地震数据处理方法

地震数据处理方法
地震数据处理方法

地震数据处理方法

预处理

预处理主要包括数据解编、格式转换、道编缉、观测系统定义等工作。

一、数据解编

目前野外地震数据有两类基本的格式,一类是按照采样时间顺序排列的多路传输记录,称为时序记录;另一类是以地震道为顺序排列的民录,称为道序记录。解编就是按照野外采集的记录格式将地震数据检测出来,并将时序的野外数据转换为道序数据,然后按照炮和道的顺序将地震记录存放起来。

每一个地震道由道头和数据两部份组成,道头用来存放描述地震道特征的数据,如野外文件号(FFID)记录道号(Channel Number)、CMP号、炮检距(offset)、炮点高程和检波点高程等。道头是地震数据处理中十分重要的信息,不正确的道头信息会使得某些处理模块产生错误的处理结果。

二、道编辑

道编辑是对由于激发、接改或噪声因素产生的不正常的地震道进行处理。对由于检波器工作不正常造成的瞬变噪声道和单频信号道等进行剔除,对记录极性反转的地震道进行改正对地震记录中的强突发噪声和强振幅野值进行压制等。道编辑是地震数据噪声压制中的重要环节。

三、野外观测系统定义

地震数据处理中的许多工作是基于地震道的炮点坐标、检波点坐,以及根据这些坐标所定义的处理网格进行的。野外地震数据的道头中记录了每一个地震道的野外文件号(FFID)和道号(Channel Number),炮点和检波点的坐标信息记录在野外班报中。观测系统定义就是以野外文件和号和记录道号为索引,赋予每一个地震道正确的炮点坐标、检波点坐标,以及由此计算的中心点坐标和面元序号,并将这些数据记录在地震道头上或观测系统数据库中。观测系统定义一般由炮点定义、检波点定义和炮点与检波点关系模版定义三部分构成。

观测系统定义是地震数据处理中得要的基础工作。不同的处理系统,观测系统定义方式不同,总体而言比较繁琐,特别是当野外采集条件复杂,观测系统变化较大,偏离设计位置的炮点、检波点数目较多时,很容易产生错误,因此需要有相应的质量控制手段对观测系统进行检查。首先参照施工设计对基于观测系统绘制的炮点位置分布图、检波点位置分布图、覆盖次数分布图进行检查,然后对地震记录的初至波进行线性动校正,以共炮点、共检波点和共偏移距显示初至时间变化情况,对初至异常变化地震道所涉及的观测系统参数进行检查和更正。

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震勘探在海洋石油勘探中的基本原理

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___ 地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

地球物理勘探方法及应用范围

M D 模型空间数据空间地球物理探测空间变换示意图 球物理探测方法简介及应用范围 地球物理学是用物理学的原理和方法,对地球的各种物理场分布及其变化进行观测,探索地球本体及近地空间的介质结构、物质组成、形成和演化,研究与其相关的各种自然现象及其变化规律。在此基础上为探测地球内部结构与构造、寻找能源、资源和环境监测提供理论、方法和技术,为灾害预报提供重要依据。 地球物理学的研究内容总体上可分为应用地球物理和理论地球物理两大类。应用地球物理(又称勘探地球物理)主要包括能源勘探、金属与非金属勘探、环境与项目探测等。勘探地球物理学利用地球物理学发展起来的方法进行找矿、找油、项目和环境监测以及构造研究等,方法手段包括地震勘探、电法勘探、重力勘探、磁法勘探、地球物理测井和放射性勘探等,通过先进的地球物理测量仪器,测量来自地下的地球物理场信息,对测得的信息进行分析、处理、反演、解释,进而推测地下的结构构造和矿产分布。勘探地球物理学是石油、金属与非金属矿床、地下水资源及大型项目基址等的勘察及探测的主要学科。 从数学角度讲,地球物理勘 探的过程可以抽象成从模型空 间通过某种映射关系,映射成可 以感知的数据空间,再通过逆映 射变换到模型空间,其映射关系 见右图。这种映射关系遵循地球 物理学的两大模型原理:滤波器 模型原理和场效应模型原理。因 此地球物理数据处理:一是基于 信号分析理论的信号处理技术, 主要目的是去杂、增益、提取有效信号;二是基于物理场效应理论的反演技术。 地球物理反演,就是在模型空间寻找一组参数向量,这组向量通过某种映射关系,能再现数据空间的观测数据,因此在一定的假设条件下,反演问题可以表示为某种误差泛函的极小化问题 min ‖G cal (M)-D obs ‖2 也就是地球物理反演是利用模型参数和模型正演来获取合成数据,再通过合成数据与观测数据的匹配估算出最佳M 参数。由此可见,地球物理反演实质上是正

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

地震数据处理vista软件使用手册

Vista 5.5的基本使用方法 数据输入 地震分析窗口 一维频谱 二维频波谱 观测系统 工作流 一、数据输入 1.1 把数据文件加入Project 首先选择File/New Project,新建一个Project,按住不放,出现按钮组合,可以选择不同类型 的数据集,选择,向Project中增加一个新的2-D数据集,按住不放,出现按钮组合, 可以选择加入不同类型的地震数据,选择,选择一个SEG-Y数据,即可将该数据文件加入新建的数据集。 1.2 命令流中数据的输入 双击进入如下界面 1.2.1 Input Data List 数据输入列表,选择已加入到Project的数据集,下面的文本框中会显示选择的数据的基本信息。 1.2.2 Data Order 选择输入数据的排列方式,对不同的处理步骤可以选择不同的数据排列方式 Sort Order a. NO SORT ORDER 输入数据原始排列方式 b. SHOT_POINT_NO 输入数据按炮点排列方式 c. FIELD_STATION_NUMBER d. CMP_NO 输入数据按共中心点排列方式 e. FIELD_STATION_NUMBER 1.2.3 Data Input Control 数据输入控制 右键-->Data Input Control a. Data Input 进入Flow Input Command(见上) b. Data Sort List 查看数据排列方式的种类 c. Data/header Selection 输入数据的选择,可以控制输入数据的道数和CMP道集 查看所有已经选择的数据 如果没有定义任何可选的数据信息,则如下图所示: 可以选择一种选择方式,单击并设置选择信息。定义有可选的数据信息后,在查看,则如下图所示,会显示选择的信息。 选择共炮点集 单击后,会弹出如下界面:

地震数据处理 重点

1.一维傅里叶变换及其应用:傅里叶变换是地震数据处理的主要数学基础。它不仅是地震道、地震记录分析和数据滤波的基础,同时在地震数据处理的各个方面都有着广泛的应用。 2.采样定理:设x(t)是连续的时间函数,x(t)的最高截止频率为fn,则可用采样间隔为Δt=1/2fn的离散序列X(nΔt)唯一的确定。采样过程:从模拟地震信号到数字地震信号的过程。采样间隔/采样率:采样所用的时间间隔。 3.数字滤波:利用频谱特征的不同来压制干扰波,以突出有效波的方法。 4.频率域滤波的步骤: ①对已知地震道进行频谱分析;②设计合适的滤波器:为了滤去干扰波的频谱成分,应当设计一个带通滤波器,保留有效波频率,把干扰波频率成分滤掉; ③进行滤波运算;④对输出信号谱X(w)进行傅里叶反变换,便得到滤波后的输出X(t). 5.相位性质:最小相位也叫相位滞后或最小能量延迟,实际上最小相位滞后是指频率域,而最小能量延迟则是指时间域而言。最小能量延迟子波:能量聚集在首部;最大能量延迟子波:能量集中在尾部;混合延迟子波:能量聚集在中部。 6.褶积滤波的物理意义: 单位脉冲响应:在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观测滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的脉冲响应。也称滤波器的时间特性。 褶积滤波的物理意义:它相当于把地震信息x(t)分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间书序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的的起始时间、不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出x(t). 7.数字滤波的特殊性质:离散性:数字滤波是对离散的信号进行运算,这是所谓的离散性;有限性:在数字计算机上进行计算时,滤波因子不可能无穷项,而是取有限项,这就是所谓的有限性。 8.产生“伪门”原因:由于对A离散采样造成的,可以证明“伪门”在频率域出现的周期为A,为了避免“伪门”造成的影响,可以适当的选择采样间隔A,使第一个“伪门”出现在干扰波的频谱范围之外。9.波谱:以任何一种形式展示电磁辐射强度与波长之间的关系,叫波谱。波数:波长的倒数。K0=1/λ 二维频率-波数域中的二维频率-波数谱(简称二维频-波谱)分析是对地震波场进行分析的重要手段,它是建立在二维傅里叶变换的基础上。 10.空间假频:频率不变,倾角越大或者倾角不变,频率越高越容易产生空间假频。产生条件:地震信号的频率f一定时,地震信号倾斜时差δt越大,其频-波振幅谱中的波数k0也越大,而当地震信号频率f 增大时,具有相同倾斜时差δt的地震信号的频-波振幅谱中的波数k0随之增大,当频率f增大到某一个门槛频率fmax时,便开始产生空间假频。 11.二维滤波器的设计:一般二维滤波是指对于波动函数X(t,x)所进行的频率-波数域滤波。这时设计的滤波因子是时间-空间的函数h(t,x),滤波过程类似一维滤波在时间-空间域,可用二维褶积公式表示A. 12.共中心点CMP叠加及叠后处理流程图:野外采集地震数据-解编-预处理-反褶积-抽CMP道集-速度分析-动校正-CMP水平叠加-叠后时间深度偏移。13.共中心点叠加优点:①压制多次波;②压制规则干扰波;③压制随机噪声。综上,共中心点叠加可以有效地压制各种干扰波,增强有效波,使地震剖面的信噪比明显提高,掀桌改善地震剖面的质量。 14共中心点水平叠加存在的问题:当反射界面为弯曲界面时,其反射旅行时存在如图1所示的畸变;当反射界面为,其射旅行时发生如图2所示的畸变;当覆盖介质速度横向变化时,其反射旅行时存在如图3所示的畸变;当覆盖介质速度各向异性时,其反射旅行时存在如图4所示的畸变. 15.块状介质模型地震数据处理的特点:①介质呈块状分布,它不仅有顶部和底部界面,而且其侧面也由断层面或岩层界面所封闭;②由于剧烈的构造运动作用,界面往往呈弯曲界面,界面陡、倾角较大;③介质速度往往沿水平方向变化较快。 16.共反射点CRP叠前处理基本流程图:野外采集地震数据-解编-预处理-反褶积-抽CRP道集-层速度场-速度深度模型-叠前深度偏移 ①②③④⑤⑥⑦ 1.预处理:指地震数据处理前的准备工作,是地震数据处理中的重要基础工作,一般定义为将野外采集的地震数据正确加载到地震资料处理系统,进行观测系统定义并对地震数据进行编辑和校正的过程。预处理包括:数据解编、格式转换、道编辑、观测系统定义等工作。 2.解编:就是按照野外采集的记录格式将地震数据检测出来,并将时序的野外数据转换为道序数据,然后按照道和炮的顺序将地震记录存放起来。 3.野外观测系统定义:观测系统就是以野外文件号和

地震资料数字处理试卷合集

一、名词解释 1.道均衡:是指在不同或同一地震记录道建立振幅平衡。 2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。 模拟信号:随时间连续变化的信号. 有效信号:能为我们所利用的信号就叫有效信号。 3.最小相位:能量集中在序列前部。 4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反 射,形成反射波。 折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。 5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。 12. 最大相位:能量集中在序列后部。 16.地震波:地震波是在岩石中传播的弹性波。 多次波:在地下经过多次反射接收到的波叫多次波。 17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除, 即把拉伸严重部分的记录全部充零。 18. 混合相位:能量集中在序列中部。 自相关:一个时间信号与自身的互相关。 互相关:一个时间信号与另一个时间信号的相关。 21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。 随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。 22.反射系数:反射振幅与入射振幅的比值。 28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。 二、简答题 1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些? 地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。 地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、 设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。 地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等. 地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分) 地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

《地震勘探》课程教学大纲

《地震勘探》教学大纲 课程编号: 课程名称:地震勘探 课程类别:专业技术必修课 总学时:60 学分:3 开课单位:地质矿产勘查系 授课对象:地球物理勘查技术专业 前置课程:高等应用数学、普通物理学、线性代数、地质学基础、电子电工技术、构造地质学、地质勘查技术 一、课程的性质、目的和任务 本课程是地球物理勘查技术专业的主要专业课,是理论和实践性较强的一门应用地球物理学科。学生在学习本课程之前,应具有本专业所必须的数理基础和一定的工程、水文地质基础知识,测量学基础知识,以及一定的数学基础知识。 通过本课程理论学习和实践,应使学生掌握工程地震勘探的理论知识、基本野外工作技术和地震资料解释方法,初步具备使用计算机解决工程地震勘探的正、反演问题的能力。二、教学要求 掌握地震勘探的基本理论,及主要的方法技术。 三、教学方法和形式 以课堂教学为主,安排必要的实验课程。 四、理论教学内容和基本要求 绪论 工程地震勘探的主要任务、应用范围以及方法原理,工程地震勘探的发展简介、现状及前景,本课程的教学安排和学习要求。 第一章:地震波的理论基础

教学内容:弹性理论,弹性介质的概念,应力和应变,弹性参数,全空间波动方程,纵波和横波的形成。 基本要求:掌握纵波和横波的形成机制,纵、横波的性质,弹性参数的概念。理解波传播机理。 重点难点:重点讲解全空间波动方程,纵波和横波的形成。 第二章:地震波的传播 教学内容:地震波传播的基本原理,地震波的描述,地震波的反射,透射波和折射波的形成,地震子波的概念及动力学参数,反射波记录道形成的机理。 基本要求:掌握反射波、折射波和透射波形成原理及形成条件。子波的概念,反射系数和透射系数。地震记录的表示方法和形成机理。 重点难点:地震波的反射,透射波和折射波的形成。 第三章:工程地震勘探地质基础 教学内容:影响地震波速度的主要因素,岩石的一般速度特征及介质对地震波的吸收;低速带的特征及工程地质条件。 基本要求:掌握影响地震波速度的因素,一些岩石的速度变化范围,介质吸收对地震波能量的影响,低速带特征。理解岩石特征与波速的关系。 重点难点:影响地震波速度的主要因素。 第四章:折射方法 教学内容:折射波的正演问题,几种简单地质模型上的时距方程和理论时距曲线;隐蔽层问题;折射波法的野外工作方法,观测系统,折射波资料的整理和解释。 基本要求:掌握利用射线追踪法推导简单地质模型上的理论时距曲线,观测系统的特点及能够解决的地质问题。折射波资料反演解释的TO法和广义互换时法。理解折射波法方法实质。 重点难点:折射波法的野外工作方法,观测系统,折射波资料的整理和解释。 第五章:反射波法 教学内容:反射波的正演问题。水平、倾斜界面,断层附近的反射波时距方程和理论时距曲线,反射波的野外工作方法,观测系统,水平叠加技术及获得浅层反射波的一些技术方法,反射波资料整理和初步解释,地震勘探资料数字处理。频谱分析,数字滤波、相关分析和速度分析等基本数字处理技术,速度参数的提取,各种速度的概念,动、静校正和叠加的实

地震勘探报告编制

地震勘探报告编制若干问题(潘振武) ●地震勘探工作程序 地震勘探设计—地震数据采集—地震数据处理—地震数据解释—地震勘探报告与审批—“售后服务” ●地质报告的作用 ——开采(或灾害防治)设计、可行性研究、规划的地质依据; 地质构造影响矿井采区布置、工作面划分。 由于地质构造不清,未采取防范措施,巷道遇断层揭露瓦斯突出煤层、含水层、采空区带来危险。 构造不清造成掘进巷道增加。百万吨掘进率、百万吨死亡率增加。 煤矿五大灾害(瓦斯、水、火、顶板、粉尘)都与煤矿地质条件有关。查明地质情况,采取相应对策,则为合理开采、提高资源回收率、安全生产提供了保障。 二维地震为找煤、指导下一步勘查或其它专项目的。 ——为本单位科研集累资料,集累经验; ——展示本单位在行业中形象,是客观的广告和宣传。 ●《煤炭煤层气地震勘探规范》-MT/T896-2000:(22~24 页) “编写成果报告时应充分分析有关地质、物探资料、做到报告内容齐全,观点明确,证据充分,重点突出,叙述清楚,文字简练,图表齐全,整洁、美观。” (用自己的思想和语言) 地质报告编制提纲(内容): 文字说明包括:序言;概况;地质及地震地质条件;野外施工方法;资料处理和解释;地质成果;结论等七章。 附图包括:实际材料图;反射波T0等时线平面图;煤层底板等

高线图;地震地质剖面图;地震时间剖面图等。 附表包括:测量成果表;工程量统计表;断层控制表等。 1.以往地质资料(包括矿井地质资料)收集、分析 目的:了解地层、地质构造特征;以往地质工作质量; 地震地质条件。作为物探工作设计、资料解释的依据。 存在问题:——收集不足(范围、内容) ——分析、利用不够,如测井资料 ——对以往地质资料中差错甄别不够 应收集的资料 ·最近(新)的井田勘探报告或矿井地质报告 ·地形地质图(或基岩地质图) ·综合柱状图 ·主要煤层底板等高线图 ·煤层基础资料表 ·钻孔坐标 ·主要剖面图 ·煤、岩层对比图 ·全部有关钻孔的钻孔综合柱状图(含测井曲线) ·其它物探成果资料 ·区域地质资料 ·周边其它煤矿、小窑情况 需要时:煤质、岩石力学性质,水文地质试验、观测成果表。

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

08262026-地震勘探数据处理与解释

吉林大学实验教学大纲 教学单位名称:吉林大学地球探测科学与技术学院 课程名称:地震勘探数据处理与解释 课程代码:08262026 课程类别:专业课 课程性质:必修课 学时/学分:32/2(其中实验8学时) 面向专业:勘查技术与工程 一.实验课程的教学任务、要求和教学目的 《地震数据处理与解释》课程是应用地球物理系列课程中的一个重要方向,是地球物理勘探中的重要方法之一,与地震勘探原理一起构成了地震勘探研究方向的一个完整体系。是勘查技术与方法专业中应用地球物理方向本科生的一门重要选修课。 本实验课是与理论课紧密联系在一起的。通过实验课的教学,使学生加深对理论理解和将理论知识应用于实践的能力,熟悉基本的数据处理流程,并进行实际的地震资料处理。本实验课实际上是地震勘探数据处理与解释课程的重要组成部分。 二.学生应掌握的实验技术及基本技能 1、掌握常用地震数据处理系统的基本操作方法 2、了解常用地震记录的数据格式及剖面显示方式; 3、掌握动、静校正及水平叠加处理的方法; 4、掌握地震信号的频谱分析和一维、二维滤波; 5、掌握预测反褶积处理技术; 6、了解速度分析的方法和步骤; 7、了解地震波场偏移处理的目的和方法; 8、掌握合成地震记录的制作和分析方法; 9、掌握波动方程地震记录的正演模拟; 10、能编写简单的地震数据处理程序。 三.实验项目内容、学时分配和每组人数

四.实验教材或指导书或主要参考资料 教材采用《应用地球物理教程—地震勘探》。另外可参考以下文献: 1.《地震资料分析—地震资料处理、反演和解释》,渥.伊尔马滋 2.CWP/SU:Seismic Un*x用户手册 五.考核要求、考核方式及成绩评定标准 实验成绩可通过写实验报告,或总结性考核而定,占学生学期总成绩的20%~30%。 六.制定人、审核人、日期 制定人:王德利 审核人:潘保芝 审核日期:2009年9

《地震资料数字处理》复习

《地震资料数字处理》复习 地震资料数字处理围绕以下三方面工作: 1、提高信噪比; 2、提高分辨率; 3、提高保真度。 一、提高信噪比的处理 1、原理 利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。 2、处理顺序 提高信噪比包含消除噪声和增强信号两部分内容。 消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等, 增强信号一般在叠后剖面上进行,主要针对随机噪声。 3、随机噪声 是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。 随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。 随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。 4、一维滤波器(伪门、Gibbs现象) 频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。它压制通放带以外的频率成分,保留通放带以内的频率成分。 Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。 5、二维滤波器 二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。 通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。 二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。 6、频率-波数域二维滤波实现步骤: (1)把时间和空间窗口里的数据变换到f-k域; (2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ; (3)从f-k域反变换到t-x域。 8、数字滤波有两个特殊性质: (1)数字滤波由于时域离散化会带来伪门现象,

地震数据处理

地震数据整体流程 不同软件的地震数据处理方式不同,但是所有软件的处理流程基本是固定不变的,最多也是在处理过程中处理顺序的不同。整体流程如下: 1 数据输入(又称为数据IO) 数据输入是将野外磁带数据转换成处理系统格式,加载到磁盘上,主要指解编或格式转换。 解编:将多路编排方式记录的数据(时序)变为道序记录方式,并对数据进行增益恢复等处理的过程。如果野外采集数据是道序数据,则只需进行格式转换,即转成处理系统可接受的格式。 注:早期的时序数据格式为记录时先记录第一道第一个采样点、第二道第一个采样点、……、第一道第二个采样点、第二道第二个采样点、……直至结束。现在的道序记录格式为记录时直接记录第一道所有数据、第二道所有数据、……直至结束,只是在每一道数据前加上道头

数据。将时序数据变为道序数据只需要对矩阵进行转置即可。 2 置道头 2.1 观测系统定义 目的为模拟野外,定义一个相对坐标系,将野外的激发点、接收点的实际位置放到这个相对的坐标系中。即将SPS文件转换为GE-Lib文件,包括1)物理点间距2)总共有多少个物理点3)炮点位置4)每炮第一道位置5)排列图形。 2.2 置道头 观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值并放入地震数据的道头中。当道头置入了内容后,我们任取一道都可以从道头中了解到这一道属于哪一炮、哪一道?CMP号是多少?炮间距是多少?炮点静校正量、检波点静校正量是多少?等等。 后续处理的各个模块都是从道头中获取信息,进行相应的处理,如抽CMP道集,只要将数据道头中CMP号相同的道排在一起就可以了。因此道头如果有错误,后续工作也是错误的。 GOEAST软件有128个道头,1个道头占4个字节,关键的为2(炮号)、4(CMP号)、17(道号)、18(物理点号)、19(线号)、20(炮检距)等。 2.3 观测系统检查 利用置完道头的数据,绘制炮、检波点位置图、线性动校正图。 3 静校正(野外静校正) 静校正为利用测得的表层参数或利用地震数据计算静校正量,对地震道进行时间校正,以消除地形、风化层等表层因素变化时对地震波旅行时的影响。 静校正是实现共中心点叠加的一项最主要的基础工作。直接影响叠加效果,决定叠加剖面的信噪比和垂向分辨率,同时影响叠加速度分析的质量。 静校正方法: 1)高程静校正 2)微测井静校正-利用微测井得到的表层厚度、速度信息,计算静校正量 3)初至折射波法 4)微测井(模型法)低频+初至折射波法高频 4 叠前噪音压制 干扰波严重影响叠加剖面效果。在叠前对各种干扰进行去除,为后续资料处理打好基础。 常见干扰有:面波、折射波、直达波、多次波、50Hz工业电干扰及高能随机干扰等多种情况。不同干扰波有不同特点和产生原因,根据干扰波和一次反射波性质(如频率、相位、视速度等)上的不同,把干扰和有效波分离,从而达到干扰波的去除,提高地震资料叠加效

地震资料处理复习总结

数字地震记录中,每个地震到是按一个按一定时间采样间隔排列的时间序列数字滤波,每一个地震道都可以用一系列具有不同频率和不同振幅、相位的简谐曲线叠加而成。 应用一维傅里叶变换可以得到每个地震道德简谐成分; 应用傅里叶反变换可以将简谐成分合成为原来的地震道的时间序列函数。 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。它可以写成指数形式 式中 复数的模,称为振幅谱; 复数的幅角,称为相位谱。 离散情况下和这个差不多 一维频谱的特征: 1. 傅里叶变换的几个基本性质 线性 翻转 共轭 时移 褶积 相关(功率谱) 2. 假频 尼奎斯特频率 二维谱分析 二维波场函数X(x,t)的二维傅里叶变换° X(,)ωκ 表明了二维波场函数X(x,t)的各个频率f 一波数 简谐成分的频一波谱。 由°X(,)ωκ这些频率f 一波数 的简谐成分叠加即可恢复原来的波场函数X(x,t)。 二维傅里叶变换X(w,k)称为二维函数X(x,t)的频一波谱。其模量 为函数X(x,t)的振幅谱。 如果有效波和干扰波得平面简谐波成分有差异,有效波的平面简谐波成分与干扰波的平面简谐波成分不同的视速度传播,则可以用二维视速度滤波将他们分开,达到压制干扰,提高性噪比的目的。 二维频谱的特征:空间假频 ~~ () ()()()()i w i w X w X w e A w e ??==)(ωA ()?ω1()()tan () i r x w w x w ?- =()A w =t f ?=21N o k o k ~ X(,)k ω

在地震勘探中,用数字仪器记录地震波时,为了保持更多的波得特征,,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。有效波和干扰波得差异表现在多个方面(频谱、传播方向、能量……)。利用频谱特征的不同来压制干扰波,以突出有效波的方法就是数字滤波。 滤波器的响应特性:对滤波器能力的最普遍度量是其响应特性 滤波器的频率特性:其滤波器时间函数或滤波因子 的频谱 称为滤波器的频率特性, 滤波器的时间特性(单位脉冲响应):在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观侧滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的时间特性。也 称滤波器的“脉冲响应” 频率响应函数应该就是 时间和频率响应函数合起来应该就是就是响应特征 滤波机理: 输出信号的振幅谱等于输入信号的振幅谱与滤波器的振幅频率特性的乘积, 输出信号的相位谱等于输入信号的相位潜与滤波器相位特性之和。 (频率) 时间域上就是褶积 褶积滤波的物理意义:它相当于把地震信息 分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间顺序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的起始时间,不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出分。 频率域滤波的步骤 (1)对已知地震记录道进行频谱分析。 (2)设计合适的滤波器 (3)进行滤波运算 (4)对输出信号谱 进行傅里叶反变换 褶积滤波的具体计算 褶积滤波的具体计算步骤如下: (1)对地震记录进行频谱分析,确定通频带中心频率 和带宽 。 (2)确定滤波因子长度N 。 )()()(~ ~~w H w X w X =)(t x ∧ )(~ w H )(t h )(~ w H ) ()()(w w w H x x Φ+Φ=Φ∧)()()(~ ~w H w X w X ?=∧)(~ w X )(t x

物探方法在上海地区道路塌陷隐患区域探查中的应用

物探方法在上海地区道路塌陷隐患区域探查中的应用 发表时间:2016-06-13T15:42:14.037Z 来源:《工程建设标准化》2016年3月总第208期作者:王江杰 [导读] 随着城市现代化进程的快速发展,国家在城市道路建设方面的投入力度逐渐加大。 王江杰 (上海市岩土工程检测中心,上海,200436) 【摘要】文章通过上海某段道路塌陷隐患区域探查工程实例,介绍了地质雷达和地震映像两种物探方法在城市道路塌陷隐患区域探测中的运用。并结合区域内的工程地质勘查资料,对塌陷隐患区域的成因进行了分析,为后期的塌陷区域处置工作提供依据。 【关键词】道路塌陷;地质雷达;地震映像;工程地质 引言 随着城市现代化进程的快速发展,国家在城市道路建设方面的投入力度逐渐加大,每天都有道路在翻建或新的道路开工建设,四通八达的道路交通在我们的经济发展中的重要作用日渐显现。但与此同时,由于地下工程建设施工或管线施工等诸多原因,引发道路出现的问题也逐渐增多,如地面起鼓或凹陷、边坡失稳等,其中危害较大是地面塌陷,此类灾害性事故近几年来时有发生。 在道路塌陷发生前,采取合理的手段探明道路塌陷隐患区域,并查明道路塌陷区域的形成原因,及时采取有效的处置措施,才能真正达到防患于未然的目的。 1.探测方法原理 1.1 地质雷达法 地质雷达探测技术是近年来为适应快速、准确无损探测地下障碍物或对地下工程质量评价而迅速发展的方法技术。地质雷达(Ground Penetrating Radar 简称GPR)方法是一种广谱电磁技术,是利用特制的天线向下发射高频电磁波,频率一般为几十~几千兆赫兹。这些电磁波在地下传播过程中,其传播速度受地下介质的介电常数的影响比较大,当遇到介电常数不同的物体或地层时,比如空洞,将产生反射绕射波并返回地面,其旅行时为,当地下介质的介电常数为已知时,便可知道电磁波在介质中的传播速度,根据测到的电磁波的准确旅行时,求出反射体的深度。由于地下介质相当于一个复杂的滤波器,且介质一般横向和纵向的不均匀性比较大,故在地面接受到的信号也有所不同,反映在接受到的信号上,有振幅、频率及相位等的变化。根据这些特征在剖面上的变化情况,就可以得到地下地层及地质体的分布情况。 1.2 地震映像法 地震映象勘探是通过在地面人工激发地震波,地震波在地下介质传播过程中,遇到不同介质的分界面时(即存在波阻抗差异界面),产生一定能量的反射波并返回地面,经布置在地面的检波器接收后输入地震仪,通过地震仪进行信号放大和采样后将波形数据记录储存。通过计算机和人工对接收到的地震波的时间,相位和振幅等信息进行处理和分析,计算地下介质波的速度和埋深,以确定地下异常段的形态和位置。 2.道路塌陷探测 文章以上海某段道路塌陷探测为例,根据现场条件,为了能够有效反应附近区域地下情况,测线布设尽量利用有限工作空间,避开路面障碍物及周围铁磁性物体干扰,探测前进行了相应设备调试、增益调整、滤波等参数设置。探测共布设地质雷达测线14条,地震映像测线4条。部分探测成果如下: (1)图2-1所示地质雷达图像25.0m~41.0m范围内,深度0.5m~1.2m左右,电磁反射波同相轴向下弯曲,且部分区域同相轴错断,表明地下土体存在不均匀沉降。 3.道路塌陷成因分析 结合区域内的地质勘探资料,对道路塌陷的成因分析如下: (1)、浅部路基主要由回填土组成,层厚1.30~2.70m,厚度相对较大,回填土含碎石、砖块、垃圾、植物根茎等,探测显示土质不均匀、不密实、孔隙度大、含水率较高,由于土体自重、地下水长期升降运动,土体产生不同程度的缓慢固结沉降。 (2)、地质雷达和地震映像反映①回填土、②3-1层灰黄色粘质粉土及②3-2 层灰色砂质粉土的横向(水平方向)及纵向(深度方向)土质不均匀形成的软硬不同,在固结沉降和地面荷载长期作用下,软弱层沉降要明显大于硬土层,形成软硬之间的差异沉降。道路表层为20cm 厚的混凝土,具有一定的刚度,差异沉降初期表现为回填土层与混凝土层之间的脱空,随着日积月累,差异沉降逐渐增大,脱空也越来越大;当脱空层达到一定规模时,土层支撑减弱,表层混凝土也逐渐形成差异沉降。 (3)、经现场查勘,该区域地下管线种类较多,主要有给水、雨水、污水、燃气等管线。该道路使用时间已久,雨水、污水等管线使

地震勘探复习简答题

简答:1.简述地震勘探原理 地震勘探根据岩石的弹性差别进行工作的,波遇到障碍物会发生反射和透射,折射.通过测反射波和透射波的性质,可以确定障碍物的距离.地震勘探是人工激发地震波.通过在地面布置测线,接收反射波,然后进行一些处理,从而来反映地下构造情况,为寻找油气和其他勘探目的的服务,生产工作包括三个环节:1野外数据采集2室内数据处理3地震资料解释,与其他方法相比,具有高精度的优点,但耗资大. 2.有效波与干扰波的区别?分别用什么方法压制? 1有效波与干扰波在传播方向上有可能不同,可以用组合检波来压制. 2有效波与干扰波在频道上有差别,可以采用频率滤波来压制,即带通滤波. 3有效波与干扰波在动校正后在剩余时差可能有差别,可以采用多次叠加来压制. 4有效波与干扰波在他们出现的规律上可能有差别,也可以用组合方法来压制. 3.写出水平叠加剖面的形成过程,并指出有何缺陷? 1地震资料采集2进行室内的解编,即将资料转变为道序形式和处理系统内部格式表示的数据形式3道编辑,删除废炮,废道及类脉冲等非期望波.4观测系统的定义5切除处理6静校正,消除地形等的影响7滤波8振幅校正9反褶积,提高分辨率10速度分析和动校正11水平叠加,这便是水平叠加剖面的形成过程.其缺点是:当界面倾斜时,我们按共中心点关系进行抽道集,动校正,水平叠加,其实并不是真的共反射点叠加,在剖面上存在绕射波没有收敛干涉带没有分解,凹转波没有归位等问题.叠加部总是把界面上反射点的位置显示在地面,共中心点下方的铅垂线上,水平界面时与实际情况符合,倾斜时与情况不符. 4.影响水平叠加效果的因素有那些? 多次覆盖参数的选择,动校正速度的大小,地层本身的性质. 5.在地震剖面上常见的异常波识别标志有那些? 常见的异常波有三种即岩性突变点,有关的绕射波,断面处出现断面反射波和凹界面产生的回转波.绕射波同相轴经动校正水平叠加后为曲线.而反射波经动校正后为一条直线,断面反射波在地震剖面上表现为同相轴断开,数目突增减或消失,同相轴突变,反射零乱或出现空白带和标准反射波同相轴发生分叉,合并,扭曲.强相位转换等现象.回转波在剖面上主要表现为蝴蝶结状同相轴交逆叉. 6.地震反射界面的地质意义是什么? 地震反射界面指波阻抗存在差异的界面,他不能完全反映岩性存在差异的界面,但是能反映一些岩性突变点,如不整合面,断续,以及凹界面等,从而帮助查明地下构造. 7.简述费马原理与惠更斯原理?并用费马原理证明地震波反射定律 费马原理:波在各种介质中传播遵循时间最短原理,可用数学上求最小值方法,利用费马原理证明地震波反射定律. 惠更撕原理:波前传播至一位置,可以看作一个新的波源,每个质点都激发球面波向前传播. 8.检波器组合能压制那类干扰波?为什么? 检波器组合可以压制与有效波方向上有差别的干扰波,首先检波器组合可以使信号增强,但有效波增强幅度大,干扰波相对得到压制,其次,检波器组合可以使通放带变窄,则相应压制带就变宽了,所以说可以压制方向存在差别的干扰波. 9.简述地震记录面貌的形成物理过程,学写出制作人工合成地震记录的过程及他的作用. 地震记录面貌形成过程,人工合成地震记录指地震子波s(t)和各个地层界面的反射系数随界面双程垂直时间t的变化R(t),来计算反射率地震记录x(t).可以用来辅助确定反射同相轴对应的地质层位,复杂构造解释,小砂体的固定等,另外可以初步估计反射的界面,深度,品质,主要的多次波能量衰减情况等. 10.什么叫观测系统? 地震勘探中指地震波的激发点与接收点的相互位置关系. 11.为什么要进行偏移处理?偏移处理后的剖面与常见的水平叠加剖面有何不同? 由于水平叠加的剖面存在自身的一些缺点,如绕射波没有收敛,干涉带没有分解,回转波没有归位等,并且其显示出来的反射点位置也往往不是地下真实的位置,因此要求进行偏移处理,经过处理后,剖面上绕射波收敛,回转波归位,从而更真实的反映地下的构造形态. 12.什么叫叠加速度谱?什么叫速度扫描? 叠加速度谱指将每个t0时刻上计算出的各个速度值对应的振幅平均绝对值在t0-v平面上以能量团的形式绘制出来.速度扫描指对在速度谱分析的基础上,对叠加效果不好的层段和区段,在速度谱分析的粗略拾值附近,用一系列小

相关文档
最新文档