八年级因式分解专项训练 (181)

合集下载

八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+3..6.提示:a=-18.∴a=-18.。

人教版八年级上册数学 因式分解的应用 专项训练

人教版八年级上册数学  因式分解的应用   专项训练

人教版八年级上册数学因式分解的应用专项训练一.选择题1.已知长方形的长和宽分别为a和b,其周长为4,则a2+2ab+b2的值为()A.2B.4C.8D.16 2.若x2−ax−2可以分解为(x−2)(x+b),则a−b的值为()A.−1B.1C.−2D.03.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.49 4.琪琪是一位密码编译爱好者,在她的密码手册中,有这样一条信息:x−1,a−b,3,x2+1,a,x+1分别对应下列六个字:果、我、爱、静、宁、苹,现将3a(x2−1)−3b(x2−1)因式分解,结果呈现的密码信息可能是()A.爱我苹果B.我爱宁果C.爱静宁D.我爱静5.已知x,y,z都是正整数,其中x y,且x2−xz−xy+yz=23,设a=x−z,则[(3a−1)(a+2)−5a+ 2]÷a=()A.3B.69C.3或69D.2或466.甲、乙两位同学在对多项式x2+bx+c分解因式时,甲看错了b的值,分解的结果是(x﹣4)(x+5),乙看错了c的值,分解的结果是(x+3)(x﹣4),那么c-5b的值为()A.15B.-15C.25D.-257.如图,有A型、B型、C型三种不同的纸板.其中A型是边长为xcm的正方形,共有2块;B型是长为xcm,宽为1cm的长方形,共有4块;C型为边长为1cm的正方形,共有3块.现用这9块纸板去拼出一个大的长方形(不重叠、不留空隙),则下列操作可行的是()A.用全部9块纸板B.加上1块C型纸板C.拿掉1块B型纸板D.拿掉1块A型纸板8.某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵(排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有()A.1种B.2种C.4种D.0种二.填空题9.已知实数a,b,满足a+b=6,ab=7,则a2b+ab2的值为.10.在实数范围内分解因式:2y2−6y+1=.11.规定两数a、b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.根据上述规定,填空:若(2,10)=x,(2,5)=y,则2x2−y2的值为.12.已知等腰三角形的一边长为9,另一边长为方程(x−3)(x−5)=0的根,则该等腰三角形的周长为.13.若一个四位自然数M的千位数字与个位数字之和恰好是M的百位数字与十位数字之和的2倍,则称这个四位数M为“好数”.一个“好数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=a+b+c+d,G(M)=a−4b+4c−d2c−5.若P(M)15为整数,G(M)是4的倍数,则b+c=;所有满足条件的M的最大值和最小值的差为.三.解答题14.利用因式分解计算:(1)98.52-2×98.5×78.5+78.52(2)1200÷1522−148215.已知a=2+1,b=2−1,求下列式子的值:(1)1a+1b(2)a2−b216.若两个正整数a,b,满足(a+b)2=ka+b,k为自然数,则称a为b的“k级”数.例如a=2,b=3,(2+3)2=11×2+3,则2为3的“11级”数.(1)5是6的“”级数;正整数n为1的“”级数(用关于n的代数式表示);(2)若m为4的“m+10”级数,求m的值;(3)是否存在a,b的值,使得a为b的“a+b级”数?若存在,请举出一组a,b的值;若不存在请说明理由.17.对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,通过不同的方法计算图形的面积,直接写出一个数学等式.(2)解决问题:如果a+b=37,ab=12,求a2+b2的值.x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图①所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图②和图③,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.。

八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+3..6.提示:a=-18.∴a=-18.。

八年级下数学《第四章因式分解》单元测试(含答案)

八年级下数学《第四章因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。

人教版八年级上册因式分解(分组分解法)练习100题及答案

人教版八年级上册因式分解(分组分解法)练习100题及答案

人教版八年级上册因式分解(分组分解法)练习100题及答案(1) 181698xy x y -++-(2) 229169440x z xy yz zx +-+- (3) 227122537x y xy yz zx -+-+ (4) 223214324x y xy yz zx -+-+(5) 6699xy x y -+-+(6) 22259802448a b a b --++(7) 2294216a c ab bc ca ---+(8) 221825362035a c ab bc ca --++(9) 6181545xy x y -+-(10) 752115ax ay bx by -+-(11) 224030732420x y xy yz zx ++++(12) 121244mn m n -+-(13) 222415311540a b ab bc ca -++-(14) 54422721mx my nx ny -+-(15) 22961546a b ab bc ca +-+-(16) 221616484011x y x y ---+(17)2281251627032x y x y-+++ (18)221866931x z xy yz zx+-+-(19)22241221015x y xy yz zx-+-+ (20)22498111210828m n m n--++ (21)22218642a c ab bc ca-+++ (22)228116544827m n m n--+-(23)24323648xy x y+--(24)907097ab a b+++(25)27155430ax ay bx by--+(26)8048106mx my nx ny+--(27)22325443024x y xy yz zx++--(28)321321ax ay bx by--+(29)9455xy x y-+-(30)36451620xy x y--+(31)2216256464m n m---(32)101256ax ay bx by-+-(33)22416322455x y x y-+++ (34)63725664ab a b-+-(35) 22920361641x z xy yz zx ---- (36) 40245030ax ay bx by -+-(37) 164246mn m n -+-(38) 227442243x z xy yz zx --++(39) 224212494222a c ab bc ca ---+(40) 48803660mn m n +++(41) 223642453582a c ab bc ca +-+-(42) 14187090ab a b --+(43) 630630mx my nx ny -+-(44) 1883616xy x y -+-+(45) 22948655a b a b -+-+(46) 14631672ax ay bx by -+-(47) 2251251519a c ab bc ca +-+-(48) 32561221xy x y --++(49) 18601860mx my nx ny +++(50) 223016445x y xy yz zx -+--(51) 2218496763x z xy yz zx ++--(52) 2249364942x z xy yz ---(53) 401652ab a b +++ (54) 229209449x z xy yz zx +--+(55) 224220363059a c ab bc ca ++--(56) 100508040ax ay bx by -+-(57) 2615104x xy yz zx +--(58) 22648164547m n m n ---+(59) 208208mn m n -+-(60) 36408190ab a b --+(61) 10202550xy x y ----(62) 27243632ab a b --+(63) 224014664935a b ab bc ca ++++(64) 14472mn m n +++(65) 2281522016x y xy yz zx -++-(66) 226330357x y xy yz zx -+--(67) 2264623a c ab bc ca -++-(68) 18362448mx my nx ny --+(69) 482484xy x y --+(70) 30127028mx my nx ny +++(71) 209029xy x y +--(72) 2271092x y xy yz zx --+- (73) 20124527ab a b +-- (74) 328328xy x y +++(75) 42491214xy x y +++ (76) 2281819025a b b -+- (77) 224152334a b ab bc ca ++++ (78) 28367090mx my nx ny -+-(79) 222728452051a c ab bc ca -+-+(80) 22991868a b a b -+-+(81) 35561524mx my nx ny +--(82) 25504590ab a b +--(83) 22811616272a b a b --+(84) 12271227mx my nx ny +--(85) 222112352033a c ab bc ca ++++(86) 221274072a b ab bc ca ---+(87) 2236361227m n m n ----(88) 583048xy x y --+(89)14146363xy x y-+-+(90)21142114xy x y+++(91)24306480xy x y-+-(92)2236218742a b ab bc ca+-+-(93)50603542mx my nx ny+--(94)21123520mx my nx ny+--(95)223411164a b ab bc ca---+ (96)228325540a b ab bc ca+--+ (97)942712mn m n-+-(98)4510368xy x y----(99)7010355mx my nx ny--+ (100)224916564820x y x y----人教版八年级上册因式分解(分组分解法)练习100题答案(1)(21)(98)x y---(2)(94)(4)x z x y z---(3)(73)(4)x y x y z-++(4)(43)(8)x y z x y++-(5)3(23)(1)x y-+-(6)(5312)(534)a b a b+---(7)(2)(92)a c ab c+--(8)(245)(95)a b c a c-+-(9)3(25)(3)x y+-(10)(3)(75)a b x y+-(11)(56)(854)x y x y z+++ (12)4(31)(1)m n+-(13)(83)(355)a b a b c-+-(14)3(2)(97)m n x y+-(15)(332)(32)a b c a b---(16)(441)(4411)x y x y+---(17)(952)(9516)x y x y++-+ (18)(23)(932)x z x y z---(19)(32)(865)x y x y z-++ (20)(7914)(792)m n m n+---(21)(724)(32)a b c a c+-+ (22)(949)(943)m n m n+--+ (23)4(23)(34)x y-+(24)(101)(97)a b++(25)3(2)(95)a b x y--(26)2(8)(53)m n x y-+(27)(45)(86)x y x y z++-(28)3()(7)a b x y--(29)(5)(91)x y+-(30)(94)(45)x y--(31)(458)(458)m n m n+---(32)(2)(56)a b x y+-(33)(245)(2411)x y x y++-+(34)(98)(78)a b+-(35)(45)(94)x y z x z--+(36)2(45)(53)a b x y+-(37)2(23)(41)m n+-(38)(74)(6)x z x y z--+(39)(672)(76)a b c a c--+ (40)4(43)(35)m n++(41)(456)(97)a b c a c---(42)2(5)(79)a b--(43)6()(5)m n x y+-(44)2(2)(94)x y-+-(45)(311)(35)a b a b++-+(46)(78)(29)a b x y+-(47)(3)(554)a c ab c---(48)(83)(47)x y--+(49)6()(310)m n x y++(50)(64)(54)x y z x y--+ (51)(37)(67)x y z x z+--(52)(776)(76)x y z x z--+(53)(81)(52)a b++(54)(5)(94)x y z x z-++(55)(65)(764)a c ab c-+-(56)10(54)(2)a b x y+-(57)(25)(32)x y x z+-(58)(891)(897)m n m n+---(59)4(1)(52)m n+-(60)(49)(910)a b--(61)5(25)(2)x y-++(62)(34)(98)a b--(63)(827)(57)a b c a b+++ (64)(21)(72)m n++(65)(234)(45)x y z x y+--(66)(96)(75)x y z x y--+(67)(6)(4)a c ab c++-(68)6(34)(2)m n x y--(69)4(61)(21)x y--(70)2(37)(52)m n x y++ (71)(101)(29)x y-+(72)(75)(2)x y z x y+--(73)(49)(53)a b-+(74)8(1)(41)x y++(75)(72)(67)x y++(76)(995)(995)a b a b+--+(77)(43)(5)a b a b c+++ (78)2(25)(79)m n x y+-(79)(357)(94)a b c a c++-(80)(334)(332)a b a b++-+ (81)(73)(58)m n x y-+(82)5(59)(2)a b-+(83)(9418)(94)a b a b+--(84)3()(49)m n x y-+(85)(353)(74)a b c a c+++(86)(27)(6)a b a b c-++ (87)(63)(69)m n m n++--(88)(6)(58)x y--(89)7(29)(1)x y-+-(90)7(1)(32)x y++(91)2(38)(45)x y+-(92)(627)(6)a b c a b---(93)(107)(56)m n x y-+(94)(35)(74)m n x y-+(95)(4)(34)a b a b c-++(96)(35)(8)a b c a b-+-(97)(3)(94)m n+-(98)(54)(92)x y-++(99)5(2)(7)m n x y--(100)(742)(7410)x y x y++--。

八年级因式分解练习题有答案(可编辑修改word版)

八年级因式分解练习题有答案(可编辑修改word版)

一、填空题:因式分解练习题15.当m= 时,x 2+2(m -3)x +25 是完全平方式.二、选择题:2.(a -3)(3-2a)=(3-a)(3-2a);12.若 m 2-3m +2=(m +a)(m +b),则 a=,b=;1. 下列各式的因式分解结果中,正确的是A .a 2b +7ab -b =b(a 2+7a) B .3x 2y -3xy -6y=3y(x -2)(x +1)C .8xyz -6x 2y 2=2xyz(4-3xy)D .-2a 2+4ab -6ac =-2a(a+2b -3c)2. 多项式 m(n -2)-m 2(2-n)分解因式等于A .(n -2)(m +m 2)B .(n -2)(m -m 2)C .m(n -2)(m +1)D .m(n -2)(m -1)3. 在下列等式中,属于因式分解的是A .a(x -y)+b(m +n)=ax+bm -ay +bn B .a 2-2ab +b 2+1=(a -b)2+1C .-4a 2+9b 2=(-2a +3b)(2a +3b)D .x 2-7x -8=x(x -7)-84.下列各式中,能用平方差公式分解因式的是 A .a 2+b 2B .-a 2+b 2C .-a 2-b 2D .-(-a 2)+b 25. 若 9x 2+mxy +16y 2 是一个完全平方式,那么 m 的值是A.-12 B.±24C.12 D.±126.把多项式 a n+4-a n+1 分解得A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1)7.若 a2+a=-1,则 a4+2a3-3a2-4a+3 的值为A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y 的值分别为A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16 分解因式得A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60 分解因式,得A.(x-10)(x+6) B.(x+5)(x-12)C.(x+3)(x-20) D.(x-5)(x+12)11.把3x2-2xy-8y2 分解因式,得A.(3x+4)(x-2) B.(3x-4)(x+2)C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)12.把a2+8ab-33b2 分解因式,得A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2 分解因式,得A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab 可分解因式为A.-(x+a)(x+b) B.(x-a)(x+b)C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于 x 的二次三项式,其 x2 项的系数是 1,常数项是-12,且能分解因式,这样的二次三项式是A.x2-11x-12 或x2+11x-12 B.x2-x-12 或x2+x-12C.x2-4x-12 或x2+4x-12 D.以上都可以16.下列各式 x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2 中,不含有(x-1)因式的有A.1 个B.2 个C.3 个D.4 个17.把 9-x2+12xy-36y2 分解因式为A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知 a2x2±2x+b2 是完全平方式,且 a,b 都不为零,则 a 与b 的关系为A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4 进行因式分解,所得的正确结论是A.不能分解因式B.有因式 x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2 分解因式为A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy23.64a8-b2 因式分解为A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2 因式分解为A.(5x-y)2 B.(5x+y)2B.C.(3x-2y)(3x+2y) D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1 因式分解为A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2 分解因式为A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)2 27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2 分解因式为A.c(a+b)2B.c(a-b)2 C.c2(a+b)2 D.c2(a-b) 28.若4xy-4x2-y2-k 有一个因式为(1-2x+y),则k 的值为A.0B.1 C.-1 D.429.分解因式 3a2x-4b2y-3b2x+4a2y,正确的是A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;33.m4+m2+1;34.a2-b2+2ac+c2;35.a3-ab2+a-b;36.625b4-(a-b)4;37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.四、证明(求值):1.已知 a+b=0,求a3-2b3+a2b-2ab2 的值.2.求证:四个连续自然数的积再加上 1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac 的值.5.若 x2+mx+n=(x-3)(x+4),求(m+n)2 的值.6.当a 为何值时,多项式 x2+7xy+ay2-5x+43y-24 可以分解为两个一次因式的乘积.7.若x,y 为任意有理数,比较 6xy 与x2+9y2 的大小.8.两个连续偶数的平方差是 4 的倍数.参考答案:一、填空题:7.9,(3a-1)1.(p-q)(m-1)(m+1).10.x-5y,x-5y,x-5y,2a-b 11.+5,-212.-1,-2(或-2,-1)15.8 或-2 二、选择题:14.bc+ac,a+b,a-c8.(x-2b)(x-4a+2b).1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:11.4(2x-1)(2-x).27.(3+2a)(2-3a).31.(x+y)(x-y-1).20.(x+3y)(x+y).21.(x-6)(x+24).6.提示:a=-18.38.(x+2y-7)(x+2y+5).四、证明(求值):2.提示:设四个连续自然数为 n,n+1,n+2,n+3∴a=-18.。

八年级因式分解练习题(2018版含答案)

八年级因式分解练习题(2018版含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级因式分解练习题(2018版含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级因式分解练习题(2018版含答案)的全部内容。

八年级因式分解练习题(2018版含答案)基础巩固一、选择题1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bxB.x2-1+y2=(x-1)(x+1)+y2C.x2-1=(x+1)(x-1)D.ax+bx+c=x(a+b)+c2.把x3-xy2分解因式,正确的结果是()A.(x+xy)(x-xy) B.x(x2-y2)C.x(x-y)2 D.x(x-y)(x+y)3.下列多项式能进行因式分解的是()A.x2-y B.x2+1C.x2+y+y2 D.x2-4x+44.把多项式m2(a-2)+m(2-a)分解因式等于()A.(a-2)(m2+m)B.(a-2)(m2-m)C.m(a-2)(m-1)D.m(a-2)(m+1)5.下列各式中不能用平方差公式分解的是()A.-a2+b2 B.-x2-y2C.49x2y2-z2 D.16m4-25n26.下列各式中能用完全平方公式分解的是()①x2-4x+4;②6x2+3x+1;③4x2-4x+1;④x2+4xy+2y2;⑤9x2-20xy+16y2.A.①② B.①③C.②③ D.①⑤7.把下列各式分解因式:(1)9x3y2-12x2y2z+3x2y2;(2)2a(x+1)2-2ax;(3)16x2-9y2;(4)(x+2)(x+3)+x2-4.能力提升8.若m-n=-6,mn=7,则mn2-m2n的值是()A.-13 B.13 C.42 D.-429.若x2+mx-15=(x+3)(x+n),则m的值为()A.-5 B.5 C.-2 D.210.若x2-ax-1可以分解为(x-2)(x+b),则a+b的值为() A.-1 B.1 C.-2 D.211.若16x2+mxy+9y2是一个完全平方式,那么m的值是() A.12 B.24 C.±12 D.±2412.分解因式(x-3)(x-5)+1的结果是()A.x2-8x+16B.(x-4)2C.(x+4)2D.(x-7)(x-3)13.分解因式3x2-3y4的结果是()A.3(x+y2)(x-y2)B.3(x+y2)(x+y)(x-y)C.3(x-y2)2D.3(x-y)2(x+y)214.若a+b=-1,则3a2+3b2+6ab的值是()A.-1 B.1C.3 D.-315.-6x n-3x2n分解因式正确的是()A.3(-2x n-x2n)B.-3x n(2+x n)C.-3(2x n+x2n)D.-3x n(x n+2)16.把下列各式分解因式:(1)x(x-5)2+x(-5+x)(x+5);(2)(a+2b)2-a2-2ab;(3)-2(m-n)2+32;(4)-x3+2x2-x;(5)4a(b-a)-b2;(6)2x3y+8x2y2+8xy3。

八年级数学上册《因式分解》计算题专项练习

八年级数学上册《因式分解》计算题专项练习提取公因式是因式分解的基础,掌握了提取公因式的方法,就能够更好地解决因式分解问题。

下面是一些提取公因式的练题,供大家练:1、提取公因式:c(x-y+z),得到结果:c(x-y+z)2、提取公因式:p(x-qx-rx^2),得到结果:p(x-q-rx)3、提取公因式:5a^2(3a-2),得到结果:15a^3-10a^24、提取公因式:3bc(4a-25),得到结果:12abc-75bc5、提取公因式:xy(4x-y^2),得到结果:4x^2y-xy^36、提取公因式:7pq(9-2q),得到结果:63pq-14pq^27、提取公因式:6a^2m(4m-3n+7),得到结果:24a^3m-18a^2m^2+42a^2mn8、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)9、提取公因式:x-y(5x+2y),得到结果:(x-y)(5x+2y)10、提取公因式:-2ab(a^2-3ab+b^2),得到结果:-4a^3b+6a^2b^2-2ab^311、提取公因式:-8x^3+56x^2-32x^3,得到结果:-8x^2(x-7)+56x(x-7)12、提取公因式:3mn(2m-5n+10),得到结果:6m^2n-15mn^2+30m^2n13、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)14、提取公因式:(x-y)(5x+2y),得到结果:(x-y)(5x+2y)15、提取公因式:2q(p+q)-4p(p+q),得到结果:-2p(p+q)16、提取公因式:(m+n)(p+q)-(m+n)(p-q),得到结果:2(m+n)q17、提取公因式:a(a-b)+(a-b)2,得到结果:(a-b)(a+b)18、提取公因式:x(x-y)^2-y(x+y)2,得到结果:(x-y)(x^2+xy+y^2)-y(x+y)^219、提取公因式:(2a+b)(2a-3b)-3a(2a+b),得到结果:(2a-b)(2a-3b)20、提取公因式:x(x+y)(x-y)-x(x+y),得到结果:x(x-y)(x+y-1)21、提取公因式:p(x-y)-q(y-x),得到结果:2p(x-y)22、提取公因式:m(a-3)+2(3-a),得到结果:-m(a-3)-2(a-3)23、提取公因式:(a+b)(a-b)-(b+a),得到结果:-(a-b)^224、提取公因式:a(x-a)+b(a-x)-c(x-a),得到结果:(a-c)(a-x)-(a-c)(x-a)25、提取公因式:10a(x-y)^2-5b(y-x),得到结果:10a(x-y)^2+5b(x-y)26、提取公因式:3(x-1)^3y-(1-x)^3z,得到结果:3(x-1)^3(y+z-x)27、提取公因式:x(a-x)(a-y)-y(x-a)(y-a),得到结果:(x-y)(a-x)(a-y)28、提取公因式:-ab(a-b)^2+a(b-a)^2,得到结果:-2ab(a-b)^229、提取公因式:2x(x+y)^2-(x+y)^3,得到结果:(x+y)^2(x-2)30、提取公因式:21×3.14+62×3.14+17×3.14,得到结果:100×3.1431、提取公因式:2.186×1.237-1.237×1.186,得到结果:0掌握了提取公因式的方法,就能够更好地解决因式分解问题。

八年级上册因式分解分类练习题(经典全面)

因式分解操练题(提取公因式)之袁州冬雪创作专项训练一:确定下列各多项式的公因式.1、2、3、4、5、6、7、8、9、10、专项训练二:操纵乘法分配律的逆运算填空.1、 2、3、4、专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立.1、2、3、4、5、6、7、8、9、10、11、12、专项训练四、把下列各式分解因式.1、、??、??、??、??、??、8、9、10、11、 12、13、 14、专项训练五:把下列各式分解因式.1、2、3、4、5、6、7、8、9、10、11、12、13、 14、15、16、17、18、19、 20、21、22、专项训练六、操纵因式分解计算.1、2、3、4、专项训练七:操纵因式分解证明下列各题.1、求证:当n 为整数时,必能被2整除.2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除.3、证明:专项训练八:操纵因式分解解答列各题.1、2、因式分解习题(二)公式法分解因式专题训练一:操纵平方差公式分解因式题型(一):把下列各式分解因式1、 2、 3、4、 5、 6、7、 8、 9、10、??????????、??、??、题型(二):把下列各式分解因式1、 2、3、 4、5、 6、题型(三):把下列各式分解因式1、 2、 3、4、5、6、7、 8、 9、10、11、12、题型(四):操纵因式分解解答下列各题1、证明:两个持续奇数的平方差是8的倍数.2、计算⑴⑵⑶⑷专题训练二:操纵完全平方公式分解因式题型(一):把下列各式分解因式1、 2、 3、4、 5、 6、7、 8、 9、10、11、 12、13、14、15、题型(二):把下列各式分解因式1、 2、3、 4、5、 6、题型(三):把下列各式分解因式1、 2、 3、题型(四):把下列各式分解因式1、 2、3、 4、5、 6、7、 8、9、10、题型(五):操纵因式分解解答下列各题1、已知:2、3、已知:断定三角形的形状,并说明来由.因式分解习题(三)十字相乘法分解因式(1)对于二次项系数为1的二次三项式方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中相对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两端,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积相对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意防止以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.二、典型例题例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5.由于6=2×3=(2)×(3)=1×6=(1)×(6),从中可以发现只有2×3的分解适合,即2+3=5. 1 2解:= 1 3=1×2+1×3=5用此方法停止分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数.例1、分解因式:解:原式= 1 1= 1 6(1)+(6)= 7操练1、分解因式(1)(2)(3)操练2、分解因式(1)(2)(3)(二)二次项系数不为1的二次三项式——条件:(1)(2)(3)分解成果:=例2、分解因式:分析: 1 23 5(6)+(5)= 11解:=操练3、分解因式:(1)(2)(3)(4)(三)多字母的二次多项式例3、分解因式:分析:将当作常数,把原多项式当作关于的二次三项式,操纵十字相乘法停止分解.1 8b1 16b8b+(16b)= 8b解:==操练4、分解因式(1)(2)(3)例4、例10、1 2y 把看做一个整体 112 3y 12(3y)+(4y)= 7y (1)+(2)= 3解:原式=解:原式=操练5、分解因式:(1)(2)综合操练10、(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)思考:分解因式:例5 分解因式:.例6、已知有一个因式是,求a值和这个多项式的其他因式.课后操练一、选择题1.如果,那末p等于 ( )A.abB.a+b C.-ab D.-(a+b)2.如果,则b为 ( )A.5 B.-6 C.-5 D.63.多项式可分解为(x-5)(x-b),则a,b的值分别为( )A.10和-2 B.-10和2 C.10和2 D.-10和-2 4.不克不及用十字相乘法分解的是 ( )A .B .C .D .5.分解成果等于(x+y-4)(2x+2y-5)的多项式是 ( )A .B .C .D .6.将下述多项式分解后,有相同因式x-1的多项式有( )①;②;③;④;⑤;⑥A.2个 B.3个 C.4个 D.5个二、填空题7.__________.8.(m+a)(m+b).a=__________,b=__________.9.(x-3)(__________).10.____(x-y)(__________).11..12.当k=______时,多项式有一个因式为(__________).13.若x-y=6,,则代数式的值为__________.三、解答题14.把下列各式分解因式:(1);(2);(3);(4);(5);(6).15.把下列各式分解因式:(1);(2);(3);(4);(5);(6).16.已知x+y=2,xy=a+4,,求a的值.十字相乘法分解因式题型(一):把下列各式分解因式⑴⑵⑶⑷⑸⑹⑺⑻题型二??:把下列各式分解因式⑴⑵⑶⑷⑸⑹⑺⑻题型(三):把下列各式分解因式⑴⑵⑶⑷⑸⑹⑺⑻题型(四):把下列各式分解因式⑴⑵⑶⑷⑸⑹⑺⑻因式分解习题(四)分组分解因式操练:把下列各式分解因式,并说明运用了分组分解法中的什么方法.(1)a2-ab+3b-3a;(2)x2-6xy+9y2-1;解(3)am-an-m2+n2;(4)2ab-a2-b2+c2.第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.第(2)题把前三项分为一组,操纵完全平方公式分解因式,再与第四项运用平方差公式继续分解因式.第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式.第(4)题把第一、二、三项分为一组,提出一个“-”号,操纵完全平方公式分解因式,第四项与这一组再运用平方差公式分解因式.把含有四项的多项式停止因式分解时,先根据所给的多项式的特点恰当分解,再运用提公因式或分式法停止因式分解.在添括号时,要注意符号的变更.这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.二、新课例1 把am+bm+an-cm+bn-cn分解因式.例2 把a4b+2a3b2-a2b-2ab2分解因式.例3 把45m2-20ax2+20axy-5ay2分解因式.三、讲堂操练把下列各式分解因式:(1)a2+2ab+b2-ac-bc;(2)a2-2ab+b2-m2-2mn-n2;(3)4a2+4a-4a2b+b+1;(4)ax2+16ay2-a-8axy;五、作业1.把下列各式分解因式:(1)x3y-xy3;(2) 4x2-y2+2x-y;(3) a4b-ab4;(4)x4y+2x3y2-x2y2xy2;(5)a4+a3+a+1; (6)x3-8y3-x2-2xy-4y2;(7)x2+x-(y2+y);(8)ab(x2-y2)+xy(a2-b2).(9)(10)。

八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4ax2+4axy+ay2
da-db+a2-b2
9x2y-6xy+y
4x2-16
-9x2+4y2
x3-x
9x2-36x+36
x3-xy2
9ax2-6axy+ay2
na+nb+a2-b2
9x2y+24xy+16y
x2-1
-16x2+4y2
x4-x2
x2-10x+25
x4-x2y2
9ax2+18axy+9ay2
3a+3b+a2-b2
9x2y-12xy+4y
4x2-36
-4x2+4y2
x4-x2
4x2+4x+1
x-x2y4
ax2-4axy+4ay2
na+nb+a2-b2
x2y+4xy+4y
9x2-25
-9x2+4y2
x3-x2
9x2+6x+1
x3-x2y4
9ax2+36axy+36ay2
ta-tb+a2-b2
4x2y+24xy+36y
4x2-36
-16x2+y2
x3-x
9x2-24x+16
x-x2y4
4ax2+4axy+ay2
na+nb+a2-b2
4x2y-8xy+4y
x2-9
-16x2+y2
x4-x2
x2+4x+4
x-xy2
4ax2-12axy+9ay2
na-nb+a2-b2
9x2y-12xy+4y
9x2-16
-4x2+y2
x4-x
x2+6x+9
x2-xy2
9ax2+24axy+16ay2
da+db+a2-b2
x2y+4xy+4y
16x2-36
-4x2+y2
x4-x
x2-12x+36
x4-xy2
9ax2+24axy+16ay2
5a+5b+a2-b2
9x2y-30xy+25y
16x2-16
-4x2+9y2
x3-x
x2+10x+25
x4-xy2
4ax2+24axy+36ay2
5a+5b+a2-b2
4x2y+16xy+16y
x2-9
-4x2+y2
x3-x
9x2+18x+9
x-xy2
4ax2-8axy+4ay2
5a+5b+a2-b2
4x2y-8xy+4y
x2-9
-9x2+4y2
x3-x
9x2+12x+4
x3-x2y4
ax2-2axy+ay2
ta-tb+a2-b2
x2y-12xy+36y
4x2-1
-16x2+9y2
x3-x
9x2+30x+25
x-xy2
ax2-6axy+9ay2
ma-mb+a2-b2
x2y+10xy+25y
4x2-4
-4x2+9y2
x3-x2
4x2+8x+4
x-xy2
4ax2+16axy+16ay2

相关文档
最新文档