因式分解专项练习题(含复习资料)

合集下载

因式分解专项练习题(含答案)【范本模板】

因式分解专项练习题(含答案)【范本模板】

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4; (3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a 的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b ﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x ﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解专项练习试题(含答案)

因式分解专项练习试题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2 (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x (x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2..专业.专注.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x ﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).. word可编辑.。

因式分解50题(配完整解析)

因式分解50题(配完整解析)

因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1. 二次多项式的因式分解问题描述给定一个二次多项式ax2+bx+c,请将其进行因式分解。

解答步骤1.首先确定二次多项式的系数a、b和c。

2.接着,我们需要找到两个因子,使得它们的乘积等于ac,并且它们的和等于b。

3.最后,将多项式按照因子的形式进行因式分解。

示例问题:将二次多项式2x2+3x−2进行因式分解。

解答:1.确定系数a=2,b=3和c=−2。

2.找到两个因子,它们的乘积等于ac=−4,并且它们的和等于b=3。

在本例中,-2 和 2 是满足要求的因子。

3.将多项式进行因式分解:2x2+3x−2=(x−2)(2x+1)。

因此,二次多项式2x2+3x−2的因式分解结果为(x−2)(2x+1)。

答案(x−2)(2x+1)2. 完全平方式的因式分解问题描述给定一个完全平方式a2−b2,请将其进行因式分解。

解答步骤1.首先确定完全平方式的两个因子a和b。

2.接着,根据公式(a−b)(a+b)进行因式分解。

示例问题:将完全平方式9x2−4进行因式分解。

解答:1.确定完全平方式的两个因子a=3x和b=2。

2.根据公式进行因式分解:9x2−4=(3x−2)(3x+2)。

因此,完全平方式9x2−4的因式分解结果为(3x−2)(3x+2)。

答案(3x−2)(3x+2)3. 其它特殊情况的因式分解问题描述除了二次多项式和完全平方式外,还有一些特殊情况需要进行因式分解。

下面是几个例子:1.差平方式:形式为a2−b2的差平方式可以利用公式(a−b)(a+b)进行因式分解。

2.特殊二次多项式:形式为ax2+bx+c的二次多项式,如果不能直接进行因式分解,可以尝试使用求根公式进行因式分解。

3.多项式的公因式提取:对于多项式ax2+bx,可以提取公因式得到x(ax+b)进行因式分解。

示例问题:将差平方式16x2−9进行因式分解。

解答:根据公式(a−b)(a+b)进行因式分解:16x2−9=(4x−3)(4x+3)。

【八年级上册】因式分解专项训练(30道)(含答案)

【八年级上册】因式分解专项训练(30道)(含答案)

因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案一、解答题(共100题)1、阅读理解题:我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.如:(1)x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);(2)x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5).2、化简:a2(a﹣1)﹣a3.3、阅读材料:若x2-2xy+2y2-8y+16=0,求x、y的值.解:∵x2-2xy+2y2-8y+16=0,∴(x2-2xy+y2)+(y2-8y+16)=0∴(x-y)2+(y-4)2=0,∴(x-y)2=0,(y-4)2=0,∴y=4,x=4.根据你的观察,探究下面的问题:已知a、b满足a2+b2-4a-6b+13=0.求a、b的值.4、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.5、分解因式(1)4x2+4x+1(2)2x2﹣18(3)y3﹣2y2+y(4)4a2﹣(b+c)2.6、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.7、已知方程x2﹣2x﹣15=0的两个根分别是a和b,求代数式(a﹣b)2+4b(a ﹣b)+4b2的值.8、10x2+3x﹣4.9、已知,求的值.10、先化简,在求值:30x (y+4)-15x(y+4), 其中x=2,y=-211、(p﹣q)4÷(q﹣p)3•(p﹣q)2.12、先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.13、因式分解:(2x+y)2﹣(x+2y)2.14、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.15、已知二次函数的图象与x轴交于两点,且,求a的值.16、若a m=4,a n=2,求a2m-n17、列方程解应用题:如果一个正方形的边长增加4厘米,那么它的面积就增加40平方厘米,则这个正方形的边长是多少?18、3m3n﹣6m2n2﹣72mn3.19、利用因式分解计算:3.68×15.7-31.4+15.7×0.32.20、先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.21、己知:△ABC,AD⊥BC于点D,且AB+BD=AC+CD,求证:AB=AC.22、已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.23、若a+b=﹣3,ab=1.求a3b+a2b2+ab3的值.24、已知多项式与的乘积中不含有一次项和二次项,求常数的值.25、已知多项式的结果中不含项和项,求和的值.26、分解因式: 4x2-427、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)28、有一个长方体模型,它的长为2×103cm,宽为1.5×102cm,高为1.2×102cm,它的体积是多少cm3?29、分解因式:2x2﹣8.30、解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5)31、已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.32、解答发现:(1)当a=3,b=2时,分别求代数式(a+b)2和a2+2ab+b2的值,并观察这两个代数式的值有什么关系?(2)再多找几组你喜欢的数试一试,从中你发现了什么规律?(3)利用你所发现的规律计算a=1. 625,b=0. 375时,a2+2ab+b2的值?33、设n为正整数,且x2n=5,求(2x3n)2﹣3(x2)2n的值.34、已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.35、已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.36、已知.三角形的底边长为(2x+1)cm,高是(x﹣2)cm,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x=3时三角形增加的面积.37、已知x2+xy﹣2y2=7,且x、y都是正整数,试求x、y的值.38、已知a-b=3,求a(a-2b)+b2的值39、先化简,再求值:.40、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.41、已知(x+a)(x2﹣x+c)的积中不含x2项和x项,求(x+a)(x2﹣x+c)的值是多少?42、已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a的值.43、因式分解:6p(p+q)﹣4q(p+q).44、(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.45、先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.46、化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值47、“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.48、七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.49、已知:,,求和的值.50、已知:a m=5,a n=2,求(1)a2m+3n的值;(2)a4n﹣3m的值.51、对于任意自然数n,(n+7)2-(n-5)2能否被24整除,为什么?52、先化简,再求值:(x﹣y2)﹣(x﹣y)(x+y)+(x+y)2,其中x=3,y=﹣.53、说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.54、设x>0,试比较代数式x3和x2+x+2的值的大小.55、(1)解方程:x2﹣4x=0(2)化简:m(m+3)﹣(m+1)2,其中m=+1.56、数学课堂上,王老师给同学们出了道题:若(x2﹣px+3)(x﹣q)中不含x2项,请同学们探究一下p与q的关系.请你根据所学知识帮助同学们解决一下.57、已知:a+b=﹣1,ab=﹣6,求下列各式的值:(1)a2b+ab2(2)a2+b2.58、x4﹣13x2y2+36y4.59、分解因式:(1)6xy2﹣9x2y﹣y3;(2)(x2+4)2﹣16x2.60、设的整数部分为x,小数部分为y,求(x+y)(x﹣y)的值.61、已知a+b=3,求代数式a2﹣b2+2a+8b+5的值.62、已知:,求代数式的值.63、请利用因式分解说明能被100整除.64、已知多项式x2-4x+m分解因式的结果为(x+a)(x-6),求2a-m的值.65、若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC 的形状.66、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)67、已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.68、已知n是正整数,且,求的值.69、先化简,再求值:.70、当a=3,b=﹣1时(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?71、已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.72、阅读理解并解答:为了求1+2+22+23+24+...+22009的值,可令S=1+2+22+23+24+ (22009)则2S=2+22+23+24+…+22009+22010,因此2S﹣S=(2+22+23+…+22009+22010)﹣(1+2+22+23+…+22009)=22010﹣1.所以:S=22010﹣1.即1+2+22+23+24+…+22009=22010﹣1.请依照此法,求:1+4+42+43+44+…+42010的值.73、在日常生活中我们经常用到密码,如取款、上网购物需要密码,有一种用因式分解法产生密码,方便记忆,其原理是:将一个多项式因式分解:例如x4﹣y4=(x2+y2)(x+y)(x﹣y),当x=8,y=9时,x2+y2=145,x+y=17,x﹣y=4则可以得到密码是145174,1741454…,等等,根据上述方法当x=32,y=12时,对于多项式x2y﹣y3分解因式后可以形成哪些数字密码?74、先化简,再求值:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2.(2)2a(a+b)﹣(a+b)2,其中a=3,b=5.75、已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.76、已知:a﹣b=﹣2015,ab=,求a2b﹣ab2的值.77、已知:,求78、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.79、分解因式:4n2(m﹣1)+9﹣9m.80、已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.81、先化简,再求值:,其中a=﹣3,b= .82、已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.83、下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.任务1:填空:①以上化简步骤中,第一步的依据是________;②以上化简步骤中,第________步开始出现不符合题意,这一步错误的原因是________ ;任务2:请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.84、因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.85、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.86、分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.87、现有三个多项式:a2+a-4,a2+5a+4,a2-a,请你选择其中两个进行加法运算,并把结果因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6 (2)2x2+88 2.将下列各式分解因式
(1)x3y﹣(2)3a3
﹣6a232.
3.分解因式
(1)a2(x﹣y)+16(y﹣x)(2)(x22)2﹣4x2y2
4.分解因式:
(1)2x2﹣x (2)16x2﹣1 (3)62﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2
5.因式分解:
(1)22﹣8a (2)4x3+4x22
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x22)2﹣4x2y2
7.因式分解:(1)x2y﹣223 (2)(2y)2﹣y2 8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1
9.分解因式:a2﹣44﹣b2
10.分解因式:a2﹣b2﹣21
11.把下列各式分解因式:
(1)x4﹣7x2+1 (2)x42+21
﹣a2
(3)(1)2﹣2x2(1﹣y2)4(1﹣y)2(4)x4+2x3+3x2+21 12.把下列各式分解因式:
(1)4x3﹣3115;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x51;
(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣2.
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6;(2)2x2+88
分析:(1)提取公因式3p整理即可;
(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)3p2﹣63p(p﹣2q),
(2)2x2+88,=2(x2+44),=2(2)2.
2.将下列各式分解因式
(1)x3y﹣(2)3a3﹣6a232.
分析:(1)首先提取公因式,再利用平方差公式进行二次分解即可;
(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.
解答:解:(1)原式(x2﹣1)(1)(x﹣1);
(2)原式=3a(a2﹣22)=3a(a﹣b)2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x);(2)(x22)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;
(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(4)(a﹣4);
(2)(x22)2﹣4x2y2,=(x2+22)(x2﹣22),=()2(x ﹣y)2.
4.分解因式:
(1)2x2﹣x;(2)16x2﹣1;(3)62﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.
分析:(1)直接提取公因式x即可;
(2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;
(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.
解答:解:(1)2x2﹣(2x﹣1);
(2)16x2﹣1=(41)(4x﹣1);
(3)62﹣9x2y﹣y3,=﹣y(9x2﹣62),=﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣32)2.
5.因式分解:
(1)22﹣8a;(2)4x3+4x22
分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;
(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)22﹣82a(m2﹣4)=2a(2)(m﹣2);
(2)4x3+4x22,(4x2+42),(2)2.
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x22)2﹣4x2y2.
分析:(1)先提公因式3x,再利用平方差公式继续分解因式;
(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.
解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);
(2)(x22)2﹣4x2y2=(x22+2)(x22﹣2)=()2(x﹣y)2.
7.因式分解:
(1)x2y﹣223;(2)(2y)2﹣y2.
分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;
(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.
解答:解:(1)x2y﹣223(x2﹣22)(x﹣y)2;
(2)(2y)2﹣y2=(2)(2y﹣y)=(3y)().
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.
分析:(1)提取公因式n(m﹣2)即可;
(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.
解答:解:(1)n2(m﹣2)﹣n(2﹣m)2(m﹣2)(m﹣2)(m﹣2)(1);
(2)(x﹣1)(x﹣3)+12﹣44=(x﹣2)2.
9.分解因式:a2﹣44﹣b2.
分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.
解答:解:a2﹣44﹣b2=(a2﹣44)﹣b2=(a﹣2)2﹣b2=(a﹣2)(a﹣2﹣b).
10.分解因式:a2﹣b2﹣21
分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣21为一组.
解答:解:a2﹣b2﹣21=(a2﹣21)﹣b2=(a﹣1)2﹣b2=(a﹣1)(a﹣1﹣b).
11.把下列各式分解因式:
(1)x4﹣7x2+1;(2)x42+21﹣a2(3)(1)2﹣2x2(1﹣y2)4(1﹣y)2(4)x4+2x3+3x2+21 分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因
式即可求解;
(2)首先把多项式变为x4+2x2+1﹣x2+2﹣a2,然后利用公
式法分解因式即可解;
(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;
(4)首先把多项式变为x4323221,然后三个一组提取公因式,接着提取公因式即可求解.
解答:解:(1)x4﹣7x2+14+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+31)(x2﹣31);(2)x42+21﹣4+2x2+1﹣x2+2﹣a2=(x2+1)
﹣(x﹣a)2=(x2+1﹣a)(x2+1﹣);
(3)(1)2﹣2x2(1﹣y2)4(1﹣y)2=(1)2﹣2x2(1
﹣y)(1)4(1﹣y)2=(1)2﹣2x2(1﹣y)(1)
+[x2(1﹣y)]2=[(1)﹣x2(1﹣y)]2=(1﹣x22y)
2
(4)x4+2x3+3x2+2143232212(x21)(x21)21=(x21)2.12.把下列各式分解因式:
(1)4x3﹣3115;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;
(3)x51;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣2.
分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;
(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;
(3)把x51添项为x5﹣x221,再分组以及公式法因式分解;
(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x ﹣9),再提取公因式因式分解;
(5)先分组因式分解,再用拆项法把因式分解彻底.
解答:解:(1)4x3﹣3115=4x3﹣x﹣3015(21)(2x﹣1)﹣15(2x
﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x
﹣5)(3);
(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a444+2a2b2﹣2a2c2﹣2b2c2)=(2)2﹣(a22﹣c2)2=(222﹣c2)(2﹣a2﹣b22)=()(﹣c)(﹣b)(c﹣);
(3)x515﹣x2212(x3﹣1)+(x21)2(x﹣1)(x21)+(x21)=(x21)(x3﹣x2+1);
(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(3)
2;
(5)2a4﹣a3﹣6a2﹣23(2a﹣1)﹣(2a﹣1)(32)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a32﹣a2﹣a
﹣2a﹣2)=(2a﹣1)[a2(1)﹣a(1)﹣2(1)]=
(2a﹣1)(1)(a2﹣a﹣2)=(1)2(a﹣2)(2a
﹣1).。

相关文档
最新文档