没有极限概念,如何理解导数的几何意义(中学数学研究

合集下载

导数的几何意义是什么

导数的几何意义是什么

导数的几何意义是什么导数作为微积分中的重要概念,不仅在数学理论研究中有着重要地位,还在实际问题的求解中起到了至关重要的作用。

导数的几何意义是指在几何上,导数代表了函数曲线在某一点处的切线斜率。

它使我们能够通过函数图像来理解函数的变化规律及其在特定点的切线性质。

本文将重点论述导数的几何意义以及相应的应用。

一、导数的定义及计算在开始讨论导数的几何意义之前,我们首先来回顾一下导数的定义及计算方法。

对于函数y=f(x),在点x处的导数可以通过下式计算得出:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]根据这一定义,我们可以求得函数在任意一点处的导数值。

导数的计算可以采用一些常用的方法,如基本函数求导法则、链式法则、乘积法则和商法则等。

二、导数的几何意义1. 切线斜率导数的最直观的几何意义就是切线斜率。

当我们计算出函数在某一点的导数后,这个导数值便代表了函数曲线在该点处的切线斜率。

对于一个凸函数而言,导数可以告诉我们曲线在该点是上升还是下降,以及上升或下降的速度有多快。

2. 极值点导数在几何中还有一个重要的意义是寻找函数的极值点。

当函数在某一点的导数为0时,这一点可能是函数的极大值点或极小值点。

通过求导,我们可以找到函数在哪些点处可能存在极值,并进一步帮助我们寻找函数图像上的极值点,从而得出函数的极值。

3. 凹凸性函数图像的凹凸性也可以通过导数来判断。

当函数的导数在某一区间内始终大于0时,函数图像在该区间内是上凸的;而当导数在某一区间内始终小于0时,函数图像在该区间内是下凸的。

这种通过导数判断凹凸性的方法在优化问题中具有重要应用。

三、导数的应用导数的几何意义不仅在数学理论研究中起到关键作用,也在实际问题的求解中发挥了巨大的作用。

1. 最优化问题在经济学、物理学等领域中,最优化问题是非常常见的。

通过求解函数的导数,我们可以确定函数的最大值和最小值,从而帮助解决各种最优化问题。

导数的几何意义

导数的几何意义

导数的几何意义导数是微积分中的一个重要概念,它表示了函数的变化率。

导数的几何意义可以从两个方面来理解:一是导数代表的是函数曲线在其中一点的切线斜率,二是导数代表的是函数曲线在其中一点的局部线性逼近。

首先,我们来看导数代表的是函数曲线在其中一点的切线斜率。

对于一条曲线上的任意一点P(x,y),求该点处的导数,即可得到曲线在该点的切线斜率。

具体来说,如果一个函数f(x)在特定点x0处可导,那么它在该点的导数f'(x0)就是该点处曲线的切线斜率。

换言之,导数给出了函数在任意一点的变化速率。

对于单调递增的函数而言,导数始终为正;而对于单调递减的函数而言,导数始终为负。

当导数为零时,函数在该点处可能存在极值。

其次,导数代表的是函数曲线在其中一点的局部线性逼近。

这可以通过导数定义中的极限来理解。

如果在其中一点x0处,函数f(x)的导数存在,那么可以用一个线性函数y=kx+b来近似描述原函数在该点的附近情况。

其中k为导数f'(x0),b为函数曲线在该点处的切线与y轴的交点(截距)。

这个线性函数就称为原函数在x0附近的局部线性逼近。

这种线性逼近的好处是使得函数在其中一点的局部性质更加直观可见。

通过这两个几何意义的理解,我们可以得出导数在几何上的重要性。

首先,导数可以帮助我们了解函数在特定点的斜率,从而判断函数局部的增减变化规律,甚至找到函数的极值点,这对于解决很多实际问题具有重要意义。

其次,导数能够提供函数在其中一点附近的线性逼近,使得我们能够直观地了解函数的局部情况,进而推断函数在整个定义域上的特性。

这对于研究函数的全局性质也是至关重要的。

除了以上的几何意义,导数还有一些重要的应用。

例如,在物理学中,速度的导数就是加速度,加速度的导数就是速度的变化率。

在经济学中,导数可以表示商品的边际效用,即单位商品消费增加所带来的满足感的变化。

在工程学中,导数可以用来优化控制系统设计,通过最小化出错率来提高系统的性能。

导数的概念定义

导数的概念定义

导数的概念定义导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。

导数的概念定义可以从几何和代数两个方面来进行解释。

一、几何意义几何意义上,导数可以理解为函数图像在某一点处的切线斜率。

具体来说,设函数y=f(x),在x=a处有导数,则该点切线的斜率即为f'(a)。

当x靠近a时,函数值f(x)也会越来越接近于f(a),此时切线斜率也会越来越接近于f'(a)。

因此,导数可以用来描述函数在某一点附近的变化情况。

二、代数意义代数意义上,导数可以理解为函数在某一点处的极限值。

具体来说,设函数y=f(x),在x=a处有导数,则该点导数的定义式为:f'(a)=lim(x->a){(f(x)-f(a))/(x-a)}这个式子表示当x无限接近于a时,(f(x)-f(a))/(x-a)的极限值即为该点导数。

这个极限值可以看作是函数在该点处微小增量与自变量微小增量之比的极限值。

三、符号表示通常情况下,我们用dy/dx或y'来表示函数y=f(x)的导数。

其中,dy/dx表示y关于x的导数,y'表示函数f(x)的导数。

四、求导法则求导法则是计算导数的基本方法。

以下是常用的求导法则:1. 常数函数的导数为0。

2. 幂函数的导数为其指数乘以系数。

3. 指数函数的导数为其自身乘以ln(a)。

4. 对数函数的导数为其自变量倒数。

5. 三角函数和反三角函数的导数可以通过公式推出。

6. 复合函数求导需要使用链式法则或者换元法等方法。

五、应用1. 导数可以用来求解最值问题。

当函数在某一点处取得最大值或最小值时,该点处必须满足其切线斜率为0或不存在。

因此,我们可以通过计算函数在每个可能取得最值的点处的导数来确定最值点。

2. 导数可以用来分析曲线形状。

通过计算不同点处的斜率,我们可以了解曲线在不同位置上升或下降程度以及拐点位置等信息。

3. 导数还有其他应用,如牛顿迭代法、泰勒展开式等。

导数的概念及几何意义_基础

导数的概念及几何意义_基础

导数的概念及几何意义【要点梳理】要点一:导数的概念 1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 要点诠释:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数.(4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示. 要点二:导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示: ()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.要点诠释:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.如图1.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.如图2,无论点P 在曲线上还是曲线外, 过点P 都可以作两条直线1l 、2l 与曲线相切.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.要点三:导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.要点诠释:0'()f x 表示函数()f x 在0x 处的瞬时变化率,而在很多物理量中都是借助变化率来定义的.比如,瞬时角速度是角度()t θ对时间t 的变化率;瞬时电流是电量()Q t 对时间t 的变化率;瞬时功率是功()W t 对时间t 的变化率;瞬时电动势是磁通量()t Φ对时间t 的变化率.最常用的是瞬时速度与瞬时加速度. 【典型例题】类型一:导数定义的应用例1. 用导数的定义,求函数()y f x x==x =1处的导数. 【思路点拨】三步法求函数在某点处的导数值. 【解析】先求增量:(1)(1)11y f x f x∆=+∆-=-+∆===再求平均变化率:y x ∆=∆ 求极限,得导数:01'(1)lim2x y f x ∆→∆==-∆.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.举一反三:【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - . 【解析】 ∵ )1()1(22x x y ∆+-+∆+--=∆+-,∴ 2(1)(1)23y x x x x x∆--+∆+-+∆+==-∆∆∆, ∴()'1=f -()00'(1)limlim 3=3x x yf x x ∆→∆→∆==-∆∆.【变式2】求函数 2()3f x x =在x =1处的导数.【解析】 ∵22(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆,∴263()63y x x x x x∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=. ∴函数2()3f x x =在1x =处的导数为6 .【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.【解析】∵2200()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,∴23()3y x x x x x∆∆-∆==-∆∆∆, ∴00(1)limlim(3)3x x yf x x ∆→∆→∆'-==-∆=∆.例2. 已知函数()24f x x=,求()f x '. 【解析】先求增量:2222444(2)()()x x x y x x x x x x ∆+∆∆=-=-+∆+∆, 再求平均变化率:224(2)()y x x x x x x ∆+∆=-∆+∆. 求极限,得导数:23004(2)8'limlim ()x x y x x y x x x x x∆→∆→∆+∆==-=-∆++∆.【总结升华】求导数的步骤和求导数值的步骤一样,叫三步法求导.举一反三:【变式1】求函数y=在(0,)+∞内的导函数.【解析】∵y∆==,∴y x ∆==∆==∴321lim2x y x -∆→'===-.【变式2】已知()f x =,求'()f x ,'(2)f .【解析】∵y ∆=∴yx ∆=∆==∴'()limx f x y ∆→'==.当2x =时,1'(2)4f ==.例3. 若0'()2f x =,则000()()lim2k f x k f x k→--=________.【思路点拨】【解析】根据导数定义:0000[()]()'()limk f x k f x f x k→+--=-(这时增量x k ∆=-),所以000()()lim2k f x k f x k →--000[()]()1lim 2k f x k f x k →+--⎧⎫=-⋅⎨⎬-⎩⎭000[()]()1lim21221.k f x k f x k →+--=-⋅-=-⨯=-【思路点拨】(1)有一种错误的解法:根据导数的定义:0000()()'()limk f x k f x f x k→--=(这时增量x k ∆=),所以 000000()()()()11limlim 21222k k f x k f x f x k f x k k →→----==⨯=.(2)在导数的定义中,增量x ∆的形式是多种多样的,但不论x ∆选择哪种形式,y ∆也必须选择与之相对应的形式.利用函数()f x 在0x x =处可导的条件,可以将已给定的极限式恒等变形为导数定义的形式.概念是解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题.举一反三:【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【答案】(1)00(1)(1)1(1)(1)1lim lim '(1)1222x x f x f f x f f x x →→+-+-===(2)00(12)(1)(12)(1)lim 2lim 2'(1)42x x f x f f x f f x x→→+-+-===【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【答案】()()()()()()[]00000000000000000()()lim()()lim()()lim21lim 2lim 1()2'()22'()2x x x x x f x x f x x xf x x f x x f x x f x x xf x x f x xf x x f x x x x f x af x a∆→∆→∆→∆→∆→+∆--∆∆+∆--∆+∆--∆∆-∆-∆-∆-=-=-∆∆--∆=-==-==【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.【答案】 原式0000()()()()lim2h f x h f x f x f x h h→+-+--=000000()()()()1lim lim 2h h f x h f x f x h f x h h →→+---⎡⎤=+⎢⎥-⎣⎦ 0000()()1'()lim 2h f x h f x f x h -→--⎡⎤=+⎢⎥-⎣⎦[]0001'()'()'()2f x f x f x =+=. 类型二:求曲线的切线方程例4.求曲线21y x =+在点()12P ,处的切线方程.【思路点拨】利用导数的几何意义,曲线在点P (1,2)处的切线的斜率等于函数21y x =+在1x =处的导数值,再利用直线的点斜式方程写出切线方程. 【解析】先求切线的斜率()'1f :()()22001+111lim lim x x x y x x∆→∆→⎡⎤∆++∆⎣⎦=-∆∆ ()0lim +2=2x x ∆→=∆,由条件可知()1=2f ,由点斜式可得,过点P 的切线方程为:22(1)y x -=-,即2y x =.【总结升华】求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 举一反三:【变式】求曲线215y x x=++上一点2x =处的切线方程. 【答案】先求2'|x y =:∵22211(2)2+4222(2)x y x x x x x -∆⎛⎫∆=+∆+-=∆+∆+ ⎪+∆+∆⎝⎭,∴142(2)y x x x ∆-=+∆+∆+∆, ∴001115limlim(4)4=2(2)44x x y y x x x ∆→∆→∆-'==+∆+=-∆+∆.再求2|x y =:22119|=25=22x y =++.由点斜式得切线方程:()915--224y x =,即15480x y -+=. 【高清课堂:导数的几何意义 385147 例2】 例5.求曲线()3f x x =经过点(1,1)P 的切线方程.【思路点拨】本题要分点(1,1)P 是切点和(1,1)P 不是切点两类进行求解. 【解析】第一步:先求导函数.00()()limlimx x f x x f x xy y x ∆→∆→+∆-∆∆'==∆ ()()33322330222()lim3+3+=lim=lim 3+3+3=3x x x x x xxx xx x x x x x x x x x x ∆→∆→∆→+∆-∆-∆=+∆∆∆∆∆g g g第二步:验证点(1,1)P 是否在曲线上. 由于()11f =,所以P 在曲线上. 第三步:分类讨论. ①若点P 是切点,则切线的斜率为()'13f =,于是切线方程为13(1)y x -=-,即32y x =-; ②若点P 不是切点,设切点为()()3000,1x x x≠.则切线的斜率为()200'3f x x =,于是切线方程为:320003()y x x x x -=- . 由于切线经过点(1,1)P ,于是有3200013(1)x x x -=-,整理得:()()()()()()32322322200000000000023+1=22++1=221=21+11x x x x x x x x x x x x ()()2000=121x x x ()()200=12+1=0x x ,解得012x =-或01x =(舍去). 所以切线方程是131+(+)842y x =,即3144y x =+. 综上所述,所求切线方程为32y x =-或3144y x =+. 【思路点拨】求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程. 举一反三:【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程. 【解析】先求导函数:20()lim33x yf x x x∆→∆'==-∆.再验证:3(2)232=2f =-⨯,所以点(2,2)在函数()f x 图象上.最后讨论:(1)当点(2,2)是切点时,切线的斜率为(2)9f '=,则切线方程为:9160x y --=.(2)当点(2,2)不是切点时,设切点坐标为3000(,3)x x x -.则切线的斜率为200()33f x x '=-(02x ≠),所以切线方程为()320000(3)=33()y x x x x x ----. 代入点(2,2)得:()3200002(3)=33(2)x x x x ----整理得:0432030=+-x x ⇒0)2)(1(200=-+x x ⇒10-=x ,此时切线方程为2=y .综上所述,所求的切线方程为9160x y --=或2y =.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【解析】()200()()11'=limlim =x x f x x f x y x x x x x∆→∆→+∆--=-∆+∆ (1)由于点A 不在曲线上,设切点坐标为1,a a ⎛⎫ ⎪⎝⎭, 则切线的斜率为21'|=x a y a =-,切线方程为211()y x a a a -=--, 将()10A ,代入,得12a =.所以所求的切线方程为44y x =+ .(2)令2113x -=-,解得x = 所以斜率为13-的切线的切点为⎭或⎛ ⎝⎭.所以所求的切线方程为133y x =-+或133y x =--. 【高清课堂:导数的几何意义 385147 例3】【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.【答案】 0(2+)(2)'(2)lim x f x f f x∆→∆=∆ 3230(2)2(2)(2)(282)=lim x x a x b x a a b a x∆→+∆++∆++∆+-+++∆ 20lim 1286()128x a b x x a b ∆→⎡⎤=+++∆+∆=++⎣⎦ 0g(2+)g(2)g '(2)lim x x x ∆→∆=∆220(2)3(2)2(2322)=lim x x x x∆→+∆-+∆+--⨯+∆ 0lim(1)1x x ∆→=+∆= 由条件可知:(2)0f =且'(2)'(2)f g =⇒2,5a b =-=,所以切线l 的方程:2y x =-.类型三:导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【思路点拨】【解析】()0(2)(2)'2lim t T t T T t∆→+∆=∆ ()0012012015152+57=lim 120=lim 77+120=49t t t tt ∆→∆→⎛⎫⎛⎫++ ⎪ ⎪∆+⎝⎭⎝⎭∆∆ ()()1202=C /min 49T '︒ 表示太阳落山后2分钟蜥蜴的体温以()120C /min 49︒ 的速度下降. 【总结升华】解释导学的实际意义要结合题目中变化的事物(指自变量),它反映事物变化的快慢.举一反三:【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率). 【解析】00()()s t t s t s t t+∆-∆=∆∆ 220000000011[()()][]2212v t t a t t v t at tv at a t +∆++∆-+=∆=++∆ 2s t ∴=的瞬时速度是02v a +.【变式2】质点按规律()21s t at =+做直线运动(位移单位:m ,时间单位:s ).若质点在 2 s t =时的瞬时速度为8 m / s ,求常数a 的值.【答案】质点 2 s t =时的瞬时速度为()'28s =.∵()222(2)2(2)1214()s s t ―s a t ―a a t a t ∆=+∆=+∆+⨯=∆+∆-, ∴4s a a t t∆=+∆∆. ∴()0'2lim4t s s a t ∆→∆==∆, 所以48a =,即a =2.。

导数的概念是什么及几何意义

导数的概念是什么及几何意义

导数的概念是什么及几何意义 导数的概念是什么及几何意义 我们专升本是以计算为主的,下面让我们一起学习导数定义以及几何意义在考试中的考查内容及相关题型的解法吧!以下是店铺整理的导数的概念是什么及几何意义,供大家参考借鉴,希望可以帮助到有需要的朋友。 导数的概念 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的`概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 导数的求导法则 由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下: 1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。 2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。 3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。 4、如果有复合函数,则用链式法则求导。 导数的历史沿革 起源 大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。 发展 17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。 成熟 1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示: 。 1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。 微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限理论,指一种意识形态上的过程,比如无限接近。 就数学历史来看,两种理论都有一定的道理,实无限就使用了150年。 光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。 下载全文

3导数的几何意义

3导数的几何意义

3导数的几何意义导数的几何意义是描述函数在其中一点上的变化率。

具体来说,导数告诉我们函数在特定点的斜率,也就是函数曲线在这一点处的切线的斜率。

通过导数,我们可以了解函数在不同点上的斜率以及函数的凹凸性,从而得到函数图像的一些几何特征。

对于具体函数f(x),它在特定点x=a处的导数可以用极限的形式表示:f'(a) = lim(h -> 0) (f(a+h) - f(a))/h这个极限表示函数在点a处的斜率,也就是切线的斜率。

根据这个定义,我们可以进行以下几个几何推论。

一、导数与函数的增减性:如果函数在其中一区间上的导数恒大于0,那么函数在这个区间上是递增的;如果导数恒小于0,那么函数在这个区间上是递减的。

证明:假设函数f(x)在区间[a,b]上的导数恒大于0,即f'(x)>0,对于任意的x1和x2,其中a<=x1<x2<=b。

我们可以将函数f(x)在点x1处和x2处进行比较。

根据导数的定义,我们可以得到以下不等式:f(x2)-f(x1)=(x2-x1)*f'(c),其中c介于x1和x2之间。

由于f'(c)>0,且(x2-x1)>0,所以有f(x2)-f(x1)>0,即f(x2)>f(x1)。

这意味着函数f(x)在区间[a,b]上是递增的。

类似地,我们可以证明当导数恒小于0时,函数在其中一区间上是递减的。

二、导数与函数的凹凸性:函数在其中一点处的导数可以告诉我们函数图像是向上凸起还是向下凹陷。

如果函数在特定点处的导数大于0且导数的导数(也就是函数的二阶导数)恒大于0,那么函数在这一点是向上凸起的;如果函数在特定点处的导数小于0且导数的导数恒小于0,那么函数在这一点是向下凹陷的。

证明:假设函数f(x)在点x=a处的导数大于0,即f'(a)>0,且f''(a)>0。

对于任意的x1,其中x1!=a,我们可以考虑函数f(x)在点a和x1之间的变化。

导数的概念及其几何意义课件

经济决策
弹性分析:通 过导数计算需 求弹性、供给 弹性等,分析 市场供需关系
动态分析:通 过导数计算动 态均衡、动态 优化等,分析 经济动态变化
经济增长模型: 通过导数建立 经济增长模型, 分析经济增长
规理论:导数在控制系统 中用于计算控制参数,实现 精确控制
优化设计:通过导数计算, 找到最优解,提高工程效率
导数的几何意义
导数与切线斜率的关系
导数是函数在某一点的切线斜率 导数等于函数在该点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的切线斜率的极限
导数与函数图像的变化趋势
导数是函数在某一点的斜率 导数的正负决定了函数图像的变化趋势 导数为正,函数图像上升 导数为负,函数图像下降 导数为零,函数图像在该点处可能存在拐点
导数与极值点的关系
导数是函数在某一点的斜率
导数为0的点可能是极值点
添加标题
添加标题
添加标题
添加标题
极值点是函数在某一点处的最大 值或最小值
导数为正或负的点可能是极值点
导数与函数增减性的关系
导数是函数在某一点的切线斜 率
导数大于0,函数在该点递增
导数小于0,函数在该点递减
导数等于0,函数在该点可能存 在极值
导数的概念及其几何意义
汇报人:
汇报时间:20XX/XX/XX
YOUR LOGO
目录
CONTENTS
1 单击添加目录项标题 2 导数的概念 3 导数的几何意义 4 导数的应用
单击此处添加章节标题
导数的概念
导数的定义
导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的极限值 导数是函数在某一点的微分值
导数的应用

导数的几何意义的理解与应用

导数的几何意义的理解与应用1、几何意义:)(x f 在0x x =处导数)(0'x f 即为)(x f 所表示曲线在0x x =处切线的斜率,即)(0'x f k =,也就是xx f x x f ∆-∆+)()(00当x ∆无限趋近于0时,比值接近某个常数. 切线方程为:))(()(00'0x x x f x f y -=-.2、作用:确定0x x =处切线的斜率(在已知)(x f 表达式的情况下),从而确定切线方程.3、理解导数的几何意义应注意(1)利用导数求曲线的切线方程:①求出y f (x)=在0x 处的导数0f '(x );②利用直线方程的点斜式得切线方程000y y f '(x )(x x )-=-(2)若曲线y f (x)=在点00P(x ,f (x ))处的导数不存在,但有切线,则切线与x 轴垂直。

(3)显然0f '(x )0>时,切线的倾斜角为锐角;0f '(x )0<时,切线的倾斜角为钝角;0f '(x )0=,切线与x 轴平行。

(4)求曲线的切线方程时要注意“过点P 的切线”与“点P 处的切线”的差异:在求过点P 的切线时,点P 不一定是切点,点P 也不一定在曲线上,这时需要设切点。

4、应用举例例1、求曲线2y x =在点(1,1)处的切线方程。

分析:要求在点(1,1)处的切线方程,只需求出切线的斜率。

由导数的几何意义知,其斜率为f '(1),为此只需求出曲线在点(1,1)处的导数。

解:因为2y f (1x)f (1)(1x)12x x x x∆+∆-+∆-===+∆∆∆∆,当x ∆无限趋近于0时,2x +∆无限趋近于2,即f '(1)2=,所以所求切线的斜率为2,故所求切线方程为y 12(x 1)-=-,即y 2x 1=-。

点评:利用导数的几何意义求曲线的切线方程的步骤;(1)求出函数y f (x)=在点0x 处的导数0f '(x );(2)根据直线的点斜式方程,得切线方程为000y y f '(x )(x x )-=-。

导数的几何意义

导数的几何意义导数是微积分中的一个重要概念,用来描述函数在某一点的变化率。

它在几何学中具有重要的意义,可以帮助我们理解函数的图像及其在不同点处的切线、极值和凸凹性质。

本文将就导数的几何意义展开探讨。

1. 切线及斜率在高中数学中,我们学习了函数的切线和斜率的概念。

通过求导,我们可以更深入地理解这些概念。

对于一元函数f(x),导数f'(x)表示了函数在该点的切线的斜率。

具体而言,对于函数y=f(x),如果f'(a)存在,那么在点(x=f(a),y=f(a))处的切线斜率即为f'(a)。

这意味着我们可以通过求导来获得函数在某一点处的切线斜率,进而帮助我们确定函数在该点的变化趋势。

2. 极值与拐点通过导数,我们还可以判断函数的极值及拐点。

对于一元函数f(x),如果f'(a)=0,那么在点(x=a,y=f(a))处,函数可能存在极值或拐点。

具体而言,当f''(a)>0时,a为极小值点;当f''(a)<0时,a为极大值点;当f''(a)=0时,需要进一步的分析。

这样,通过求导我们可以轻松地找到函数的极值点及拐点,并帮助我们更好地理解函数的曲线特征。

3. 凸凹性凸凹性是描述函数曲线形状的一个重要性质,通过导数可以帮助我们判断函数在不同区间上的凸凹性质。

具体而言,对于函数f(x),如果f''(x)>0,即导数的导数大于0,那么该函数在该区间上是凸函数;如果f''(x)<0,即导数的导数小于0,那么该函数在该区间上是凹函数。

通过这种方式,我们可以通过求导来判断函数在不同区间上的凸凹性质,从而更好地理解函数曲线的特点。

4. 导数与曲线图像最后,通过导数我们可以更好地理解函数的图像。

导数可以告诉我们函数在不同点上的斜率,进而帮助我们画出函数的切线。

通过画出函数的切线,我们可以更好地理解函数的变化趋势和形状。

导数的概念及其几何意义


= f(x0) , y0 + Δy = f(Δx + x0) , 割 线
PQ
的斜率
k

Δy Δx
+ΔΔxx-fx0.
[解题过程] ∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1 =(Δx)3+3(Δx)2+3Δx, ∴割线 PQ 的斜率 k=ΔΔyx=Δx3+3ΔΔxx2+3Δx =(Δx)2+3Δx+3. 设当 Δx=0.1 时割线的斜率为 k1, 则 k1=(0.1)2+3×0.1+3=3.31.
单击此处添加副标题
§ 2 导数的概念及其几何意义
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
2.1 导数的概念
2.2 导数的几何意义
单击此处添加文本具体内容,简明 扼要地阐述你的观点
理解导数的概念,会求函数在某点处的导数. 理解导数的几何意义. 根据导数的几何意义,会求曲线上某点处的切线方程.
那么,导数f′(x0)表示
的物理意义.
,这就是导数
运动物体在时间x0的速度
解析: y=x2 在 x=1 处的导数为 f′(1)=liΔxm→0 1+ΔΔxx2-1=2.
一.函数y=x2在x=1处的导数为( )
○ A.2x
B.2+Δx
○ C.2
D.1
答案: C
二.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是( )
∴a=1,即 a 的值为 1.
已知函数f(x)=ax2+c,且f′(1)=2,求a.
过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当 Δx=0.1时割线的斜率.
一般地,设曲线 C 是函数 y=f(x)的图象,P(x0,y0)是曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

没有极限概念,如何理解导数的几何意义
安徽省阜阳市第三中学董海涛 236006导数是微积分的核心内容之一,由于它是研究现代科学技术必不可少的工具,也是研究函数性质的有效方法,同时它也是高等数学的内容,所以在历次教材改革中,变动既频繁又较大,既体现了编者对它割舍不下的情怀又充满了不知如何安排的迷茫。

本文就北师大版《普通高中课程标准实验教科书数学选修2-2》(以下简称“新课程教材”)中对这部分内容的安排,提出教学中的困惑,并结合实践,提出对策,供大家参考。

1新课程教材安排
与原人教版《全日制普通高级中学教科书数学选修II》(以下简称旧课程教材)相比,新课程教材在教学内容、教学要求上都有很大变化,其中与本文讨论有关的是导数概念的引入,不讲极限概念,而是注重通过实际背景创设丰富的情境,不惜篇幅引导学生经历由平均变化率到瞬时变化率的过程,从本质上认识和理解导数概念,在给出导数定义后,又给出了三个具体例子,加深对导数的实际意义的认识,这些都是旧课程教材所没有呈现的。

教材的具体安排是:§1 《变化的快慢与变化率》,用了两个实例分析和两个例题,帮助学生实现“平均变化率”到“瞬时变化率”的质的飞跃,为导数概念的引入做好了扎实的铺垫。

§2《导数的概念及其几何意义》,由于有了上一节大量生动的背景实例,至此,抽象出导数定义已是水到渠成。

实际教学中,学生对“……在数学中,称瞬时变化率即为函数y=f(x)在x 0点的
导数”是欣然接受的,相对于旧课程教材,导数定义的给出无疑是成功的,但我们的困惑是:
2没有极限的概念,如何理解导数的几何意义
新课程教材在§2中,专门安排了§2.2《导数的几何意义》,教材在描述性地给出了“曲线的切线”定义后,紧接着就是“该切线的斜率就是函数y=f(x)在x 0处的导数0'()f x ”。

学生的困惑是:0'()f x 不是函数y=f(x)在点x 0处的瞬时变化率吗?它反映的
不是割线AB 在点x 0处的变化快慢吗?它怎么又是y=f(x)在点x 0处的切线斜率了呢?我们困惑的是:(1)本想弱化形式化的定义,降低学生理解导数的难度,但教材在导数定义后,又“通常用符号0'()f x 表示,记作10000010()()()()'()lim lim x x f x f x f x x f x f x x x x
→∞→-+-==-”,这里还是出现了形式化的定义了。

(2)极限定义能回避得了吗?导数定义中无法回避,这是不争的事实,新课程教材在§3《计算导数》中,不仅出现了极限的符号,而且出现了极限的运算,与其在这里让老师费尽口舌给一头雾水的学生解释半天(事实上学生仍无法理解),既偏离了主题又没有效果,不如干脆增加一

“极限的定义”。

3我们的对策
我省是2006年秋季进入新课改的,首轮教学中我们循规蹈矩地按教材进行的教学,结果学生只能是生吞活剥地记下结论,由于不理解导数的几何意义,在实际应用中,只能是照搬模仿,根本谈不上灵活二字。

在2007年开始的二轮教学中,我们对新教程教材作了大胆的尝试,收到了理想的效果,具体地在两处做了调整。

3.1增加一节极限的定义
在选修2-2§2《变化率与导数》的§1《变化的快慢与变化率》之前,增加一节,课题是《极限的定义》,课时为一节课,主要介绍极限符号的引入和使用,初步渗透极限思想,具体内容是:
首先,通过列举实例,给出“数列极限”的描述性定义:一般地,设{a n }是一个无穷数列,如果当n 趋向于无穷大时,a n 无限地趋向于一个常数a ,则称a 是数列{a n }的极限。

然后给出形
式化的符号表示:即“当n a →∞→n 时,a ”记作“lim n n a a →∞
=” 然后,将数列极限的初步认识正迁移到“函数极限”,仍然通过实例列举,只介绍“当0x x →时,函数f(x)的极限”,并给出
形式化的符号表示:“当0x x →时,f(x)→a ,记作0
lim ()x x f x a →=
”,以实现数列极限的顺应和同化。

这里不介绍“当x →∞时,函数f(x)的极限”,也不介绍“函数的左、右极限”,以免增加学生理解上的困难,更主要的是避免冲淡主题——我们这里只是介绍极限的形式化表示和极限思想,并不涉及极限的完整定义。

实事上,在旧课程教材选修II 中,学生对“0x x →时,函数f(x)
的极限”的理解要比“函数的左、右极限”容易的多。

最后,为了加深对极限符合的认识,我们设计了一组练习:
1、请用语言描述下列极限符号的含义(有的教师根据班级学生情况,要求学生探究符合要求的数列{a n }或函数f(x)的解析
式):
1011(1)lim 1 (2)lim () 2 (3)lim () (4)lim ()43
n n x x x a f x f x f x →∞→→→-==-== 2、选择题:正三棱锥S-ABC 的相邻两个侧面所成的二面角为α,则α的取值范围是( )
A 、(0,π)
B 、(,)6ππ
C 、(,)3ππ
D 、(,)32ππ
3.2调整一段叙述
有了极限的符号表示,在§1节例1和例2中,均可以用极限符号表示“小球在t=5s 时刻的瞬时速度”和“合金棒在x=2处的线密度”了,而且将§2.2《导数的几何意义》的叙述调整为:
函数y=f(x)在区间[x 0,x 0+△x]的平均变化率为y x
,如图2-3所示,它是过A (x
0,f(x 0))和B(x 0+△x ,f(x 0
+△x ))两点的直线的斜率,直线AB 称为曲线y=f(x)在A 处的一条割线。

如图2-4所示,设函数y=f(x)的图像是一条光滑的曲线,从图像上可以看出:当点B(x 0+△x),f(x 0+△x))沿着曲线逐渐向点
A(x 0,f(x 0))靠近时,割线AB 将绕着点A 逐渐移动,当点B 沿着
曲线无限接近点A(即△x →0)时,割线AB 也无限地逼近一个极限位置——直线AC ,直线AC 和曲线y=f(x)在点A 处给我们“相切”的感觉,称直线AC 为曲线y=f(x)在点A 处的切线。

由于割线AB 和切线AC 都过点A ,所以割线AB 无限地趋近切线AC 也即是K AB 无限地趋近K AC 。

将上述变化过程表示如下:当△
x →0
时,K AB →K AC ,由极限的定义,即000000()()lim lim lim '()AC AB x x x f x x f x y K K f x x x
→→→+-==== 所以函数y=f(x)在x 0处的导数0'()f x 就是曲线在点A (x 0,y 0)处的切线斜率,这就是导数的几何意义。

图2-3 图2-4
4几点反思
4.1何谓“适度”的形式化?“数学教学不能只限于形式化的表达,要强调对数学本质的认识。

否则会将生动活泼的数学思维活动淹没在形式化的海洋里”,“强调本质,注重适度的形式化”(新课标十大基本理念之一)无疑是十分正确的。

但“形式化是数学的基本特征之一,在数学教学中,学习形式化的表达是一项基本要求”。

具体地,导数定义能离开形式化的表达吗?离开形式化的表达,只能让学生死记导数的几何意义,这与新课标理念背道而弛吧。

事实上,高二学生理解极限、导数的形式化表达并没有什么障碍。

4.2增加一节极限的定义,是否增加了课时?新课标实施的阵地在课堂,增加一节极限定义,是增加了一个课时,看看以高考为目的的普遍高中的课时安排吧,有几个学校的数学课时是每周四节?搞理论可以走得极端一些,但实践还是以尊重客观实际的好,以我校两个年级的实际教学效果看,增加一节极限定义,无疑是必要的。

4.3新课标要求实践于一线的广大教师,不仅是教材的执行者,还应是教材完善的参与者和建议者,教材是实现课程目标、实施课堂教学的重要资源,既然是资源就可以开发、利用,一线教师完全可以教学实际与需要,对教材做出合理的整合。

参考资料:
1中华人民共和国教育部.普通高中数学课程标准(实验)[]M.北京:人民教育出版社
.2003.4
2严士健、王尚志.普通高中课程标准实验教科书数学(选修2-2)[]M.北京:北京师范大学出版社.2008.6
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档