数控加工工艺分析主要包括的内容

合集下载

数控加工工艺与编程_习题集(含答案

数控加工工艺与编程_习题集(含答案

《数控机床加工工艺与编程》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《数控机床加工工艺与编程》(编号为09018)共有单选题,简答题,判断题,编程题, 填空题等多种试题类型,其中,本习题集中有[编程题]等试题类型未进入。

一、单选题1.在数控机床的机械组成中,不.包括()A.立柱 B.床身 C.工作台 D. 控制系统2.机械手换刀途中停止的主要原因是()A. 气动换向阀损坏B. 主轴定向不准C. 机械手卡死D. 程序错误3.数控机床的构成中,不.包括( )A.数控装置 B.伺服系统 C.机床本体 D. 刀库系统4.加工中心最突出的特点是()A. 工序集中B. 对加工对象适应性强C. 加工精度高D. 加工生产率高5.关于加工中心编程时,下面哪种说法中不正确的是()A. 进行合理的工艺分析B. 自动换刀要有足够的空间C. 尽量采用机内对刀D. 尽量采用工序集中6.为了保证加工精度,降低刀具的损耗,提高生产率,合理使用机床,应正确选择()A. 刀具几何角度B. 切削用量C. 工艺装备D. 刀具耐用度7.主要用于模具曲面加工的立铣刀具是( )A. 端面立铣刀B. 球头立铣刀C. 键槽铣刀D. 环行铣刀8.刀柄与主轴内的拉紧装置相连接的部件是( )A. 刀柄B. 夹头C. 弹簧D. 拉钉9.不.宜沿轴向做进给运动的立铣刀具是( )A. 端面立铣刀B. 球头立铣刀C. 键槽铣刀D. 环行铣刀10.可实现高速切削或以“车、铣代磨”,加工高硬材料的刀具是( )A. 高速钢刀具B. 硬质合金刀具C. 陶瓷刀具D. 工具钢刀具11.采用ER型卡簧,适合于夹持小直径铣刀进行铣削加工的刀柄是( )A. 液压夹紧式刀柄B. 弹簧夹头式刀柄C. 侧固式刀柄D. 热装夹紧式刀柄12.数控机床实现圆周进给运动而采用的夹具是( )A. 多工位夹具B. 回转工作台C. 平口钳D. 三爪卡盘13.主切削刃分布在铣刀圆拄面的立铣刀具是( )A. 端面立铣刀B. 球头立铣刀C. 键槽铣刀D. 环行铣刀14.数控加工中心换刀机构常采用的机构是( )A.伺服机构 B.机械手(机构) C.液压机构 D. 人工换刀15.最常用的刀柄与主轴孔的配合锥面一般是( )A. 7:10B. 7:14C. 7:24D. 7:2816.加工箱体类零件的一般加工顺序是( )A. 先孔后面,基准面先行B. 先孔后面C. 先面后孔,基准面先行D. 先面后孔17.粗加工选择切削用量时,应选择尽可能大的( )A. 进给速度B. 背吃刀量C. 切削速度D. 主轴转速18.编程员在数控编程过程中,定义在工件上的几何基准点是()A. 机床原点B. 绝对原点C. 工件原点D. 装夹原点19.切削用量对切削力影响最大的是()A. 切削速度B. 进给量C. 主轴转速D. 切削深度20.在确定加工路线的原则时,下列说法正确的是()A. 加工路线最长B. 数值计算复杂C. 加工路线应保证被加工零件的精度及表面粗糙度D. 编程困难21.在数控机床上,用于编程的几何基准点是()A. 机床原点B. 绝对原点C. 装夹原点D. 工件原点22.编排数控加工工序时,采用一次装夹中完成加工的目的是()A. 减少换刀时间B. 减少重复定位误差C. 减少空运行时间D. 简化加工程序23.在数控机床上加工零件,下列工序划分的方法中错误的是()A. 按所用刀具划分B. 按粗细加工划分C. 按批量大小划分D. 按加工部位划分24.选择定位基准的原则是()A. 尽量使工件的定位基准与工序基准不重合B. 采用基准统一原则C. 尽量用未加工表面作为定位基准D. 应使工件安装稳定,在加工过程中因切削力或夹紧力而引起的变形最大25.用行切法加工曲面时,球头铣刀的半径与加工曲面的曲率半径的关系是()A. 小于B. 大于C. 等于D. 无所谓26.用未加工过的毛坯表面作为定位基准是( )A.粗基准 B.精基准C.设计基准 D. 工艺基准27.用已加工过的表面作为基准面是()A.粗基准 B.精基准 C.设计基准 D. 工艺基准28.对夹紧装置的要求是()A. 夹紧时,不要考虑工件定位时的既定位置B. 夹紧力允许工件在加工过程中小范围位置变化及震动C. 有良好的结构工艺性和使用性D. 有较好的夹紧效果,无需考虑夹紧力的大小29.要选用精基准的表面,应该安排的工序是()A. 起始B. 中间C. 最后D. 任意30.用一把立铣刀铣削平面,刀具旋转的方向与工件的进给方向相反,这种方法是()A. 顺铣法B. 逆铣法C. 不正确方法D. 端铣法31.工艺路线优化问题实质上是()A. 寻找最短路径B. 寻找最长路径C. 寻找关键路径D. 工序排序32.粗加工时选择切削用量的原则是()A. 以提高生产效率为主B. 以保证加工质量为前提C. 以加工成本为主D. 以实际情况为主33.对于加工既有面又有孔的零件,采用划分工序的原则是()A. 先孔后面B. 先镗孔后铣面C. 先面后孔D. 无所谓34.编排数控加工工序时,采用一次装夹中完成加工的目的是( )A. 减少换刀时间B. 减少重复定位误差C. 减少空运行时间D. 简化加工程序35.除第一道工序外采用粗基准外,其余工序都应使用( )A.粗基准 B.精基准 C.设计基准 D. 工艺基准36.只构造出零件的轮廓后,运用CAXA制造工程师进行加工,属于是( )A.线架造型加工 B.实体造型加工C.实体/曲面造型加工 D. 曲面造型加工37.一系列首尾相接的曲线的集合是( )A.轮廓 B.区域 C.岛 D. 刀位点38.在CAXA制造工程师平面轮廓加工参数表中,刀次的含义指的是()A.加工次数 B.每一行刀位之间的距离C. 加工余量的次数 D.生成刀位的行数39.在CAXA制造工程师中,检查加工轨迹是否正确,执行的操作是()A.轨迹生成 B.轨迹编辑 C.轨迹仿真 D. 特征生成40.在CAXA制造工程师中区域加工方法中,表示不加工的部分是()A.轮廓 B.区域 C.岛 D. 刀位点41.在CAXA制造工程师平面轮廓加工参数表中轮廓补偿选择“ON”,指的是( )A.刀具到轮廓线,刀具右偏 B.刀具中心线不到轮廓,相差一个刀具半径C. 刀具中心线与轮廓线重合 D.刀具中心线超过轮廓,相差一个刀具半径42.以HTME格式生成加工轨迹明细单,便于机床操作者对G代码程序的使用,也便于对G代码程序的管理,采用下列的操作是( )A.轨迹批处理 B.生成加工工艺单 C.钻孔 D. 后置处理43.在零件数控加工时,轨迹控制参数中安全高度和起止高度的关系是()A. 安全高度应大于起止高度B. 起止高度应大于安全高度C. 根据零件类型确定D. 由速度值参数决定44.在CAXA制造工程师中,拉伸增料功能是轮廓线根据指定距离产生一增加材料的特征,其轮廓线是( )A.不封闭的草图轮廓 B.封闭的草图轮廓C.封闭的非草图轮廓 D. 不封闭的非草图轮廓45.在CAXA制造工程师中,要绘制空间图形,应执行的操作是()A.轨迹生成 B.曲线生成 C.曲面生成 D. 特征生成46.数控机床的"回零"操作是指回到()A.对刀点 B.换刀点 C.机床的零点 D.编程原点47.首次加工的零件,须要试切,试切时的快速倍率开关要置于()A. 最低档B. 较低档C. 较高档D. 最高档48.数控机床开机时,一般要进行回参考点操作,其目的是()A. 建立工件坐标系B. 建立机床坐标系C. 建立局部坐标系D. 建立极坐标系49.数控机床机械系统的日常维护中,须每天检查的部件是( )A. 导轨润滑油B. 液压油路C. 滚珠丝杠D.润滑液压泵50.数控机床作空运行试验的目的是( )A. 检验加工精度B. 检验功率C. 检验程序是否能正常运行D. 检验程序运行时间二、简答题51.简述常用的夹具种类有哪些?52.在数控铣床和加工中心上使用的铣刀主要有哪几种?53.数控机床对铣削夹具选用的基本原则是哪些?54.刀柄的哪些性能指标对加工性能有直接影响?55.球头立铣刀应用时的注意事项是什么?56.数控加工工艺分析主要包括哪些内容?57.说明数控铣床顺铣、逆铣的简单判别方法?58.数控加工中合理选择切削用量的原则是什么?59.简述确定数控加工路线的基本原则。

数控车削加工工艺

数控车削加工工艺

首 页
上一页
下一页
ห้องสมุดไป่ตู้最后页
浙江工业职业技术学院《数控机床操作技能实训》精品课程
数控车中级技能实训教学
一、数控车床加工工艺分析的主要内容 工艺分析是数控车削加工的前期准备工作。工艺制定的合理与否,对程序 编制、加工效率、加工精度等都有重要影响。因此,应遵循一般的工艺原则并 结合数控车床的特点,认真而详细的制定好零件的数控车削加工工艺。 数控车削加工工艺包括以下主要内容: 1、分析被加工零件的工艺性; 2、拟定加工工艺路线,包括划分工序、选择定位基准、安排加工顺序和组 合工序等; 3、设计加工工序,包括选择工装夹具与刀具、确定走刀路径、确定切削用 量等; 4、编制工艺文件。 二、数控车床加工零件的工艺性分析 适合数控车床加工的零件或工序内容选定后,首要工作是分析零件结构工 艺性、轮廓几何要素和技术要求。
首 页
上一页
下一页
最后页
浙江工业职业技术学院《数控机床操作技能实训》精品课程
数控车中级技能实训教学
1、循环切除余量 数控车削加工过程一般要经过循环切除余量、粗加工和精加工三道工序。应根 据毛坯类型和工件形状确定循环切除余量的方式,以达到减少循环走刀次数、 提高加工效率的目的。 (1)轴套类零件 轴套类零件安排走刀路线的原则是轴向走刀、径向进刀,循环切除余量的循环 终点在粗加工起点附近。这样可以减少走刀次数,避免不必要的空走刀,节省 加工时间。 (2)轮盘类零件 轮盘类零件安排走到路线的原则是径向走刀、轴向进刀,循环切除余量的循环 终点在粗加工起点附近。编制轮盘类零件的加工程序时,与轴套类零件相反, 是从大直径端开始顺序向前。 (3)铸锻件 铸锻件毛坯形状与加工后零件形状相似,为加工留有一定的余量。循环去除余 量的方式是刀具轨迹按工件轮廓线运动,逐渐逼近图纸尺寸。 2、确定退刀路线 数控机床加工过程中,为了提高加工效率,刀具从起始点或换刀点运动到接近 工件部位及加工后退回起始点或换刀点是以G00(快速点定位)方式运动的。 考虑退刀路线的原则是:第一、确保安全性,即在退刀过程中不与工件发生碰

第2章数控编程中的工艺分析和数控机床编程及加工

第2章数控编程中的工艺分析和数控机床编程及加工
机械工程实验教学中心
OpenSoftCNC软件介绍
在运行加工程序之前,必须通过参数设置对机床和刀具 进行调整,使其与加工要求相符,这样才能正确地进行加工 或模拟加工。
OpenSoftCNC软件系统的参数主要有以下内容: ①基本设置 设置可修改的基本参数。 ②刀具设置 设置刀具编号、类型和刀具补偿等参数。 ③轴参设置 设置和查看坐标轴参数。 ④工件坐标设置 设置G54—G59等工件坐标系的原点坐 标。 ⑤PLC设置 用于查看PLC缓冲区配置、PLC程序梯形图及 PLC程序指令流程。
2.1 数控加工工艺分析的主要内容
1、工艺分析的主要内容
( 3 ) 加工工序的设计 选取零件的定位基准,工步的划分、装卡与定位方案的确定、选取
刀具、确定切削参数等。 ( 4 ) 选取对刀点和换刀点,确定刀具补偿等。 ( 5 ) 分配数控加工中的容差。 ( 6 ) 处理数控机床上的部分工艺指令。
总之,数控加工工艺内容繁多,本章仅对编程中所涉 及的工艺知识进行学习。
2.1 数控加工工艺分析的主要内容
2、编制数控加工工艺时主要考虑的因素
(1)对零件图的工艺审查——看 通过对零件图的阅读,了解零件的加工尺寸精度、表
面粗糙度、形位公差等技术指标,找出加工难点(如零件 的刚性,材料的切削性能,窄槽、薄壁、不容易测量等工 艺窄口)。同时还要考虑用通用量具的可测性,设计基准 是否合理,零件的热处理、表面处理等技术措施对精加工 的影响。
机械工程实验教学中心
2.1 数控加工工艺分析的主要内容
识图的重点内容包括:
● 零件特征 车(轴、盘、套);铣(箱体、异形);多轴加工
●几何特征 平面、轮廓、孔系、沟槽、型腔、曲面、螺纹等。
●技术特征 ——尺寸精度,数控精加工可达IT7~IT8;

二、数控加工工艺的主要内容

二、数控加工工艺的主要内容
(2)工艺的设计非常严密 自动化程度较高,但自适应性差,每一环节
都要考虑
(3)注重加工的适应性 选择加工方法和加工对象要注意。要适合机
床的加工特点
四、数控加工的特点
1、优点 (1)自动化程度高 (2)加工的零件一致性好
(3)生产效率较高 (4)便于产品研制 (5)便于实现计算机辅助设计与制造一体化 2、缺点 (1)加工成本高
(5)板材零件的加工 该类零件根据零件形状采用数控 剪板机,数控板料折弯机及数控冲压机加工。
传统冲压工艺是按模具生产工件的形状,模具结构复杂, 易磨损,价格昂贵,生产率低。
数控冲压设备,能使加工过程按程序要求自动控制,采用 小模具冲压加工形状复杂的大工件,一次装夹集中完成多工 序加工。
采用软件排样,即能保证加工精度,又能获得高的材料利 用率。
(2)只适宜于多品种小批量或中批量生产 (3)维修困难
五、数控加工的工艺适应性
1、最适应性 1)形状复杂,加工精度高,通用加工设备无法达 到质量要求的零件 2)用数学模型描述的复杂曲线或曲面轮廓零件 3)难测量、难控制进给、难控制尺寸的不开敞内 腔的壳体或合型零件;
2、较适应类 1)通用机床上加工时易受人为因素干扰,造成大经 济损失。
(2)孔系零件的加工 孔数多,孔位置精度要求较高,宜采 用点位直线控制的数控钻与镗床加工。减轻工人劳动强度、 提高生产率,易于保证精度。
(3)平面与曲面轮廓零件的加工
平面轮廓多为直线和圆弧组成,两坐标联动的铣床 上加工。 曲面轮廓的零件,多采用三个或三个以上 坐标联动的铣床或加工中心。
(4)模具型腔的加工 型腔表面复杂、不规则,表 面质量及尺寸精度要求高,且常采用硬、韧的难加工材 料,此时考虑选用粗铣后数控电火花成形加工。

XXX《数控加工工艺》考试题库

XXX《数控加工工艺》考试题库

XXX《数控加工工艺》考试题库1、在切削脆性金属材料时,由于材料的塑性较小,刀具前角较小、切削厚度较大的情况下容易产生崩碎切屑。

2、切削用量是指切削过程中刀具与工件之间的相对运动量,包括进给量、吃刀量和切削速度,三者都是切削用量的组成部分。

3、切削用量选择的一般顺序是先选择最大的吃刀量ap,其次选择较大的进给量f,最后确定合适的切削速度v。

4、确定外圆车刀主后刀面的空间位置的角度有K角和刃倾角α。

5、分析切削层变形规律时,通常将切削刃作用部位的金属划分为三个变形区。

6、在切削平面内测量的车刀角度是刃倾角。

7、车削用量的选择原则是在粗车时,应首先选择尽可能大的吃刀量ap,其次选择较大的进给量f,最后确定一个合适的切削速度v。

8、车削时的切削热大部分由切屑传散出去。

9、切削用量三要素对刀具耐用度的影响程度为:切削速度最大,进给量次之,背吃刀量最小。

10、粗车细长轴外圆时,刀尖的安装位置应比轴中心稍高一些,目的是增加阻尼作用。

11、数控编程时,通常用F指令表示刀具与工件的相对运动速度,其大小为进给速度v。

12、刀具几何角度中,影响切屑流向的角度是刃倾角。

13、切断、车端面时,刀尖的安装位置应与轴中心线等高,否则容易打刀。

14、带状切屑的切削过程平稳,切削力波动小。

15、为提高切削刃强度和耐冲击能力,脆性刀具材料通常选用负前角。

1、切削刃形状复杂的刀具宜采用高速钢等材料制造较合适。

2、用硬质合金铰刀铰削塑性金属材料时,由于工件弹性变形的影响,容易出现孔径收缩现象。

3、刀具切削部分材料的硬度要高于被加工材料的硬度,其常温硬度应在HRC60以上。

4、数控机床一般采用机夹可转位刀具,与普通刀具相比,机夹可转位刀具的特点不包括刀具要经常进行重新刃磨。

5、YG类硬质合金主要用于加工铸铁和有色金属等材料。

6、金刚石是刀具材料中硬度最高的一种。

7、刀具材料在高温下能够保持较高硬度的性能称为红硬性。

8、XXX表示XXX硬度。

数控加工工艺的分析与处理

数控加工工艺的分析与处理

数控加工工艺的分析与处理随着科技的不断进步,数控加工技术在制造业中得到了广泛应用。

数控加工工艺的分析与处理是保证数控加工过程顺利进行的关键环节。

本文将从数控加工工艺的基本原理、分析方法与处理措施三个方面进行探讨。

一、数控加工工艺的基本原理数控加工是利用计算机控制数控机床进行精密切削或造型加工的一种加工方法。

其基本原理是将图纸上的几何尺寸、形状和位置要求转化为数学模型,并通过计算机编程的方式将这些模型转化为数控指令,进而控制数控机床的运动轨迹、切削参数等,实现零件的加工。

数控加工工艺的前提是要了解工件的设计要求和材料特性。

通过分析工件的几何形状、尺寸、表面质量要求以及材料的硬度、可加工性等参数,确定适合的数控加工方案。

在具体加工过程中,还需要根据工件的形状复杂程度、加工精度要求等因素,合理选择数控机床、刀具和切削参数等。

二、数控加工工艺的分析方法1.几何形状分析:对于复杂形状的工件,需要进行多视图的几何形状分析,确定加工的主要特征面、特征线和特征点。

2.加工工艺分析:根据工件的几何形状、尺寸和表面质量要求,结合加工设备和材料,分析出适合的加工工艺路线,并绘制出对应的加工工艺卡。

3.切削力与热量分析:分析切削力和热量对加工过程的影响,根据材料的可加工性和切削力的大小,选择合适的切削参数和冷却液。

4.程序分析:通过工艺分析,确定数控加工的主要工序和加工路径,在制定程序时,遵循合理、简洁、安全、高效的原则。

三、数控加工工艺的处理措施1.加工设备优化:根据工件的加工要求,选择合适的数控机床及其附件,提高加工效率和精度。

2.刀具选择与刀具磨损处理:根据工件材料和切削要求,选择合适的刀具,并进行定期检查和更换,及时处理刀具磨损问题。

3.切削参数调整:根据工艺分析结果,合理调整切削速度、切削深度和进给速度等切削参数,以保证加工质量。

4.刀具路径优化:通过选择合理的切削路径和切削顺序,减少进刀次数和加工时间,提高加工效率。

数控车削加工工艺分析

数控车削加工工艺分析

OCCUPATION2011 5170数控车削加工工艺分析文/许新伟 韩长军零件数控车削加工工艺分析是制订车削工艺规程的重要内容之一,其主要包括选择各加工表面的加工方法、安排工序的先后顺序、确定刀具的走刀路线等。

技术人员应根据从生产实践中总结出来的一些综合性工艺原则,结合现场的实际生产条件,提出几种方案,通过对比分析,从中选择最佳方案。

一、拟定工艺路线1.加工方法的选择回转体零件的结构形状虽然是多种多样的,但它们都是由平面、内、外圆柱面、曲面、螺纹等组成,每一种表面都有多种加工方法,实际选择时应结合零件的加工精度、表面粗糙度、材料、结构形状、尺寸及生产类型等因素全面考虑。

2.加工顺序的安排在选定加工方法后,接下来就是划分工序和合理安排工序的顺序。

合理安排好切削加工、热处理和辅助工序的顺序,并解决好工序间的衔接问题,可以提高零件的加工质量、生产效率,降低加工成本。

在数控车床上加工零件,应按工序集中的原则划分工序,安排零件车削加工顺序一般遵循下列原则:(1)先粗后精。

按照粗车→(半精车)→精车的顺序进行,逐步提高零件的加工精度。

(2)先近后远。

这里所说的远与近,是按加工部位相对于换刀点的距离大小而言的。

(3)内外交叉。

对既有内表面(内型、腔),又有外表面的零件,安排加工顺序时,应先粗加工内外表面,然后精加工内外表面,加工内外表面时,通常先加工内型和内腔,然后加工外表面。

(4)刀具集中。

用一把刀加工完相应各部位,再换另一把刀,加工相应的其他部位,以减少空行程和换刀次数及换刀时间。

(5)基面先行。

用作精基准的表面应优先加工出来,原因是作为定位基准的表面越精确,装夹误差就越小。

例如加工轴类零件时,总是先加工中心孔,再以中心孔为精基准加工外圆表面和端面。

二、确定走刀路线走刀路线是指刀具从起刀点开始移动起,直至返回并结束加工程序所经过的路径,其包括刀具切削加工的路径及刀具引入、切出等非切削空行程,主要考虑以下几个问题:一是刀具引入、出。

第1章_数控加工工艺分析

第1章_数控加工工艺分析
7
零件的数控铣削结构工艺性图例
8
9
10
1.2 加工方法的选择
• 对于外圆面,可采用车削、磨削加工等方法; • 内孔加工可采用钻、扩、铰、镗、磨等加工方法; • 数控铣或加工中心加工零件的表面为平面、曲面、
轮廓、孔和螺纹等,所选加工方法要与零件的表面 特征、所要求达到的精度及表面粗糙度相适应。下 面,作为重点探讨。
• 平面轮廓多由直线和圆弧或各种曲线构成,通常采用 三坐标数控铣床进行两轴半坐标加工。下图为由直线 和圆弧构成的零件平面轮廓ABCDEA,采用半径为R 的立铣刀沿周向加工,虚线ABCDEA为刀具中心的 运动轨迹。为保证加工面光滑,刀具沿PA切入,沿 AK切出 。
12
• 三、固定斜角平面加工 • 固定斜角平面是与水平面成一固定夹角的斜面,
不完全定位中只设置与加工要求有关的 支承点,用较少的元件达到定位要求。
平板工件磨平面: 工件只有厚度和 平行度要求,通 过电磁工作台只 限制三个自由度。
27
六点定位原理的应用
欠定位--按照加工要求应该被限制的自由度没
有被限制的定位称为欠定位。装夹中不允许有
欠定位。
加工部位
圆柱体工件
a
b
c
28
六点定位原理的应用
24
六点定位原理
夹具用合理 分布的六个 支承点,分 别限制工件 的六个自由 度,使工件 在夹具中的 位置完全确 定,称为 “六点定位 原理”。
25
六点定位原理的应用
完全定位--工件的6个自由度全部被夹具中 的定位元件所限制。
26
六点定位原理的应用
不完全定位—根据工件加工表面的不同加工 要求,定位支承点少于6个的定位。
4
• 4. 保证基准统一原则 • 有些零件需要在铣完一面后再重新安装
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2.1 计算机数控系统框图
计算机数控系统的核心是CNC装置,它不同于以前的NC装置。

NC装置由各种逻辑元件、记忆元件等组成数字逻辑电路,由硬件来实现数控功能,是固定接线的
硬件结构。

CNC装置采用专用计算机,由软件来实现部分或全部数控功能,具有良好
的“柔性”,容易通过改变软件来更改或扩展其功能。

CNC装置由硬件和软件组成,
软件在硬件的支持下运行,离开软件硬件便无法工作,两者缺一不可。

1.什么是插补?为什么要进行插补?
插补:在实际加工中,用一小段直线或圆弧去逼近(拟合)零件轮廓曲线,即直线或圆弧插补。

插补的任务:就是根据进给速度的要求,在轮廓起点和终点之间计算出若干个中间点的坐标值。

2.现代CNC系统插补的实现方法
(1)由硬件和软件的结合实现;
(2)全部采用软件实现。

3.插补算法分类:
目前应用的插补算法分两大类:脉冲增量插补、数据采样插补
(1)脉冲增量插补:
插补的结果仅产生一个行程增量,以一个个脉冲的方式输出给步进电机。

点比较法和数字微分分析器 (Digital Differential Analyzer 简称:DDA) 方法
图1.7 开环数控系统
(2)数据采样插补 (或称:时间分割法)适合于闭环和半闭环控制系统。

补原理:它是把加工一段直线或圆弧的整段时间t细分为许多相等的时间间隔,即:单位时间间隔(插补周期T)。

每经进行一次插补计算,直到加工终点(如图1.6所示)。

2)特点:
①插补运算分两步完成:第一步:粗插补,第二步:精插补。

②粗插补:在给定的起点和终点的曲线之间插入若干个点用若干条微小直线段来逼近给定曲线,每小段直线长度
即步长)相等,并与进给速度V有关,加工一小段直线的时间为一个插补周期T,则ΔL=VT。

经过一个插补周期就进行一次插补计算,算出在该插补周期内各坐标的进给量,边计算,边加工。

④精插补:在粗插补时算出的每条微小直线段上,再做“数据点的密化”工作。

4.逐点比较法举例
(1)逐点比较法
就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向;如果加工点图形外面去了,就要向图形里面走;如果加工点在图形里面,就要向图形外面走(如图1.8所示)。

图1.8 逐点比较法图1.9 逐点比较法直线插补
(2)逐点比较法直线插补
插补原理:以第1象限直线为例,每进给一步需要进行四步:偏差判别、坐标进给、新偏差运算、终点比较(如图1.9 )。

数控系统的工作过程
1.输入:零件加工程序一般通过DNC从上一级计算机输入而来。

2.译码:译码程序将零件加工程序翻译成计算机内部能识别的语言。

3.数据处理:包括刀具半径补偿、速度计算以及辅助功能的处理。

4.插补:是在已知一条曲线的种类、起点、终点以及进给速度后,在起点和
点之间进行数据点的密化。

5.伺服输出:伺服控制程序的功能是完成本次插补周期的位置伺服计算,并
结果发送到伺服驱动接口中去。

数控机床为什么需要刀具补偿,补偿哪些参数?
经过译码后得到的数据,还不能直接用于插补控制,要通过刀具补偿计算,将
编程轮廓数据转换成刀具中心轨迹的数据才能用于插补。

刀具补偿分为刀具长度补
偿和刀具半径补偿。

1.刀具长度补偿
在数控立式铣镗床上,当刀具磨损或更换刀具使Z向刀尖不在原初始加工的程
编位置时,必须在Z向进给中,通过伸长(见图1)或缩短1个偏置值e的办法来补
偿其尺寸的变化,以保证加工深度仍然达到原设计位置。

图1 刀具长度补偿
在图2-4中,所画刀具实线为刀具实际位置,虚线为刀具编程位置,则刀具长
度补偿控制程序如下:
设定H01 = - 4.0 (偏置值)
N1 G91 G00 G43 Z-32.0 H01;实际z向将进给-32.0+(- 4.0) = -
36.0
N2 G01 Z-21.0 F1000; Z向将从- 36.0位置进给到-57.0位置。

N3 G00 G49 Z53.0; Z向将退回到53.0+4.0, 返回补始位置。

2.刀具半径补偿
刀具半径补偿是指数控装置使刀具中心偏移零件轮廓一个指定的刀具半径值。

根据ISO标准,当刀具中心轨迹在程序加工前进方向的右侧时,称右刀具半径补
偿,用G42表示;反之称为左刀具半径补偿,用G41表示;撤销刀具半径补偿用G40表示。

刀具半径补偿功能的优点是:在编程时可以按零件轮廓编程,不必计算刀具中心轨迹;刀具的磨损,刀具的更换不要重新编制加工程序;可以采用同一程序进行
粗、精加工;可以采用同一程序加工凸凹模。

数控系统速度控制的作用及速度控制方法的分类
在零件数控程序中,F指令设定了进给速度。

速度控制的任务是为插补提供必要的速度
信息。

由于各种CNC系统采用的插补法不同,所以速度控制计算方法也不相同。

1.脉冲增量插补方式的速度计算
脉冲增量插补方式用于以步进电动机为执行元件的系统中,坐标轴运动是通过控制步进电动机输出脉冲的频率来实现的。

速度计算就是根据编程的F值来确定脉冲频率值。

步进电动机走一步,相应的坐标轴移动一个对应的距离
(脉冲当量)。

进给速度F与脉冲频率f之间的关系为:

式中,f为脉冲频率(HZ); F为进给速度(mm/min);
为脉冲当量(mm/脉冲)。

两轴联动时,各坐标轴的进给速度分别为


式中,

分别为
轴、
轴的进给速度(mm/min);

分别为
轴、
轴步进电动机的脉冲频率。

合成进给速度为:

2.数据采样法插补的速度计算
数据采样法插补程序在每个插补周期内被调用一次,向坐标轴输出一个微小位移增量。

这个微小的位移增量被称为一个插补周期内的插补进给量,用
表示。

根据数控加工程序中的进给速度F和插补周期T,可以计算出一个插补周期内的插补进给量为:

式中,
为一个插补周期内的插补进给量(mm);T为插补周期(ms);F为编程进给速度
(mm/min);
为速度系数(快速倍率、切削进给倍率)。

由此可得到指令进给值
,即系统处于稳定进给状态时的进给量,因此称
为稳态速度。

当数控机床起动、停止或加工过程中改变进给速度时,还需要进行自动加/减速处理。

数控机床进给系统的速度是不能突变的,进给速度的变化必须平稳过渡,以避免冲击、失步、超程、振荡或引起工件超差。

在进给轴起动、停止时需要进行加减速控制。

在程序段之间,为了使程序段转接处的被加工面不留痕迹,程序段之间的速度必须平滑过渡,不应有停顿或速度突变,这时也需要进行加减速控制。

加减速控制多采用软件来实现。

加减速控制可以在插补前进行,称为前加减速控制;也可以在插补之后进行,称为后加减速控制。

(1)前加减速控制
(2)后加减速控制其优点是对各坐标轴分别进行控制,不需要预测加减速点;缺点是实际各坐标轴的合成位置就可能不准确。

后加减速控制常用算法有指数加减速控制和直线加减速控制。

①指数加减速控制算法这种算法是将起动或停止时的突变速度处理成随时间按指数规律上升或下降的速度,如图2-5(a)所示。

指数加减速控制时速度与时间的关系是
加速时,

式中,
为稳定速度;
为时间常数。

匀速时,

减速时,

②直线加减速控制算法这种算法使数控机床起动/停止时,速度沿一定斜率的斜线上升/下降,如图2-5(b)所示。

相关文档
最新文档