述。

汽车在行驶过程中始终受到外力的作用,像路面高低不平的冲击,侧向风的作用等;汽车本身的运动件像发动机、轮胎、传动轴等也产生力或力矩作用。

所以汽车内部从仪表板到桌椅,从安全气囊传感器到引擎注油泵,诸多零部件都要经过精确振动模式和幅度的测试。

在有些情况下,要用振动测试法验证汽车的各种装置在一般路面条件下会不会损坏。在另一些情况下,通过振动测试来识别机械发出的烦人的噪声。

在振动控制的工业中,开发成功的数字信号处理技术有可能在实验室和生产线上制造成更加贴近真实的振动环境。今天,振动测试除了使用随机波、正弦波和冲击波的传统方法,又增加了更加复杂的方法,比如随机波上加正弦波和波形复制。

正如名称所示,随机正弦波是把随机振动与正弦波结合起来形成复杂的振动形式;波形复制振动模仿出真实的汽车振动环境。随机正弦波振动把多个正弦波与具有宽频带的噪声结合在一起。正弦波振动可以是固定的或者是扫描式的谐波或非谐波振动,而且在整个频带内的振动幅度是可变的。就模仿在路面变化行驶中的随机振动的汽车来说,其引擎转速增加或减少时,随机正弦波振动是很好的测试方法。汽车内部从仪表板到桌椅,从安全气囊传感器到引擎注油泵,诸多零部件都要经过精确振动模式和幅度的测试。在有些情况下,要用振动测试法验证汽车的各种装置在一般路面条件下不会损坏。在另一些情况下,通过振动测试来识别机械发出的烦人的噪声。在振动控制的工业中,开发成功的数字信号处理技术有可能在实验室和生产线上制造成更加贴近真实的振动环境。今天,振动测试除了使用随机波、正弦波和冲击波的传统方法,又增加了更加复杂的方法,比如随机波上加正弦波和波形复制。正如名称所示,随机正弦波是把随机振动与正弦波结合起来形成复杂的振动形式;波形复制振动模仿出真实的汽车振动环境。随机正弦波振动把多个正弦波与具有宽频带的噪声结合在一起。正弦波振动可以是固定的或者是扫描式的谐波或非谐波振动,而且在整个频带内的振动幅度是可变的。就模仿在路面变化行驶中的随机振动的汽车来说,其引擎转速增加或减少时,随机

正弦波振动是很好的测试方法。实际应用采用随机正弦波振动和波形复制方法对汽车进行测试,可真实地再现汽车行驶中的实际环境,用作设计验证和质量控制。仪表板许多汽车制造厂对仪表板组件进行振动测试以检查其发出的咯吱声和卡嗒声。这一项是新车购买者可能最不满意的地方,在保证金中占很大份额。为了测试建造了专用振动台,它不使用风扇,为的是造成清静的环境来验证振动中的仪表板是否有咯吱声和卡嗒声。因为没有通风散热,只能在温升超过工作温度时做短时间的振动测试,然后测试要暂停一会儿让设备冷却下来。除振动台外,所有能发出噪声的仪器设备,包括振动台的控制器都应放在测试室的列边。遥控面板和显示器要悬挂在测试装置的上面,便于工作人员能听见噪声并控制测试过程。用于检验咯吱声和卡嗒声的振动模式,由随机波、扫描正弦波和代表负荷的多段波形所构成。其振动幅度要控制在汽车正常行驶中的额定实验值内。为了避免振动过于猛烈。要维修部件并做好紧固工作。在振动测试中,操作人员起着关键性的作用,例如施加扫描式正弦波来重复加速引擎的振动模式,此时可能要加上几次扫频来发现异常的噪声。由于咯吱声和卡嗒声难于发现起因,操作者必须停止对仪表板做下一步的操作,并且用于动方式来控制振动频率和振幅,检查产生噪音的真正原因。这样才能找到产生噪声的机理,许多设备生产厂也采用这种方法作为质量控制的手段。检测咯吱声和卡嗒声时,有时采用加温与日光照射相结合的振动实验。有些汽车公司安装一种集成测试系统,在大的温度控制室内安装有电动振动台和太阳阵列,操作人员在中央控制中心调节温度、振动模式和振幅以及阵列来探测噪声。

汽车座椅

已有多家汽车公司使用高新技术的振动测试设备检验发出咯吱声的座椅。把座椅安装在电动液压振动台的俯仰板上。用动态信号分析仪自动检查噪声,得到1/3倍频程频谱。采用仪器监视而非人工检测,当噪声超过预设的电平时,才通知操作人员。

由于汽车座椅更容易受到路面振动的影响,要对座椅和它的安全带进行测试最好采用模仿路面技术。复制真实路面振动波形代替传统的振动方法,可取得更好的测试结果。

路面仿真用振动台重现纪录的历史情况。有时由4个或6个振动台组成的装置来重现汽车车轮同时振动的环境。使用最先进的信号处理技术和快速的数字信号处理器可精确模仿实际的振动环境。

以前,即便是模仿一般路况的持续时间不足一小时,却需要一天的计算时间。而今天,用一台振动控制器便可无限期模仿路面的历史情况,也无需几个小时或一天的脱机计算。甚至能同时使用几个振动台在几个测试点上做模仿试验。

后视镜

后视镜组合件的稳定性测试可用振动台模仿路面振动。用后视镜反射光束的散射测量镜子的振动,并查出令汽车买主讨厌的振颤部件。

由于反射光束被镜子放大了两倍,在驱动条件下镜子有很小振动都能使后视镜影像变得模糊。要在测试过程中找出引起后视镜影像模糊的振动频率,使用了可控加速度幅度的扫描正弦振动加在后视镜上。用激光图像系统来监视镜子的图像,并在镜子谐振时拍摄出现的图像。激光图像系统中的程序与振动控制系统通信,把振动频率、振幅和其它有关参数(时间和日期)储存起来。

亦可用振动测试来鉴别后视镜组件的自然振动频率的模范性质,用仪器锤子产生振动代替可控振动台。汽车后视镜生产厂家对后视镜组件进行振动测试的过程是:用

冲击测试法鉴别镜子的谐振频率和由于引擎振动引发的潜在结构缺陷;用动态信号分析仪测出产品对冲击的反应,测出产品的谐振频率并与预先设置的频谱相比较。这样便可在制造期间自动检验产品的质量。注油泵注油泵承受着泵体组合件对路面和引擎的联合振动环境。代表引擎振动的正弦波振动叠加在随机振动的背境上,准确地模仿路面的振动的背境上,准确地模仿路面的振动状况。再加上用几个正弦波谐波来模仿引擎的振动就非常贴近真实情况。你听到的由振动台发出的噪声,就等于听到实际汽车在路上发出的声响。为了模仿实际安装在引擎上的注油泵,用振动台上的夹具把注油泵固定后再进行振动测试。由于夹具本身也增加了检测的复杂性,它的机械谐振为十字轴运动增加额外的幅度,因此要使用一种称为开槽的技术来施加限制。最大允许的随机和正弦振动的幅度取决于极限频谱、每个正弦谐波的振幅和随机振动附加的能谱密度。在测试期间,在十字轴方向上测得的加速度不允许超过极限频谱。减少驱动信号的频率便可避免达到这个极限。在最终的控制频谱上出现槽口,表示有极限频谱存在。

防撞传感器气囊防撞传感器制造厂用模仿瞬时加速度的办法测试每一个传感器。测试的目的是要保证这些传感器在未达到一定加速度之前不会激发气囊,当加速度达到既定值时立即激发气囊。驱动振动台产生一个半正弦形加速脉冲,或者用在实际撞车时记录下的加速波形模仿瞬时加速度。为了验证在每次冲撞时的动作是有效的,要把传感器拴在测试器具上,由控制振动台的同一个计算机程序来监视和控制。作者:寒木春华

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

振动测试常见小知识

振动测试常见小知识问答 1什么是振动? 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2振动的目的? 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3.振动分几种? 振动分正弦振动和随机振动两种。 4.什么是正弦振动? 能用一项正弦函数表达式表达其运动规律的周期运动。 例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5.正弦振动的目的? 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6.正弦振动的试验条件由什么确定? 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定. 7.什么是振动频率范围? 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。 例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8.什么是频率? 频率:每秒振动的次数.单位:Hz。 9.什么是振动量? 振动量:通常通过加速度和位移来表示. 加速度:表示速度对时间倒数的矢量。加速度单位:gn或m/s2 位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10.什么是试验持续时间(次数)? 振动时间表示整个试验所需时间, 次数表示整个试验所需扫频循环次数. 11.什么是扫频循环?

扫频循环:在规定的频率范围内往返扫描一次: 例如:5Hz→50Hz→5Hz,从5Hz扫描到50Hz后再扫描到5Hz。 12.什么是重力加速度? 重力加速度:物体在地球表面由于重力作用所产生的加速度。 1gn=10m/s2(GB/T 2422-1995 电工电子产品环境试验术语) 13.扫描方式(sweep mode)分几种? 线性扫描:是线性的,即单位时间扫过多少赫兹,单位是Hz/s或Hz/min,这种扫描用于细找共振频率的试验. 对数扫描:频率变化按对数变化,扫描率可以是oct/min ,对数扫描的意思是相同的时间扫过的频率倍频程数是相同的 14.什么是扫描速度(sweep speed)?分几种? 扫描速度(sweep speed):指从最低频率扫描到最高频率的速度. 1)oct/min:多少倍频程每分钟. 例:1oct/min,5Hz到10Hz需1分钟,10Hz到20Hz需1分钟。 2)min/sweep:多少分钟每次扫频. 例:5-500Hz,扫描速度:1分钟/sweep,表示从5Hz到500Hz需1分钟。 3)Hz/s:多少Hz每秒. 例:5-10Hz,扫描速度:1Hz/s,表示5Hz到6Hz需1秒,6Hz到7Hz需1秒。 15.振动试验中试验几个方向?怎么区分方向? 除有关规范另有规定外,应在产品的三个互相垂直方向上进行振动试验。 一般定义产品长边为X轴向,短边为Y轴向,产品正常摆放上下为Z轴向。 16.什么是交越频率? 交越频率:在振动试验中由一种振动特性量变为另一种振动特性量的频率。如交

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

振动测试技术资料

拱桥振动测试 姓名:刘沛 学号:0214185 班级:研14-1班 课程:振动测试技术 年月:2015年7月18日

目录 一振动测试概述 (1) 1 振动分类及描述 (1) 2 振动基本参量表示方法 (1) 3 振动测试仪器分类及配套使用 (3) 4 窗函数的分类及用途 (4) 5 信号采集及分析过程中出现的问题,怎样解决? (7) 二、惯性式速度型与加速度型传感器 (8) 1 惯性式速度传感器的分类 (8) 2 压电式加速度传感器 (9) 三振动特性参数的常用量测方法 (12) 1 振动基本参数的量测 (12) 2 简谐振动频率的量测 (12) 3 机械系统固有频率的测量 (12) 4 简谐振动幅值的测量: (12) 5衰减系数的测量: (13) 6结构动力特性参数量测 (13) 7 稳态正弦激振及测试 (13)

8 瞬态激振及测试 (14) 9 随机激振及测试 (15) 四题目(结构设计) (16) 1 结构设计资料及试验要求 (16) 2.试验目的 (18) 3.试验方法 (18) 4 结果分析 (20) 五概念 (22) 1 功率谱 (22) 2 自相关函数 (22) 3 互相关函数 (23) 4 相干函数 (23) 5 传递函数 (24) 六模态分析 (26) 1 概念 (26) 2 方法分类及理解 (26)

一振动测试概述 1 振动分类及描述 按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。确定性振动又分为周期性和非周期性振动。周期性振动分为简谐振动和复杂周期振动。非周期运动又分为准周期和瞬态振动。非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。周期运动的最简单形式是简谐振动。这种振动的表示方法及特点是描述其他振动形式的基础。一般的周期运动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析。非周期运动则需要通过傅里叶积分作谐波分析。 2 振动基本参量表示方法 工程振动测试的主要参数有位移、速度、加速度、激振力、振幅、振动频率、阻尼比及结构的振动模态等。其中前五个参数属于时域测试参数。 下面分别来说明振动基本参量的表示方法及其含义: (1)振幅(A):振幅就是振动过程中振动物体离开平衡位置的最大距离。振动的幅度有三种表示法,即峰值、平均值和有效值。 (2)周期(T):从振动波形来看,连续两次波峰或者波谷之间耗费的时间就是一个振动周期,也就是完成一次振动所需的时间。 (3)频率(f):单位时间内振动循环的次数f,单位是赫兹(Hz)。频率是振动特性的标志,是分析振动原因的重要依据。周期T是物体完成一个振动

汽车振动分析试题1

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 1121y m T = m 2动能:2222222 22 222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 323 33)2 1(21))(21(212 1y m R y R m J T === ω 系统势能: 2 21)21(21)21( y k y g m gy m V + +-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =+ +-++= +2 212 321) 2 1(2 12 1)2 13 1(2 1 上式求导,得系统的微分方程为: E y m m m k y '=+ + +) 2 131(4321 固有频率和周期为: ) 2 131(43210m m m k + + = ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 212 1x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 2 1= ,角速度为x R 21=ω,转过的角度为x R 21= θ。轮子动能: )83(21)41)(21(21)4 1( 2 12 1212 122 21212 2 12x m x R R m x m J v m T c =+= + = ω 系统势能: x

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

车辆悬架振动分析

车辆悬架系统振动研究概述 关键词:振动悬架 摘要: 本文简单介绍了车辆振动的相关知识,对其做了简明的分析,由于篇幅有限故只重点介绍了与车辆悬架相关的知识。根据不同结构悬架的特点,分别介绍与其相关的振动研究内容和成果。 引言 悬架系统是提高车辆平顺性(乘座舒适性)和安全性(操纵稳定性)、减少动载荷引起零部件损坏的关键,。自70年代以来,工业发达国家开始研究基于振动主动控制的主动/半主动悬架系统。引入主动控制技术后的悬架是一类复杂的非线性机、电、液动力系统,其研究进展和开发应用与机械动力学、流体传动与控制、测控技术、计算机技术、电子技术、材料科学等多个学科的发展紧密相关。为此,关于车辆悬架系统振动的研究比较困难,但是其又具有十分重要的实际意义。一、车辆悬架系统简介 悬架系统的作用主要是连接车桥和车架,传递二者之间的作用力和力矩以及抑制并减少由于路面不平而引起的振动,保持车身和车轮之间正确的运动关系,保证汽车的行驶平顺性和操纵稳定性。 悬架系统一般由弹性元件、减振器和导向装置等组成。其中,弹性元件的作用是承受和传递垂直载荷,缓冲并抑制不平路面所引起的冲击。按弹性元件分类包括钢板弹簧悬架、螺旋弹簧悬架、扭杆弹簧悬架以及气体弹簧悬架。钢板弹簧是1根由若干片等宽但不等长的合金弹簧片组合而成的近似等强度的弹性梁,多数情况下由多片弹簧组成。多片式钢板弹簧可以同时起到缓冲、减振、导向和传力的作用,可以不装减振器而用于货车后悬架。螺旋弹簧用弹簧钢棒料卷制而成,常用于各种独立悬架。其特点是没有减振和导向功能,只能承受垂直载荷。扭杆弹簧本身是1根由弹簧钢制成的杆,一端固定在车架上,另一端固定在悬架的摆臂上。气体弹簧是在1个密封的容器中冲入压缩气体,利用气体可压缩性实现弹簧的作用。气体弹簧具有理想的变刚度特性。气体弹簧有空气弹簧和油气弹簧2种。

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

微振动的高精度测量原理

微振动的测量原理及其应用 吴志超(机械与电子工程学院电子信息工程)指导教师:许海峰 摘要:振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。 对振动的研究意义非常重大。通过掌握振动的基本理论和分析方法,用以确定和限制振动时,工程结构和机械产品的性能、寿命及安全的有害影响;本文介绍了接触式和非接触式两种微振动的测量原理,可以运用振动理论去创造和设计新型振动设备、仪表及自动化装置。主题词:微振动;测量原理;应用 Abstract:Vibration refers to describe the system state parameters (such as displacement, voltage) in its benchmark fluctuation variations of process. In its narrow sense means mechanical vibration, namely the mechanical system of vibration. Electromagnetic vibration habit is called on oscillation. Mechanical system can maintain vibration, must have the flexibility and inertia. Due to its equilibrium elasticity, system deviation position, can produce reply force, prompting system; return to its original position Because of inertia, system in return balance position process accumulated the kinetic energy, so that the system across to the other side movement balance position. Because of elasticity and inertia mutual influence, just cause system vibration. The vibration research significance of very significant. Through mastery of vibration of basic theory and analysis method to determine and restrictions vibrating engineering structural and mechanical product performance, the life and the safety of harmful influence; This paper introduces the contact and contact-less two micro vibration measuring principle of vibration theory, and can be used to create and design a new vibration equipment,

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

汽车的振动测试技术

汽车的振动测试技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

汽车的振动测试技术 汽车供应商们采用先进的振动测试技术来保证汽车在行驶中的安静和平稳。汽车上的零件和组装件必须经受振动可控测试技术的检验。 汽车内部从仪表板到桌椅,从安全气囊传感器到引擎注油泵,诸多零部件都要经过精确振动模式和幅度的测试。 在有些情况下,要用振动测试法验证汽车的各种装置在一般路面条件下不会损坏。在另一些情况下,通过振动测试来识别机械发出的烦人的噪声。 在振动控制的工业中,开发成功的数字信号处理技术有可能在实验室和生产线上制造成更加贴近真实的振动环境。今天,振动测试除了使用随机波、正弦波和冲击波的传统方法,又增加了更加复杂的方法,比如随机波上加正弦波和波形复制。 正如名称所示,随机正弦波是把随机振动与正弦波结合起来形成复杂的振动形式;波形复制振动模仿出真实的汽车振动环境。随机正弦波振动把多个正弦波与具有宽频带的噪声结合在一起。正弦波振动可以是固定的或者是扫描式的谐波或非谐波振动,而且在整个频带内的振动幅度是可变的。就模仿在路面变化行驶中的随机振动的汽车来说,其引擎转速增加或减少时,随机正弦波振动是很好的测试方法。 实际应用 采用随机正弦波振动和波形复制方法对汽车进行测试,可真实地再现汽车行驶中的实际环境,用作设计验证和质量控制。 ?仪表板 许多汽车制造厂对仪表板组件进行振动测试以检查其发出的咯吱声和卡嗒声。这一项是新车购买者可能最不满意的地方,在保证金中占很大份额。 为了测试建造了专用振动台,它不使用风扇,为的是造成清静的环境来验证振动中的仪表板是否有咯吱声和卡嗒声。因为没有通风散热,只能在温升超过工作温度时做短时间的振动测试,然后测试要暂停一会儿让设备冷却下来。 除振动台外,所有能发出噪声的仪器设备,包括振动台的控制器都应放在测试室的列边。遥控面板和显示器要悬挂在测试装置的上面,便于工作人员能听见噪声并控制测试过程。 用于检验咯吱声和卡嗒声的振动模式,由随机波、扫描正弦波和代表负荷的多段波形所构成。其振动幅度要控制在汽车正常行驶中的额定实验值内。为了避免振动过于猛烈。要维修部件并做好紧固工作。 在振动测试中,操作人员起着关键性的作用,例如施加扫描式正弦波来重复加速引擎的振动模式,此时可能要加上几次扫频来发现异常的噪声。由于咯吱声和卡嗒声难于发现起因,操作者必须停止对仪表板做下一步的操作,并且用于动方式来控制振动频率和振幅,检查产生噪音的真正原因。这样才能找到产生噪声的机理,许多设备生产厂也采用这种方法作为质量控制的手段。

汽车振动分析作业习题与参考答案(更新)

1、 方波振动信号的谐波分析,00,02 (),2 T x t x t T x t T ? <

相位频谱图 1tan 0,1,3,5 n n n a n b φ -?? ===?????? ??? 2、 求周期性矩形脉冲波的复数形式的傅立叶级数,绘频谱图。 解: 数学表达式:

计算三要素: 傅立叶级数复数形式: 频谱图 00 00,0sin ,0,n x t n T A x n t n n n T ππ?=??=? ?≠-∞<<∞?? ()???? ?????≤≤≤≤--≤≤-=2 202222000 00 T t t t t t x t t T t x 偶函数 T x t a 0002=2sin 2010t n n x a n ωπ?=0 =n b 2 sin 22010t n n x a ib a X n n n n ωπ?==-=()2sin 1101012/2/02/2/102/2 /02/2/010********t n n x t in e e T x t in e T x dt e x T dt e t x T X t in t in t t t in t in t t t in T T n ωπωωωωωωω?=--?=-?=??=??=-------? ?T t x t n n x X n 0 0010002sin lim =?=→ωπ()∑ ∑ ∞-∞=∞-∞===n t in n t in n e n t n x e X t x 112sin 0 10ωωωπ

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

汽车基本振动测量方法

JLYY—JT —08 乘用车基本振动测量 编制: 校对: 审核: 审定: 标准: 批准: 浙江吉利汽车研究院有限公司 二〇〇八年六月 前言 为统一吉利汽车研究院对乘用车基本振动性能的测量,用以评价汽车的振动性能。根据本企业现有技术条件,制定出本标准。 本标准由浙江吉利汽车研究院有限公司提出。 本标准由浙江吉利汽车研究院有限公司综合技术部负责起草。 本标准主要起草人:胡寿品。 本标准于2008年6月1日发布实施。 Ⅰ1 范围 本标准规定了车辆基本振动性能测量的测量方法和测量条件等内容。 本方法适当乘用车和小型商用车的汽车基本振动性能的测量。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB /T 2298-1991 机械振动与冲击术语 3 定义 功率谱 针对功率有限的信号,所表现的单位频带内信号功率随频率的变换情况的。 振动方向 X向:由汽车的前端指向汽车的尾部,平行于水平参考平面。 Y向:驾驶员侧指向副驾驶员侧(对于右置方向盘车,则由副驾驶员侧指向驾驶员侧),平行于汽车水平参考面,与X方向垂直。 Z向:垂直于汽车水平参考平面。 图1:振动方向 阶次切片 在指定的阶次内,测量信号的能量随已知的周期运动频率的变化。 4 测量仪器 振动测量仪器 振动测量仪器通常由数据测量分析系统、数据采集系统、振动加速度传感器(包括电荷放大器)共4页第1 页 组成。整个测量应有足够大的动态响应范围,具振动信号的频谱分析功能和有效值的计算功能以及振动的阶次跟踪测量分析的能力。如LMS的SCADAS 305 数据采集系统+–Signature Acquisition RT 可以满足使用要求。 测量振动加速度传感器应优先选择三轴加速度传感器,频响误差不大于±5%的有效测量频率范围必须覆盖5—2000 Hz。传感器质量不得大于20g,以减小对被测部件的影响。对于受条件限制,在没有三轴加速度传感器的情况下,允许使用三个单向加速度传感器组合在一起使用,但其性能不得低于规定。 3振动测量仪器每年至少需要进行一次计量检定,且在有效期使用期内。 转速测量仪器 用于测量发动机转速的转速仪的测量精度±%。不得使用车上的同类仪表作为测量数据的输入。 气象仪 测温装置:精度在±1以内。 测风速装置:精度在±3%以内。 5 测量条件

振动试验理论基础与方法培训

奥 申 检 测 振动试验理论基础与方法培训 主讲人:洪城明 上海奥申检测科技有限公司 培训目的: (1)基本了解振动试验相关的基础理论(2)掌握理解振动试验相关的核心理论 (3)了解振动试验设备结构、功能,掌握其主要参数范围 (4)了解振动试验传感器关键参数、掌握核查方法与使用注意点(5)理解并掌握正弦振动、随机振动的试验方法(6)理解并掌握冲击试验方法 (7)了解夹具要求、开发验证过程,掌握共振搜寻确认方法(8)掌握GMW17010对零件振动试验的要求、流程和方法

奥 申 检 测 1.1振动试验目的 在实验室内模拟一连串实际的振动现象,测试产品在寿命周期中,是否能承受运输、储存或使用过程的振动环境的考验。 1.2应用 (1)耐久测试——获得临界使用条件,确定产品设计和功能的使用边界、制定要求标准。 (2)质控测试——考核产品耐振动性能是否达标、提前筛检出不良品,确认质量和提升产品的可靠性。 (3)失效分析——模拟失效环境,分析失效模式,助力改进。 1.3测试原理 通过振动硬件(振动台、夹具、控制器、传感器),按照目标振动条件输入振动参数,对目标施加外部振动激励,目标产生振动响应,通过采集和分析响应信号,分析目标振动状态和耐振性。 2测试硬件 2.1振动试验台 2.1.1分类 振动试验设备分机械振动试验台、电液振动试验台、电动振动试验台、模拟汽车运输试验台。 (1) 机械式振动试验台:适宜于低频定振试验或低频定位移扫频试验。 (2) 电液式振动试验台:适宜于低频定振试验或中低频扫频试验及随机试验和冲击实验。 (3) 电动式振动试验台:适宜于任何形式的给定信号的振动及冲击试验。 (4) 模拟汽车运输试验台:可代替实际跑车试验 2.1.2电动振动台结构(振动台-振动发生器、控制器、功放、冷却器) 2.1.3电动振动台原理 励磁线圈如图示2-2在振动台台体内建立磁场,励磁线圈与直流电源相连,在环行气隙里产生一个高磁通量。动圈部件,包括台面、骨架和驱动线圈,悬挂在振动台的环行气隙里,当交流电流通过驱动线圈时,电磁力会在驱动线圈的绕组上产生,使得台面产生向上和向下的往复移动,如图示2-2中双向箭头处显示。台面的移动量取决于振动控制器输出的驱动信号的大小和频率以及扩展台面(如果有的话)的质量、所加的负载质量和台面悬挂系统的刚度。

振动测试技术方案设计

振动测试技术案 采用加速度计作为振动传感器,在各种工况下,对被测系统多个测点的加速度信号进行测量,通过FFT频谱分析,得到结构的固有频率,描述系统的振动特性。 却迪哎怯嗟惟悟号追辿蟹數赛紫蚩胖讣竿机 图1振动测试硬件流程图 、传感器指标分析 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用便,所以成为最常用的振动测量传感器。在一般通用振动测量时,用户主要关心的是加速度计传感器的技术指标,包括灵敏度、带宽、量程、分辨率、输出电气特性等。 (1)灵敏度 传感器的灵敏度是传感器的最基本指标之一,灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平成正比,所以不同频段的加速度信号大小相差甚大。选择加速度传感器灵敏度时应对信号有充分的估计,最常用的振动测量压电式加速度计

灵敏度,电压输出型(IEPE型)为50?100 mV/g,电荷输出型为 1 ?50 PC/g。 (2)带宽 传感器的带宽是指传感器在规定的频率响应幅值误差( 士5%, 士10%, 士3dB)传感器所能测量的频率围。频率围的高,低限分别称为高、低频截止频率。截止频率与误差直接相关,所允的误差围大则其频率围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电气参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。 (3)量程 加速度传感器的测量量程是指传感器在一定的非线性误差围所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量围越小,反之灵敏度越小则测量围越大。IEPE(电压)输出型压电加速度传感器的测量围是由在线性误差围所允的最大输出信号电压所决定,最大输出电压量值一般 都为士5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。当 供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真,这种现 象在高低温测量时需要特别注意,当传感器的置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。 (4)分辨率 即能测量到的最小加速度变化量。加速度传感器的分辨率受其噪声的限制,输出噪声的大小随频带宽度而变化。 (5)输出电气特性

JIS_D1601-1995_汽车零部件振动试验方法(中文版)

IDC 629.113.01 : 620.173.5 D 1601 汽车零件振动试验方法 JIS D 1601 平成7年2月1日修改 日本工业标准调查会审议 (日本标准协会发行)

日本工业标准JIS 汽车零件振动试验方法D1601-1995 1.适用范围 本标准规定了汽车零件(以下称零件)的振动试验方法。 2.试验种类 试验种类分以下几类。 ⑴ 共振点检测试验 求零件共振振动频率的试验 ⑵ 振动性能试验 研究施振时零件性能的试验 ⑶ 振动耐久试验 研究以一定的振动频率激振,相对于振动的零件耐久性的试验 ⑷ 扫描振动耐久试验 研究按同样的比例连续增减振动频率激振,相对于振动的零件耐久性的试验 3.振动条件分类 振动性能试验及振动耐久试验的振动条件分以下几种。 ⑴ 零件的振动条件,按被安装的汽车的种类分: 1种 主要指轿车系列 2种 主要指公共汽车系列 3种 主要指货车系列 4种 主要指二轮汽车系列 ⑵ 零件振动条件按,被安装的状态分: A种 安装在车体或悬架装置的弹簧上,振动较小时 B种 安装在车体或悬架装置的弹簧上,振动较大时 C种 安装在发动机上,振动较小时 D种 安装在悬架装置的弹簧下和安装在发动机上,振动较大时,振动条件分类及相应产品示例如参考表1。 4.试验条件 4.1试验顺序 试验按共振点检测试验,振动性能试验,振动耐久试验或扫描振动耐久试验的顺序 进行。不过,共振点检测试验和振动性能试验,或共振点检测试验和振动性能试验及扫描振动耐久试验同时进行也可以。 4.2 零件的安装 零件安装在振动试验台上的状态原则上应接近于零件的使用状态。 4.3 零件的动作 试验原则上要按零件的动作状态进行。 4.4 施振方法 相对于零件的安装状态,按顺序施加上下、左右、前后垂直的简谐振动。但是,简谐振动的高次谐波含有率⑴,原则上在振动加速度的25%以内。 注⑴:简谐振动的高次谐波含有率的计算如下: ⑴以正弦波振动的振动加速度±a(m/s2),按下式计算: a=Kf2A×10-3 其中,K=2π2≈19.74 f:振动频率(Hz) A:全振幅(mm)

相关文档
最新文档