反比例函数的图像与性质(面积)

合集下载

反比例函数的图像和性质课件

反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。

反比例函数的图象与性质(说课课件)

反比例函数的图象与性质(说课课件)
在数学建模和实际问题解决中,有时需要将幂函数和反比例函数结合起来,以更好地描述实 际问题。
THANKS
谢谢
在实际生活中的应用
价格与销售量的关系
在市场经济中,价格与销售量通常成反比关系,价格上涨时,销售量通常会减少;反之,价格下降时,销售量通 常会增加。
人口密度与城市规模的关系
一般来说,大城市的人口密度较低,而小城市的人口密度较高。这是因为城市规模越大,人均占有的空间资源越 多,人口密度就越低。
05
CHAPTER
解析法
通过解析函数表达式,确定函数 图像在坐标系中的位置和形状。
描点法
选取一系列x值,计算对应的y值 ,然后在坐标系上描出对应的点 ,通过连接各点形成图像。
图像的特性分析
无限接近x轴与y轴
随着x的增大或减小,y值逐渐趋近于0,但永远不会等于0。
单调性
在各自象限内,随着x的增大或减小,y值分别单调递减或递增。
反比例函数的图象与性质(说 课课件)
目录
CONTENTS
• 反比例函数的概念 • 反比例函数的图像分析 • 反比例函数的性质研究 • 反比例函数的应用 • 反比例函数与其他知识点的联系
01
CHAPTER
反比例函数的概念
反比例函数的定义
01
反比例函数是指形如$f(x)
=
frac{k}{x}$(其中$k neq 0$)的
对称性
图像关于原点对称。
图像的变化规律
k值影响
随着k值的增大或减小,图像分别向右 上或左下方向移动。
渐近线
增减性
在第一象限和第三象限内,随着x的增 大,y值分别减小和增大;在第二象限 和第四象限内,随着x的增大,y值分 别增大和减小。

6.2.1 反比例函数的图像和性质

6.2.1  反比例函数的图像和性质

2 4 6 8
x
x 如图所示,P为该图象上任意一点,PQ⊥y轴于Q
反比例函数 y=
k
(k>0)在第一象限内的图象
,MN⊥x轴于N,△POM的面积与梯形PQNM面积
之间的关系
y
P
·
0
M
Q N
x
如图,已知双曲线 y= x (x>0)经 过矩形OABC的边AB、BC上的点F、E,
其中CE=
1 3
k
CB,AF=
知识回顾
作一次函数图象的一般步骤:
y 6x
列 表
一条直线
描点法
描 点
连 线
反比例函数的图象是怎样的?
6 y x
x 1. 列表
6 y x 6 y x
在同一个坐标系中画出 6 和 y 6 的图像 y
x
... -4 -3 -2 -1 1
x
2 3
4
...
2. 描点
y
O
x
3. 连线
(3)研究表明,每立方米的
y(mg)
含药量不低于3mg且持续时间
不低于10min时,才能有效杀
6 o
灭空气中的病菌,那么此次消
毒是否有效?为什么?
8
x(min) 胜利 之舟
想一想
例、如图,已知反比例函数 y=
12
x 的图象与一次函数
y= kx+4的图象相交于P、Q两点,且P点的纵坐标是6. (1)求这个一次函数的解析式 (2)求△POQ的面积
m2 2、函数 y x 的图象在二、四象限,
m<2 则m的取值范围是 _______
1 3、对于函数 y ,当 x<0时,图象在 2x

反比例函数的图像及性质

反比例函数的图像及性质

解题技巧归纳
判断函数类型
通过观察函数表达式,判断其是否为反比例 函数。
利用对称性
利用反比例函数图像的对称性,可以简化一 些复杂问题的求解过程。
分析图像特征
根据 $k$ 的正负判断双曲线所在的象限, 并理解其增减性。
结合其他知识点
在解题过程中,可能需要结合一次函数、二 次函数等其他知识点进行综合分析。
表达式
反比例函数的一般表达式为y=k/x( k≠0),其中k是比例系数,x是自变 量,y是因变量。
自变量取值范围
由于分母不能为0,因此反比例函数 的自变量x不能为0,即x的取值范围 是x≠0。
反比例函数的定义域是除去使分母为0 的点以外的所有实数。
函数值变化规律
当x>0时,随着x的增大,y的值逐渐减小,但永远不会等于0;当x<0时 ,随着x的减小,y的值逐渐增大,也永远不会等于0。
综合应用探讨
解决问题类型
反比例函数和一次函数在解决实际问题时具有广泛的应用。例如,反比例函数可用于描述速度、密度等物理量之间的 关系;一次函数则可用于描述线性增长或下降的问题,如直线运动、均匀变化等。
建模方法
在建立反比例函数和一次函数的模型时,需要根据问题的实际背景和条件,确定函数的表达式和参数。通过比较和分 析不同函数的图像和性质,可以选择最合适的函数模型来描述问题的本质和规律。
反比例函数的图像及性质
汇报人:XXX 2024-01-22
contents
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数应用举例 • 反比例函数与一次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式

反比例函数反比例函数的图象与性质

反比例函数反比例函数的图象与性质
反比例函数反比例函数的图 象与性质
2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的

考点05 反比例函数的图像和性质(解析版)

考点05 反比例函数的图像和性质(解析版)

考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。

反比例函数的性质

反比例函数定义一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。

k大于0时,图像在一、三象限。

k小于0时,图像在二、四象限.k 的绝对值表示的是x与y的坐标形成的矩形的面积。

反比例函数图像及性质反比例函数图像:1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。

反比例函数性质:1.[增减性]当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B 两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

反比例函数的性质及图像

反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性。

反比例函数图像:
具体性质:
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。

当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。

在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。

②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和
一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。

而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。

③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K越大的话,反比例函数距离坐标轴就会越来越远。

④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。

9.2反比例函数的图像与性质(面积)

反比例函数的图象与性质(3)教学目标:巩固反比例函数的图象与性质并能运用其与对应的函数关系或之间的内在联系及其几何意义解决有关问题.教学重点难点:反比例函数的图象与性质并解题. 一、例题讲解例1:如图1,正比例函数y kx =和y ax =(0a >)的图像与反比例函数ky x=(0k >)的图像分别相交于A 点和C 点.若Rt AO B ∆和Rt COD ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( )A.12S S >B.1S =2SC.1S <2SD.不能确定练习:如图2,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小例2:如图3,点P 在反比例函数的图像上,过P 点作PA x ⊥轴于A 点,作PB y ⊥轴于B 点,矩形OAPB 的面积为9,则该反比例函数的解析式为 . 练习:(2)如图5点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .(1)如图4,在函数ky x=(0x >)的图像上取三点A 、B 、C ,由这三点分别向x 轴、y 轴作垂线,设矩形12AAOA 、12BBOB 、12CCOC 的面积分别为A S 、B S 、C S ,试比较三者大小:如图3 如图4 如图5(3)如图,在反比例函数2y x=(0x >)的图象上,有点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,求123S S S ++.例3:如图,已知反比例函数ky x=的图象与一次函数y ax b =+的图象交于()2M m ,和)2,1(--N 两点.(1)求这两个函数的解析式; (2)求M O N ∆的面积;(3)请判断点)21,4(P 是否在这个反比例函数的图象上,并说明理由.练习.如图,已知A (4-,n ),B (2,4-)是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及AO B △的面积;(3)求方程0mkx b x +-=的解(请直接写出答案); (4)求不等式0mkx b x+-<的解集(请直接写出答案).2图14课后练习: 班级 姓名 学号 1.一次函数y=k 1x-2与反比例函数y=xk 2(k 1k 2<0在同一坐标系中的图象可能是( )2.已知反比例函数y=xm21-的图象上有A(x 1,y 1)、B(x 2,y 2)两点,当x 1<0< x 2时,有y 1<y 2,则m 的取值范围是 ( ) A .m <0 B .m >o C .m >21 D .m <21 3.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM .若△ABM 的面积等于2,则k 的值是 ( ) A .2 B .m -2 C .m D .4第3题 第4题 第6题 4.如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )A .-5B .-10C .5D .105.反比例函数y=xm 1+的图象经过点(2,1),则m 的值是 . 6.如图,过原点的直线l 与反比例函数y=-x1的图象交于M 、N 两点,根据图象,线段MN 的最小长度是 .7.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为3,则这个反函数的解析式为 .8.如图,双曲线xy x y 21==与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为 9.函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论: ①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是第7题 第8题 第9题10.如图,在直角坐标系xOy 中,一次函数y =k x +b 的图象与反比例函数my x=的图象交于A(-2,1)、B(1,n)两点.(1)求上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.11.如图,直线y=kx+b 与反比例函数y=xk '(x<0)的图象相交于A 、B 两点,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为一4. (1)试确定反比例函数的关系式. (2)求△AOC 的面积.yy 1=xy 2=4xx巩固练习:1.如图1,正比例函数y kx =和y ax =(0a >)的图像与反比例函数ky x=(0k >)的图像分别相交于A 点和C 点.若Rt AO B ∆和Rt COD ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( ) A.12S S > B.1S =2S C.1S <2S D.不能确定2.如图2,点P 在反比例函数的图像上,过P 点作PA x ⊥轴于A 点,作PB y ⊥轴于B 点,矩形OAPB 的面积为6,则该反比例函数的解析式为 .3.如图3,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = .如图1 如图2 如图3 4.如图4,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为5.如图5,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐减小时,OAB △的面积将会 A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小如图4 如图5。

北师大版九年级数学上册反比例函数的图像和性质课件(共41张)


为反比例函数,则m的值是
(C)
1 2
(D) 1
返回
2.如图,A为反比例函数 y k 图象上一点,AB⊥x轴
x 于点B,若 SAOB 3 则k为( A)
(A) 6 (B) 3 (C) 3 D 无法确定
2
返回
3.函数y
k x
的图象经过(1,-1),则函
数 y kx 2 的图象是 (A )
y
-2 O x
大,则m的取值范围是( A).
A、m<-1 B、m>-1 C、m>1
D、m<1
返回

y随x的增大而减小



置 二四象限
二四象限
数 的
K<0
增 减
y随x的增大而减小 在每个象限内,


y随x的增大而增大

对称性
轴对称 中心对称
轴对称 中心对称
专题一
反比例函数的图像和性质
例1:已知反比例函数的图象经过点A(2,6).
(1)这个函数的图象散布在哪些象限?y随x的增大如何变化?
(2)点B(3,4)、C(
y=
4 x
与y=
2 x
在第一象限内的图象如图所示,作一条平
行于y轴的直线分别交双曲线于A、B两点,
连接OA、OB,则△AOB的面积为( A )
(A)1
(B)2
(C)3
(D)4
拓展提高
双曲线: y= 4 与y= 2
x
x
在第一象限内的图象如图所示,作一条平行于y轴的
直线分别交双曲线于A、B两点,连接OA、OB,则
2.反比例函数的图象关于原点成中心对称.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y
O A
B
反比例函数的图象与性质(3)
教学目标:巩固反比例函数的图象与性质并能运用其与对应的函数关系或之间的内在联系
及其几何意义解决有关问题.
教学重点难点:反比例函数的图象与性质并解题. 一、例题讲解
例1:如图1,正比例函数y kx =和y ax =(0a >)的图像与反比例函
数k
y x
=(0k >)的图像分别相交于A 点和C 点.若Rt AOB ∆和
Rt COD ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( ) A.12S S > B.1S =2S C.1S <2S D.不能确定
练习:如图2,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3
y x
=
(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )
A .逐渐增大
B .不变
C .逐渐减小
D .先增大后减小
例2:如图3,点P 在反比例函数的图像上,过P 点作PA x ⊥轴于A 点,作PB y ⊥轴于B 点,矩形OAPB 的面积为9,则该反比例函数的解析式为 . 练习:(2)如图5点A 、B 是双曲线3
y x
=
上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .
(1)如图4,在函数k
y x
=
(0x >)的图像上取三点A 、B 、C ,由这三点分别向x 轴、y 轴作垂线,设矩形12AAOA 、12BB OB 、12CC OC 的面积分别为A S 、B S 、C S ,试比较三者 大小: 如图3 如图4 如图5
O
D
C
B
A
x
y
(3)如图,在反比例函数2
y x =(0x >)的图象上,有点
1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分
别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,求123S S S ++.
例3:如图,已知反比例函数k
y x
=
的图象与一次函数y ax b =+的图象交于()2M m ,
和)2,1(--N 两点.
(1)求这两个函数的解析式; (2)求MON ∆的面积;
(3)请判断点)2
1
,4(P 是否在这个反比例函数的图象
上,并说明理由.
练习.如图,已知A (4-,n ),B (2,4-)是一次函数
y kx b =+的图象和反比例函数m
y x
=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB 与x 轴的交点C 的坐标及AOB △的面积; (3)求方程0m
kx b x
+-
=的解(请直接写出答案)
; (4)求不等式0m
kx b x
+-<的解集(请直接写出答案).
图14
课后练习: 班级 姓名 学号 1.一次函数y=k 1x-2与反比例函数y=x
k 2
(k 1k 2<0在同一坐标系中的图象可能是( )
2.已知反比例函数y=
x
m
21-的图象上有A(x 1,y 1)、B(x 2,y 2)两点,当x 1<0< x 2时,有y 1<y 2,则m 的取值范围是 ( ) A .m <0 B .m >o C .m >21 D .m <2
1 3.如图,直线y=mx 与双曲线y=
x
k
交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM .若△ABM 的面积等于2,则k 的值是 ( ) A .2 B .m -2 C .m D .4
第3题 第4题 第6题 4.如图,直线)0(<=k kx y 与双曲线x
y 2
-
=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )
A .-5
B .-10
C .5
D .10
5.反比例函数y=
x
m 1
+的图象经过点(2,1),则m 的值是 . 6.如图,过原点的直线l 与反比例函数y=-x
1
的图象交于M 、N 两点,根据图象,线段
MN 的最小长度是 .
7.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为3,则这个反函数的解析式为 . y
B
A o
8.如图,双曲线x
y x y 2
1==
与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为
9.函数y 1=x (x ≥0),y 2=4
x
(x>0)的图象如图所示,下列结论:
①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;
③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是
第7题 第8题 第9题
10.如图,在直角坐标系xOy 中,一次函数y =k x +b 的图象与反比例函数m
y x
=的图象交于A(-2,1)、B(1,n)两点.
(1)求上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.
11.如图,直线y=kx+b 与反比例函数y=x
k '
(x<0)的图象相交于A 、B 两点,与
x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为一4. (1)试确定反比例函数的关系式. (2)求△AOC 的面积.
y
y 1=x
y 2=4x
x
x
y
O A B 巩固练习:
1.如图1,正比例函数y kx =和y ax =(0a >)的图像与反比例函数k
y x
=
(0k >)的图像分别相交于A 点和C 点.若Rt AOB ∆和Rt COD ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( ) A.12S S > B.1S =2S C.1S <2S D.不能确定
2.如图2,点P 在反比例函数的图像上,过P 点作PA x ⊥轴于A 点,作PB y ⊥轴于B 点,矩形OAPB 的面积为6,则该反比例函数的解析式为 .
3.如图3,若点A 在反比例函数(0)k
y k x
=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = .
如图1 如图2 如图3 4.如图4,已知点C 为反比例函数6
y x
=-
上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为
5.如图5,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3
y x
=(0x >)上的一个动点,当点B 的横坐标逐渐减小时,OAB △的面积将会 A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小
如图4 如图5。

相关文档
最新文档