构造法在高中数学中的应用

合集下载

例析构造法在高中数学解题中的应用

例析构造法在高中数学解题中的应用

㊀㊀解题技巧与方法㊀㊀116㊀例析构造法在高中数学解题中的应用例析构造法在高中数学解题中的应用Һ张文琴1㊀许零筝2㊀(1.台州市第一中学,浙江㊀台州㊀318000;2.三门第二高级中学,浙江㊀台州㊀317199)㊀㊀ʌ摘要ɔ构造法是指依据题设条件㊁结论特征和性质,构造辅助内容,使其成为全新的方程㊁函数㊁图像㊁代数式等.构造法在数学解题中的应用,彻底打破了定向思维的束缚,开辟了全新的解题视角,有效提升了学生的数学解题能力.基于此,文章分析了构造法在高中数学解题中的应用价值,并针对构造法在高中数学解题中的具体应用进行了详细探究.ʌ关键词ɔ高中数学;解题能力;构造法;核心素养常规的解题思路基本上都是从已知条件向所求结论展开定向思考.但针对部分题目来说,常规的解题思路已经无法满足解题要求.此时,学生可以借助创造性的思维,根据题目中所给出的已知条件㊁结论特征等,构造辅助内容,使其成为全新的方程㊁函数㊁图像㊁代数式等,进而将已知条件和结论联系起来,形成解题思路.从构造法的内涵上来说,其中也蕴含了大量的数学思想,如:类比㊁归纳㊁转化.学生在创造性解答问题的过程中,不仅促进了数学知识的内化㊁迁移,也实现了数学思维的发展,这与数学核心素养的要求不谋而合.鉴于此,强化学生利用构造法解题,已经成为当前高中数学教学的重中之重.一㊁构造法与高中数学解题教学(一)构造法的内涵构造法在高中数学解题中尤为常见,主要思路是运用所学数学知识,以题目中的已知条件㊁所求结论作为解题出发点,通过综合性分析,构造出能够满足题目已知条件和所求结论的新形式,进而促进原有数学问题转化,使原本繁杂的数学问题变得简单㊁清晰,以便于学生迅速形成新的解题思路.鉴于构造法的内涵,其在解题中呈现出五个显著的特点:其一,构造性,主要是借助创新思维构造模型,立足于数学问题的本质,促进数学问题的简单化;其二,直观性,主要是借助已有数学知识,结合数学题目构建新的模型,形成解题思路;其三,可行性,构造法在高中数学解题中应用范围比较广,具备极强的实用性;其四,灵活性,在运用构造法解答数学问题时,学生必须具备丰厚的知识储备量,并结合自身的解题习惯,自行选择构造数学模型的类型;其五,多样性,构造法在应用时没有定式,学生可结合具体的题目要求,构造不同的解题模型.(二)构造法的应用价值首先,提高了学生的数学解题能力.构造法作为一种创造性解决问题的方法,可以使得题目中的隐藏条件变得可视化.因此,构造法的应用有效地消除了学生在解题过程中的畏难情绪,有助于强化学生的数学解题思路,使其逐渐强化解题能力.其次,提高了学生的数学思维能力.数学学科对学生的思维能力要求比较高,而学生的思维能力和解题能力之间息息相关.构造法的应用不仅促进了学生归纳㊁类比㊁转化数学思想的发展,也促进了学生数学思维能力的发展,这为学生更好地解决数学问题奠定了坚实的基础.最后,提高了学生的知识转化能力.高中数学题目极具综合性,学生在解题时,只有将各个部分的数学知识点整合起来,通过数学知识的迁移和转化,才能完成数学题目的解答.构造法的应用将代数㊁几何㊁函数等知识点整合起来,促进了数学知识的转化,使学生能灵活运用数学知识,从不同的角度思考问题㊁解决问题.二㊁构造法在高中数学解题中的具体应用(一)构造方程,解答数学问题构造方程在高中数学解题中尤为常见,主要是立足于方程与函数之间的关系,结合题目已知条件,构造方程,解答相关的数学问题.例1㊀已知(m-n)x2-4(n-x)(x-m)=0,求证:参数m,x,n所构成的数列为等差数列.解析㊀这一数学题目与数列相关.如果按照传统的解题思路,那么学生所面临的求解难度比较大,甚㊀㊀㊀解题技巧与方法117㊀㊀至还需要大量的运算,极易出现错解的现象.鉴于此,可通过构造方程,从题目中所求结论出发,将其与题目中的已知条件结合起来,进而形成明确的证明思路:构造二次方程(n-x)t2-(m-n)t+(x-m)=0.观察其各项系数特点,可发现各项系数之和为零,故方程必有一根为1.又恰好该二次方程的根的判别式Δ=0,故该二次方程有两个等根,即由根与系数的关系,得t1t2=x-mn-x=1,即2x=m+n,所以得证.由此可见,借助构造方程的思想,从新的角度思考和分析问题,使得原本复杂的数学问题简单化,真正提升了学生的数学解题效率.(二)构造数列,解答数学问题在高中数学教学中,数列知识尤为重要.解答这一类型数学问题时,可灵活运用构造数列的方式,结合题目中相关信息和条件要求,通过替换等方式,构建新的数列,旨在简化数学问题,提升解题效率.例2㊀已知n为正整数,求证:1n+1+1n+2+1n+3+ +13n+1>1.解析㊀在这一题目中,已知条件非常简单,只有n为正整数.鉴于此,可运用构建数列的方式寻求证明思路:令1n+1+1n+2+1n+3+ +13n+1=an,则:an+1-an=13n+4+13n+3+13n+2-1n+1=13n+4+13n+2-23n+3=2(3n+2)(3n+3)(3n+4).因为n为正整数,所以an+1-an>0,因此数列{an}为递增数列,根据a1>1可得出该不等式成立.由此可见,按照常规思路很难求解此题,甚至还会在解题的过程中,由于步骤多㊁计算复杂等,导致出现错误.鉴于此,可通过构造数列,使复杂问题简单化,帮助学生顺利解题.(三)构建函数,求解数学问题在高中数学解题中,构造函数也尤为常见,其与构造方程本质相同.在解题中,可结合具体题目,构造函数,以此分析并解决数学问题.例3㊀已知a<b,a,b,c均为正实数,求证:ab<a+cb+c.解析㊀对于这一题目,如果按照传统思路和方法进行证明,则极易陷入解题误区.鉴于此,可融入构造法,通过分析题目中已知条件,构建函数模型,形成证明思路:假设c=x,将a+cb+c构造成函数,即f(x)=a+xb+x,将f(x)=a+xb+x进行转化,即f(x)=a+xb+x=a-bb+x+1.该函数为增函数,递增区间为(0,+ɕ).又因为a,b,c均为正实数,因此ab<a+cb+c.例4㊀已知关于x的方程x2-(2a+1)sin(cosx)+1-4a2=0存在唯一的实数解,求实数a的值.解析㊀该题目为二次方程问题.因为题目中含有参数,所以学生在解题时常常毫无头绪.鉴于此,可结合已知条件和未知参数,通过构造函数的方式,形成解题思路:构造函数f(x)=x2-(2a+1)sin(cosx)+1-4a2.因为f(-x)=f(x),所以该函数为偶函数.假设x0为f(x)=0的解,则-x0也为函数f(x)=0的解,即-x0=x0,因此,x0=0.所以f(0)=02-(2a+1)sin(cos0)+1-4a2,即(2a+1)(1-2a-sin1)=0,解得a=-12或a=1+sin12.由此可见,在遇到这一类型的问题时,学生可通过对已知条件㊁所求结论的分析,构造一个新的函数关系,将所求的问题转化为函数问题,进而运用函数的相关性质进行解答.(四)构造几何图形,解答数学问题在解答数学问题时,由于部分题目难度非常大,并且已知条件复杂,因此学生在分析题目时,常常难以理清思路,导致解题陷入困境.鉴于此,可运用构造法,结合题目中已知条件,构造出直观的几何图形,进而打开解题思路.例5㊀求函数f(x)=x2-4x+13+x2-10x+26的最小值.㊀㊀解题技巧与方法㊀㊀118㊀解析㊀这一题目已知条件简单,但如果按照常规思路进行解题,学生则难以形成清晰的解题思路.鉴于此,可通过构造图形的方式,将题目中的已知条件直观地呈现出来.㊀f(x)=x2-4x+13+x2-10x+26=(x-2)2+(0-3)2+(x-5)2+[0-(-1)]2.㊀图1构造平面几何图形(如图1所示),假设平面上有一点P(x,0),定点M(2,3),N(5,-1).如此,所求问题转化为求P到M,N距离的最小值.结合所学知识可知,当三点共线时,f(x)存在最小值,即f(x)min=MN=(2-5)2+(3+1)2=5.由此可见,借助构造平面图形的方式,可将原本繁杂的数学问题简单化.学生通过观察,构建已知条件和所求结论之间的关系,并运用所学知识灵活解答问题.(五)构造向量,解答数学问题在高中阶段,构造向量是一种非常重要的解题方式.在具体的高中数学解题中,可运用构造法,将不等式问题㊁函数问题等构造成向量问题,进而运用向量的相关知识进行解答.例6㊀假设函数y=2x+1+4-x,求该函数的最大值.解析㊀这是一道经典的函数问题,如果按照传统的解题思路解答问题,则会产生大量的计算步骤,极易出现计算错误.鉴于此,可借助构造法,运用向量的相关知识㊁性质进行解答.假设向量m=(2,1),向量n=(x+1,4-x).由于m㊃nɤm㊃n,因此y=m㊃nɤ5.故当x=3时,函数y=2x+1+4-x存在最大值,为5.例7㊀在әABC中,øBCA=θ,CB=a,CA=b,AB=c,试对әABC的余弦定理进行证明.解析㊀可结合题目中的已知条件,构造向量:向量CBң=a,向量CAң=b,向量ABң=c.已知c=a-b,则c2=c㊃c=(a-b)㊃(a-b)=a㊃a+b㊃b-2a㊃b=a2+b2-2|a||b|cosθ.即c2=a2+b2-2abcosθ.由此可见,借助构造向量的方法,可将原本繁杂的数学问题简单化.学生从新的视角出发,根据新的思维模式,运用所学的知识思考问题㊁分析问题㊁解答问题.三㊁基于构造法解答数学问题的教学启示课堂教学实践证明,通过构造法在高中数学解题中的应用,真正实现了 化繁为简㊁由难到易 的目的.学生结合题目中的已知条件和所求问题,构造新的关系,促进所求问题的转化.可以这样说,构造法在解题中的应用不仅提升了学生的数学解题能力,也发展了学生的思维能力,更加强了学生的数学综合素养.鉴于此,教师在日常教学中,应有意识地渗透构造法,加深学生对构造法的理解,使其能掌握构造法.一方面,学生的构造意识并不是在短时间内形成的,唯有通过潜移默化地渗透,才能达到预期的目标;另一方面,虽然构造法在解题中占据一定的优势,但并不意味着构造法适用于每一道题目,因此教师在日常解题中要带领学生积极开展一题多解训练,帮助学生掌握多种解题方法,便于学生在对比中了解构造法的解题优势和具体应用,使其在日后解题中能够合理利用这一方法.结㊀语构造法在高中数学解题中尤为常见,通过构造函数㊁构造方程㊁构造数列㊁构造平面图形等手段,可将原本复杂的数学问题简单化,便于学生形成新的解题思路,从新的视角分析问题㊁解答问题.鉴于此,教师在日常教学中,应结合实际情况,有意识地渗透构造法,不断提升学生的解题能力.ʌ参考文献ɔ[1]庄素慧.基于 构造法 的高中数学解题思路探索[J].数理化解题研究,2022(31):55-57.[2]张宏敏.应用构造法在高中数学中的解题策略[J].数理天地(高中版),2022(18):49-51.[3]刘海杰.构造法在高中数学解题中的运用措施分析[J].数理化解题研究,2022(12):14-16.[4]丁爱年.高中数学解题教学中构造法运用分析[J].数学之友,2022(04):25-27.[5]张焕生.解析构造法在高中数学解题中的运用[J].数理天地(高中版),2022(02):14-15.[6]刘晓妮.高中数学解题中应用构造法的总结[J].数理化解题研究,2021(31):65-66.。

例谈“构造法”在高中数学解题中的应用

例谈“构造法”在高中数学解题中的应用

例谈 构造法 在高中数学解题中的应用曾㊀智(光泽县第一中学ꎬ福建南平354100)摘㊀要:高中数学新课程提出ꎬ高中数学的教学重点之一就是空间形式与数量关系ꎬ这两点数学知识是探讨研究自然规律与社会规律的基础工具.构造法ꎬ一方面ꎬ它是高中数学学习的一种重要方法ꎬ能够有效帮助学生理解空间形式与数量关系ꎻ另一方面ꎬ它也是培养学生 构造思维 的重要基础ꎬ是高中数学教育的关键之一.本文在此背景下ꎬ总结了在高中数学解题中应用 构造法 的原则ꎬ又进一步分类总结了具体应用 构造法 的解题案例ꎬ以期为我国高中数学教师开展 构造法 教学提供参考.关键词:构造法ꎻ高中数学ꎻ应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)03-0060-03收稿日期:2023-10-25作者简介:曾智(1984.1-)ꎬ男ꎬ福建省光泽人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学知识相对于初中而言难度更高ꎬ高中生在学习中不免会面临许多难以解决的问题ꎬ尤其是高中生本身解题经验较少ꎬ解题时常常会出现无法找到题目提供的各项条件与问题间的联系的情况ꎬ进而使解题变得十分艰难[1].这种情况一方面会导致学生解题效率降低ꎬ数学考试成绩下降ꎬ另一方面也会使学生长期承受较大的学习压力ꎬ导致对数学学习的兴趣降低ꎬ甚至抵触数学学习[2].此时ꎬ若学生掌握了 构造法 ꎬ则能够以新的角度审视难题ꎬ通过分析问题条件构造与题目本不相关的知识或模型ꎬ间接地解决难题[3].在这一过程中ꎬ高中生的数学思维能力与逻辑推理能力也得到了提高.因此ꎬ对 构造法 在高中数学解题中的应用进行研究ꎬ是具有一定的理论与现实价值的.1在高中数学解题中应用 构造法 的原则在高中数学解题中应用 构造法 是具有一定的原则的ꎬ其具体内容包括:相似性原则㊀在实际应用 构造法 进行解题时ꎬ需要仔细分析题目中提供的条件或题目本身特征ꎬ展开具有相似性的联想ꎬ进而构造出合理的数学对象ꎬ最终通过该数学对象完成数学解题[4].直观性原则㊀高中生在以 构造法 解题时ꎬ应遵循直观性原则ꎬ通过构造某种辅助解题的数学形式ꎬ使得题目中的条件与结论间形成直观的联系ꎬ进而快速地完成解题.熟悉化原则㊀这一原则指的是高中生在解题时应仔细分析题目的结构特征ꎬ并将其与自身熟悉的某种数学式㊁形㊁方程等进行对比ꎬ进而构造出能够与题目相对应的数学形式ꎬ从而解决问题[5].2应用 构造法 进行高中数学解题的案例应用 构造法 进行高中数学解题的重点在于:(1)应用 构造法 的目的ꎬ即想要通过该方法得到的结论是什么ꎻ(2)构造哪种数学形式才能实现应用 构造法 的目的.只有有效实现上述两个重点ꎬ高中生才能够应用 构造法 解决问题[6].本文通过展示几类高中数学常见问题的 构造法 解法ꎬ展示 构造法 的具体应用方法ꎬ如下所示.2.1 函数构造法 解题案例在高中数学学习中ꎬ函数是重点学习的内容之一ꎬ而在实际题目中ꎬ包含函数的题目往往还会与方06程㊁数列㊁图形等其他数学知识结合ꎬ使高中生解题难度增大.在这一类问题中应用 构造法 能够有效降低解题难度ꎬ进而加快学生解题速度[7].具体案例如下.案例1㊀求函数f(x)=lnx-x+1x-1ꎬ讨论f(x)的单调性ꎬ并证明f(x)有且仅有两个零点.解㊀f(x)的定义域为(0ꎬ1)ɣ(1ꎬ+¥)ꎬ因为fᶄ(x)=1x+2(x-1)2>0ꎬ则f(x)在0ꎬ1()和(1ꎬ+ɕ)这两个区间上单调递增.通过分析题意发现该函数有两个零点ꎬ因为f(e)=1-e+1e-1<0ꎬf(e2)=2-e2+1e2-1=e2-3e2-1>0ꎬ则f(x)在(1ꎬ+¥)有唯一零点x1ꎬ即f(x1)=0.又因为0<1x1<1ꎬ则f(1x1)=-lnx1+x1+1x1-1=-f(x1)=0.故f(x)在0ꎬ1()有唯一零点1x1.综上所述ꎬf(x)有且仅有两个零点.2.2 方程构造法 解题案例在 构造法 中ꎬ方程是一种较为常见的数学形式. 方程构造法 是高中数学解题中的常用方法之一ꎬ尤其是在函数相关题目的解题中.这种方法主要是通过分析题目中的数量关系或特征结构ꎬ构造出一组等量的关系式ꎬ并通过解析关系式找到题目中几个未知量间的关系ꎬ进而得到方程中包含的等量关系[8].具体案例如下.案例2㊀若a1ꎬa2ꎬa3ꎬa4均为非零的实数ꎬ且(a21+a22)a24-2a2(a1+a3)a4+a22+a23=0ꎬ证明四个非零实数中a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.证明㊀分析题目可推导得出ꎬ在四个非零实数中ꎬa4这一非零实数是一元二次方程(a21+a22)x2-2a2(a1+a3)x+(a22+a23)=0的实数根ꎬ则可以推出关系式:ә=4a22(a1+a3)2-4(a21+a22)(a22+a23)=4(2a1a22a3-a21a23-a42)=-4(a22-a1a3)2ȡ0ꎬ因此ꎬ只有当a22-a1a3=0时ꎬ关系式才能成立ꎬ则可推导出a22=a1a3ꎬ同时由于题中表明a1ꎬa2ꎬa3均为非零实数.则可得出a1ꎬa2ꎬa3能够形成等比数列.且通过构造的求根公式可知a4=2a2(a1+a3)2(a21+a22)=a2(a1+a3)a21+a1a3=a2a1ꎬ则a4为该等比数列的公比.综上所述可以证明a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.2.3 向量构造法 解题案例在高中数学的所有知识点中ꎬ向量的相关知识是教学与学习的重难点之一.在高中数学考试中ꎬ与这一知识点相关的题目大多相对简单ꎬ以选择题或填空题为主ꎬ但当这一知识点出现在解答题中时ꎬ常常与立体几何相联系ꎬ解题难度增加许多ꎬ对学生的数学能力要求也相对较高[9].应用 向量构造法 进行解题ꎬ能够引导高中生将日常学习的向量知识点与三角函数㊁复数㊁函数等知识点联系起来ꎬ进而更加轻松地解决问题ꎬ案例如下.案例3㊀已知cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ求sin2A+sin2B+sin2C的值.解㊀设P(cosAꎬsinA)ꎬQ(cosBꎬsinB)ꎬR(cosCꎬsinC)为单位圆上的三个点ꎬ则根据题意可以推导得出O是әPQR的外心.由此可以得到关系式:OPң=(cosAꎬsinA)ꎬOQң=(cosBꎬsinB)ꎬORң=(cosCꎬsinC).因为cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ则OPң+OQң+ORң=(cosA+cosB+cosCꎬsinA+sinB+sinC)=0ꎬ可以推导得出O是әPQR重心ꎬ也是әPQR的外心ꎬ则әPQR为正三角形.由此可得出关系式B=A+2π3+2kπꎬC=A-2π3+2kπꎬ则sin2A+sin2B+sin2C=sin2A+sin2A+2π3æèçöø÷+sin2A-2π3æèçöø÷=sin2A+sinAcos2π3+cosAsin2π3æèçöø÷2+sinAcos2π3-cosAsin2π3æèçöø÷216=sin2A+12sin2A+32cos2A=32综上所述可得ꎬsin2A+sin2B+sin2C=32.2.4 复数构造法 解题案例复数构造法 的应用ꎬ简单来说可以主要分为两类ꎬ一类题目本身就是复数问题ꎬ通过应用复数本身的性质就可以完成解题ꎻ另一类则是非复数问题ꎬ需要间接构造复数形式来完成解题[10].案例如下.案例4㊀求函数f(x)=(x-5)2+16+(x-1)2+4的最小值.证明:构造复数z1=5-x+4iꎬz2=x-1+2iꎬ则f(x)=z1+z2ȡz1+z2=4+6i=213.当z1=kz2ꎬ即5-x+4i=k(x-1)+2i[]时取等号ꎬ解得x=73ꎬ即x=73时ꎬf(x)有最小值213.2.5 图形构造法 解题案例数形结合思维是高中数学思维培养中的关键ꎬ这一思维的形成与 图形构造法 的应用有着密不可分的关系.应用 图形构造法 进行解题的案例具体如下所示.案例5㊀证明正弦两角和公式sin(α+β)=sinαcosβ+cosαsinβ.证明:如图1所示ꎬ在线段CD上任取一点Aꎬ以A为圆心ꎬ1为半径做圆弧分别过C点和D点ꎬ且和CD垂直的直线相交于点B与点Eꎬ令øBAC=αꎬøEAD=βꎬ则øBAE=π-(α+β)ꎬBC=sinαꎬAC=cosαꎬDE=sinβꎬAD=cosβ.图1㊀案例5证明示意图梯形BCDE=әABC+әADE+әABEꎬ考虑面积相等可得:12(sinα+sinβ)(cosα+cosβ)=12sinαcosα+12sinβcosβ+12ˑ12ˑsin(π-α-β)即(sinα+sinβ)(cosα+cosβ)=sinαcosα+sinβcosβ+sin(α+β)ꎬ展开整理得sin(α+β)=sinαcosβ+cosαsinβ即可得证.3结束语«普通高中数学课程标准»中提出ꎬ数学核心素养包含具有数学基本特征的思维品格和关键能力ꎬ是数学知识㊁技能㊁思想㊁经验及情感㊁态度㊁价值观的综合体现. 构造法 作为高中最常使用的数学思想方法之一ꎬ能够有效培养高中生的创造思维与创新意识ꎬ综合提升其数学学科思维ꎬ但目前我国高中生对于 构造法 的了解大多有限.本文探讨了 构造法 在高中数学解题中的应用ꎬ为 构造法 在我国高中的推广应用贡献力量.㊀参考文献:[1]吴玉辉.构造法在高中数学圆锥曲线解题中的应用[J].华夏教师ꎬ2021(35):31-32.[2]顾建华.基于 构造法 的高中数学解题思路探索[J].科学咨询(教育科研)ꎬ2020(10):166.[3]吴建文.构造法在高中数学教学中的应用[J].华夏教师ꎬ2019(19):40.[4]袁胜蓝ꎬ袁野.高中数学数列通项公式的几种求法[J].六盘水师范学院学报ꎬ2019ꎬ31(03):117-120.[5]杨丽菲.高中数学解题中应用构造法的实践尝试[J].科学大众(科学教育)ꎬ2018(12):7.[6]何婷.构造函数求解高中数学问题[J].科学咨询(科技 管理)ꎬ2018(06):144.[7]李正臣.高中数学解题中应用构造法之实践[J].科学大众(科学教育)ꎬ2018(02):34.[8]罗杰.分析高中数学三角函数的解题技巧[J].中国高新区ꎬ2017(22):102.[9]洪云松.高中数学圆锥曲线解题中构造法的使用[J].农家参谋ꎬ2017(13):160.[10]刘米可.构造函数法在高中数学解题中的应用[J].经贸实践ꎬ2016(23):226.[责任编辑:李㊀璟]26。

高中数学例谈构造法在解题中的应用 学法指导

高中数学例谈构造法在解题中的应用 学法指导

高中数学例谈构造法在解题中的应用 学法指导郭春明构造法是指根据题设条件和结论的特征、性质,从新的角度、用新的观点分析、解释对象,抓住反映问题的条件与结论之间的内在联系,用已知数学关系为“支架”,构架出满足条件或数学对象,使原问题隐晦不清的关系或性质在新构造的数学对象中清楚地展现出来,从而借助该数学对象解决数学问题。

本文就一些常见问题,谈谈如何根据所给问题的数学形式,利用构造法解决。

一、构造数列证明不等式例1 证明003.0100000099999914131211109<⨯⨯⨯⨯ 。

分析:此式左端比较繁杂,不易直接解决。

但观察其形式可构造另一数列与分子分母相互抵消,然后根据不等式性质,证明原不等式成立。

证明(简写):令100000099999914131211109x ⨯⨯⨯⨯=,构造999999999998151413121110y ⨯⨯⨯⨯= ,可知0<x<y ,所以10000009y x x 2=⋅<,从而有x<0.003原不等式得证。

注意:在推导过程中注意构造形式及是否符合题意,如y 中因子个数比x 少一个,恰好符合题意。

二、构造函数证明不等式例2 求证:20062006200520052006200620052005e e e e e e e e ----++<--。

分析:上式中涉及无理数e 所以不便求值。

观察不等式知各式分子与分母均为正数,所以原不等式与下不等式等价: 20062006200620062005200620052005ee e e e e e e ----+-<+- 因此可根据该不等式形式构造函数,再根据其单调性来证明。

证明:构造函数)(R x ee e e )x (f x x xx ∈+-=-- 因为1e 21e e e e )x (f x 2x x x x +-=+-=--知f(x)在R 上单调递增 又2005<2006所以)2006(f )2005(f <即20062006200520052006200620052005e e e e e e e e ---++<-- 注意:分式中分子、分母若不均正,则需根据不等式性质在变形中适当改变不等式方向,从而构造符合题意的等价不等式。

高中数学中构造法的运用

高中数学中构造法的运用

高中数学中构造法的运用数学是学生学习生涯中最重要的学科之一,伴随着学习过程的深入,学生在数学学习的过程中学习难度增加,遇到的困难也越来越大。

难题的解答是学生在高中数学学习过程中遇到的最大的挑战。

构造法是解决高中数学难题有效的一种方法,通过将抽象的问题形象化、简化复杂的问题,开拓学生思路,能有效提升学生的数学思维,增强解题的信心,达到事半功倍的解题效果。

本文将介绍几种常用的构造法在高中数学解题中的运用。

一、高中数学构造法解题的意义构造法是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。

通常构造法中运用的数学模型是在其他数学模型基础上进行一定条件的假设,达到解决对应问题,关键在于将其中一个“未知”条件转换为“已知条件”。

在数学界的解题方法中,构造法有着独特的用处,在数学问题实际解答过程中有着重要意义。

通常构造法的运用设计到多种数学知识,如图形、函数、方程、不等式等等,需结合实际的数学问题选择相应的数学模型。

华罗庚在数学学习和教学过程中,着重强调了图形在构造法中的应用,提出实际的构造法中借助与图形能直观理解数学问题中的已知和未知,寻找到解题的关键所在。

选择一个角度,通过图形与数学公式的结合,能有效实现对问题的求解。

不仅仅图形,函数、方程和不等式在使用构造法进行解题的过程中也能起到重要的作用。

函数和方程是常用的也是学生比较熟悉的两种解题思路,常用作辅助工具实现构造法。

因此构造法不仅要求学生对当前的知识点理解清楚,还要熟悉其他相关的各种知识点。

构造法在高中数学解题中的应用

构造法在高中数学解题中的应用

构造法在高中数学解题中的应用广东省徐闻中学 524100 周王鑫在高中数学教学中,《新课程标准》要求大力提高学生的数学素养。

这不仅要大力提高学生的数学基础知识和基本技能(双基),而且要使学生在接受新知识的同时渗透数学思想方法,进而使他们能用数学思想方法解决实际问题。

构造法作为一种数学方法,不同于一般的逻辑方法,它为了实现条件向结论的转化,根据条件与结论的特殊性,构造不同的数学对象解决问题。

构造法不但在数学高考中得到广泛应用,而且在高中数学联赛中也屡见不鲜。

常用的构造法有:构造数列,构造函数,构造图形,构造对应关系,构造向量,构造方程,构造数与式等。

一、构造数列模型在处理一些不等式或与自然数n 有关的问题时,根据题目所给的条件、结论的结构,通常可通过替换、设想等手段构造出一个与题目有关的数列,从而有助于解题。

例 1 (第19届莫斯科数学竞赛试题)设任意实数x,y 满足1,1<<y x ,求证:xy y x -≥-+-12111122 分析:这道题的常规解法有:分析法,综合法等。

但是,如果仔细观察式子的结构,不难发现是211x -的形式,联想到若102<≤x ,则2642111x x x x -=++++ .于是尝试构造等比数列求解之.证: 102<≤x ++++=-∴6422111x x x x同理102<≤y ++++=-∴6422111y y y y+++++++=-+-∴)()()(2111166442222y x y x y x yx ()()++++≥322222xy xy xy xy -=12例2 (2010年全国高中数学联赛安徽、9)设数列{n a }满足01=a ,2121≥+=-n a a n n ,,求n a 的通项公式. 分析:根据数列的特征方程:xx +=1221-==⇒x x 或,两边分别减去特征根得:,111121111---+-=-+=-n n n n a a a a 1111242122---++=++=+n n n n a a a a 两边相除得:12)2(1211-+-=-+--n n n n a a a a .令12-+=n n na ab ,这样我们就构造了一个等比数列{n b },容易求出{n b }的通项公式回代即可求出n a 。

构造法在高中数学解题中的应用

构造法在高中数学解题中的应用

构造法在高中数学解题中的应用摘要:高中阶段的数学课程教学重点除了继续充实学生的理论知识储备外,对于学生实践应用能力的提升和培养提出了更高的要求。

力求在课程教学的开展中通过不同的的题目解答过程帮助学生掌握不同的解题技巧。

从层次上来讲,解题技巧的运用需要学生具备良好的数学基础知识掌握能力以及理解能力,且不同的解题方法在应用时需要结合具体的数学题目进行变通和调整,本文一构造法为例,探讨在高中数学不同知识点背景下的题目解答中,这种解题方法的有效应用。

关键词:高中数学;构造法;解题技巧引言:构造法是在数学题目解答中已知条件有限的情况下,通过对题目的分析和理解构造出有效的解题条件,辅助完成题目解答的解题过程。

在具体的课程教学中,构造法的运用需要结合不同的题目解答需求变换方式进行应用。

一、高中数学题目解答的特征(一)题目内容复合性强从知识体系内容上来看,高中阶段的知识点中,函数、方程以及几何图形是三部分比较典型的核心内容。

在具体的题目解答中,可能存在三部分知识需要同时综合运用的情况。

这意味着题目的整体设置在内容结构和条件层次的复杂性上都是相对更强的。

当题目解答的难度有所加大,运用适当的解题技巧作为解题思路组织的切入点是非常关键的[1]。

构造法就是具有应用适宜性的解题方式。

(二)题目中存在隐含条件所谓的隐含条件,即不能通过直接观察题目条件获得的解题辅助信息,这方面信息往往需要学生结合具体题目提出的问题分析隐藏在题目条件中的辅助有效信息来最终完成题目解答的要求。

这不仅意味着整个题目解答的难度会有所上升,也对学生的探索能力和分析思维能力提出了较高的要求。

构造法就是一种需要学生结合实际发挥创造力和想象力为题目解答搭起桥梁的解题方式,是挖掘利用隐含条件,或创造条件完成题目解答的有效路径。

二、构造法在高中数学题目解答中的应用要点构造法作为一种独立的数学题目解答方法,在实际应用中需要把握住以下几方面要点,也只有把握住实际应用要点,才能切实发挥出构造法在数学题目解答中的作用。

谈构造法在高中数学解题中的重要应用 --以“数列的通项公式求法”教学为例

谈构造法在高中数学解题中的重要应用 --以“数列的通项公式求法”教学为例

谈构造法在高中数学解题中的重要应用 --以“数列的通项公式求法”教学为例提要:构造法是高中化归与转化思想的重要组成部分,也是高中数学的解题方法之一,它是将未知化已知,复杂化简单的重要途径,为高中数学的函数、导数、数列、不等式等问题提供重要解题思路。

在数学中应用构造法,能提升学生的逻辑思维能力,发展学生的创新能力。

在新课改的教学背景下,数列的通项公式作为解决数列问题的基础与重点,也是高考中的重点考察内容之一,利用构造法发现数列模型,可以帮助学生快速找到突破口,解决难题并提高解题速度。

关键词:数列;通项公式;构造法;化归与转化思想在高中数学课程标准中明确提出数学教育促进学生思维能力、实践能力和创新意识的发展,探寻事物变化规律。

[1]构造法是具有创造性的解题方法,体现了数学中的化归与转化思想,凸显数学的内在逻辑和思想方法。

构造法在高中数学中应用广泛,如构造不等式求最值、构造数列求通项公式、构造函数得到基本初等函数模型、构造几何体求外接球、构造向量求证正弦定理等,对数学学习的拓展与思维发展有积极作用。

构造法主要应用于两个方面:(1)当某些数学问题无法用定向思维解决时,可以根据条件与结论的性质,从新的角度和观点观察分析条件(结论)与已有数学模型或性质的联系,通过类比、想象构造新的数学模型,进而解决问题;(2)可以用于概念、定理推导,逻辑推理。

在数学中构造法解题的本质是利用已有条件与已知的定理公式,构造新的数学对象或模型,发现条件和结论中隐含的性质与数学形式,利用新的数学对象或模型解决问题。

其中构造法还可以促进学生创新思维的发展,促进学生达成不同阶段的数学核心素养。

构造法解题一般步骤如下:通过对近年高考真题分析,发现数列通项公式问题灵活多变,学生难以自如应用构造法,创新解题,失分较严重。

本节课通过设计数列的通项公式求解,以学生为主进行探究,发现构造法在求解数列通项公式中的积极作用,感受由难化简,由未知化已知的创造思维,提高数学洞察力和理解力,利用构造法为新的数学问题建立新的方法与策略。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法
构造法是一种常用的数学解题方法,特别适用于几何问题的解决。

下面我们将介绍在
高中数学解题中构造法的应用方法。

一、构造辅助线:
1. 构造线段、角的等分线:通过构造等分线可以将原先复杂的形状简化为几个简单
的相等的部分,便于解题。

2. 构造三角形的高线、中线、角平分线:通过利用三角形的性质,可以确定三角形
的一些特殊线段,从而解题。

3. 构造平行线、垂直线:通过构造平行线和垂直线,可以得到一些等角关系、相似
三角形等,从而解题。

二、构造形状:
1. 构造圆、三角形、四边形:通过构造几何形状,可以利用其性质来解题。

2. 构造相似形:通过构造相似形状,可以利用相似三角形等性质来解题。

三、构造特殊点:
1. 构造重心、垂心、外心、内心:通过构造特殊点,可以利用它们的性质来解题。

2. 构造交点、中点:通过构造交点和中点,可以得到一些等分线段、等角关系等,
从而解题。

四、构造长度关系:
1. 构造比例关系:通过构造长度的比例,可以利用这些比例关系来解题。

2. 构造勾股定理:通过构造特殊的长度关系,可以利用勾股定理来解题。

构造法是一种灵活但有效的解题方法,在高中数学解题中应用广泛。

通过构造辅助线、形状、特殊点和长度关系等,可以利用它们的性质来解决各种几何问题。

在解题过程中要
善于观察和发现,合理运用构造法,提高解题的效率和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造法在高中数学中的应用
构造法是数学中常用的方法。

是一种利用已知的数学模型或已证明的问题,构造函数,构造方程,构造几何图形等一切可能的数学模型从而使问题得到解决。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于加强学生数学基础知识的灵活运用,提高学生分析问题和解决问题的能力,培养学生的思维能力和创新能力。

对于培养思维的敏捷性和创造性,具有重要的意义。

标签:数学模型;高中数学;构造法;应用
1 绪论
构造法从数学产生的那天起就伴随着数学产生,构造法的应用研究涉及各个科学领域。

构造法的教学有利于提高学生在解决问题时会通过有关题型建立数学模型的意识,增强学生自我建构的能力。

2 構造法在数学中的解题应用
2.1 构造函数。

通过构造辅助函数,把原来的问题转化为研究辅助函数的性质,并利用函数的单调性,有界性,奇偶性来解决所探究的问题。

例1:不等式x2+x-2<0的解集为
解析:解法一(按照定向思维直接求解)可将原式化为:(x+12)2<94
解法二(构造二元一次函数图像求解)
据观察题目条件,可以直接构造函数:f(x)=x2+x-2=(x+2)(x-1)
分析比较:对于解法一,我们发现在化简二元一次不等式,的过程中很容易出现漏掉符号的情况,在化简的过程中出错,而这就会造成一步错步步错,使得这个问题最终未能解决,而且在计算过程中容易对两种情况的讨论容易发生错误。

步骤相对于解法二也要相对复杂。

但是,在解法二中,通過构造二元一次函数,然后从函数图象与x轴的两个交点可以很直观看出函数值小于零的情况,同时相对于解法一运算量大大减小,出错的几率也变小。

2.2 构造数列
2.2.1 构造等差数列法
例1. 在数列{an}中,求通项公式a1=3,nan+1=(n+2)an+2n(n+1)(n+2),求通项公式an。

解:对原递推式两边同除以n(n+1)(n+2)可得:an+1(n+2)(n+1)=an (n+1)n+2 ①;令bn=an(n+1)n ②,则①即为bn+1=bn+2,则数列{bn}为首项是b1=32,公差是bn+1-bn=2的等差数列,因而bn=32+2(n-1)=2n-12,代入②式中得an=12n(n+1)(4n-1)。

故所求的通项公式是:an=12n(n+1)(4n+1)
2.2.2 构造等比数列法
已知数列{an},其中a1=1,an+1=3an+2,求通项公式{an}。

可构造为形如an+1+λCn+1=A(an+λCn)的等比数列。

2.3 构造图形法。

在学习高中数学过程中,如果题目中所给条件中的数量关系有着明显的几何意义,我们就可以直线或者曲线方程将数量关系转化为集合关系。

例:已知a,b,c,d都是实数,求证a2+b2+c2+d2≥(a-c)2+(b-d)2
思路分析:从题目所给的条件,如果我们用常规的方法从数与式来研究此题会非常麻烦,但是如果我们将它与数轴上的图形结合起来,我们会发现要证结论的右端的式子与平面上两点间的距离公式很相似,则左端可看作平面上某一个点点到原点的距离公式。

因此我们可以展开联想,可不可以借助图形中的距离解决此类问题呢?于是根据上面的分析过程我们可以画出示意图:
总结
构造法是数学中常用的方法。

是一种利用已知的数学模型或已证明的问题,有利于加强学生数学基础知识的灵活运用,提高学生分析问题和解决问题的能力,培养学生的思维能力和创新能力。

对于培养思维的敏捷性和创造性,具有重要的意义。

相关文档
最新文档