热力学统计物理各章重点总结
热力学统计物理第1章总复习

ln V ( dT T dp ) ln V0
(T , p)
(T0 , p0 )
T
如果由实验测得α、κT作为T、p的函数,由上 式可得物质的物态方程。
对理想气体
1 T
1 T p
选择该积分路径由一个等压过程和一个等压过程组成,
p 常数 T
1
TV
1
常数
V V dV ( ) p dT ( )T dp T p
并利用 1 ( V ) P V T
同除V得到
KT
1 V ( )T V p
得到:
dV dT K T dp V
dV V (dT KT dp)
对固体和液体,α、KT很小,并假定为常数,积分得:
作级数展开,取近似, V (T , P) V0 (T0 ,0)1 (T T0 ) KT p 并取p0=0有
T
1.4 简单固体和液体的体胀系数 和等温压缩系数 T 数值都很小,在一定温度范围内可以把 和 T 看作 常量. 试证明简单固体和液体的物态方程可近似为
V (T , p) V0 T0 , 0 1 T T0 T p .
1.4解:令 V=V(T,P)进行全微分:
2 1 p R RV ( )V p T p(V b) RTV 2 a(V b)
1 1 1 V T ( ) T 2a RT V V p 3 V
V 2 (V b) 2 3 V RT 2a(V b) 2
(V b) 2
1.2 证明任何一种具有两个独立参量 T , p 的物质,其 物态方程可由实验测得的体胀系数 及等温压缩系 数 ,根据下述积分求得:
热学-统计物理6 第6章 热力学第二定律

热功转换
3. 热传导
两个温度不同的物体放在一起,热量将自动地由高温物体 传向低温物体,最后使它们处于热平衡,具有相同的温度。 温度是粒子无规热运动剧烈程度即平均平动动能大小的宏观 标志。初态温度较高的物体,粒子的平均平动动能较大,粒 子无规热运动比较剧烈,而温度较低的物体,粒子的平均平 动动能较小,粒子无规热运动不太剧烈。若用粒子平均平动 动能的大小来区分它们是不可能了,也就是说末态与初态比 较,两个物体的系统的无序度增大了,这种自发的热传导过 程是向着无规热运动更加无序的方向进行的。
热机Q2
A , A
E
Q1
Q1
T1
A Q2
Q1 可
逆 热 机
T2 E’
用反证法,假设
得到
A A Q1 Q1
Q1 Q1
Q1 Q2 Q1 Q2
Q2 Q2
两部热机一起工作,成为一部复合机,结果外界不对复合
机作功,而复合机却将热量 Q1 Q2 Q1 Q2 从低温热源送到高温热源,违反热力学第二定律。
自然界中的自发热传导具有方向性。
通过某一过程,一个系统从某一状态变为另一状态, 若存在另一过程,能使系统与外界同时复原,则原来的过 程就是一个可逆过程。否则,若系统与外界无论怎样都不 能同时复原,则称原过程为不可逆过程。单摆在不受空气 阻力和摩擦情况下的运动就是一个可逆过程。
注意:不可逆过程不是不能逆向进行,而是说当过程逆向 进行时,逆过程在外界留下的痕迹不能将原来正过程的痕 迹完全消除。
现在考虑4个分别染了不同颜色的分子。开始时,4个分 子都在A部,抽出隔板后分子将向B部扩散并在整个容器内无 规则运动。隔板被抽出后,4分子在容器中可能的分布情形如 下图所示:
热力学统计物理——第6章(统计物理基础)

返回
2、粒子运动状态的描述、 μ空间、相轨道
设粒子自由度为r,以r个广义坐标q1,……,qr为横轴,以r 个广义动量p1,……,pr为纵轴所构成的2r维空间叫μ空间。 在μ空间中的一个点代表粒子的运动状态,这个点叫代表点。 粒子运动状态改变时,代表点移动所描述的轨道叫相轨道。
返回
3、相轨道的作法
2 px nx L
nx 0,1,2,
2 py ny L
n y 1,1,2,
( 1)
2 pz nz L
nz 0,1,2,
能量可能值为
2 2 2 n n n 1 2 2 x y z 2 2 ( px p y pz ) 2m m L2 2 2
步骤
①确定粒子自由度r
②确定广义动量与广义坐标满足的函数关系
③画出相轨道
[例1]
[例2]
返回
[例1]
从静止开始沿直线作匀加速运动,作出相轨道。 解:取运动方向为x轴正向,坐标和动量为 p
1 2 p mv mat x x0 at 2
( 1)
由(1)作出的相轨道如图4.2.1所示。
消去t 得到
PAB PA PB
返回
4、随机变量的概率分布
以一定概率取各种可能值的变量叫随机变量. ①分离型随机变量的概率分布 ②连续型随机变量的概率分布
返回
①分离型随机变量的概率分布
x1 , x2 ,, xi ,, xn Pi P , P , , P , , P i n 1 2
( 2)
当V 较大时,动量px,py,pz和能量ε实际上可视为连续变化。 由此求得 体积V内、动量在dpx,dpy,dpz范围内自由粒子的量子态数
热力学与统计物理总结

热力学与统计物理总结简介热力学与统计物理是研究物质宏观性质与微观粒子行为之间关系的学科。
热力学研究物质的热学性质,如温度、压力、热量等,并给出了一系列基本定律;统计物理则通过对大量微观粒子的统计分布来揭示物质的宏观性质。
热力学基本定律热力学的基本定律是研究物质热学性质的基础,常用的有以下四个定律:1.第一定律:能量守恒定律。
能量在物理和化学变化过程中,既不能创造也不能消灭,只能由一种形式转化为另一种形式。
2.第二定律:熵增定律。
孤立的热力学系统中,熵不断增加,且在可逆过程中熵不变,可逆过程是指无摩擦、无阻力的过程。
3.第三定律:绝对零度不可达定律。
无限远温度下凝固的时候,熵趋于0,达到绝对零度是理论上不可达到的。
4.第零定律:温度的等温性。
当两个物体与一个第三物体都达到热平衡时,这两个物体之间也必定达到热平衡,即温度相等。
统计物理基本原理统计物理是通过对大量微观粒子的统计行为研究物质的宏观性质。
主要包括以下几个基本原理:1.统计假设:假设大量粒子的运动遵循统计规律,可用概率进行描述。
2.巨正则系综:描述粒子和热平衡与热脱平衡之间的关系。
3.等概率原理:在能量等概率的微观态中,一个系统在各个可能的微观态上出现的概率是相等的。
4.统计特性:研究粒子的统计性质,如分布函数、平均值等。
热力学与统计物理的关系热力学和统计物理是相辅相成的学科,热力学通过实验和观察,总结出了一系列定律和规律;而统计物理则通过对微观粒子的统计行为进行分析和计算,从微观层面揭示了这些定律和规律的产生机制。
热力学的基本定律是从宏观角度看待系统的性质,而统计物理则是从微观角度看待系统的性质。
统计物理给出了基本的统计规律,研究了粒子的分布函数、平均能量等,而热力学则从中总结出了熵增定律、能量守恒定律等基本定律。
可以说,热力学是统计物理的应用,而统计物理则是热力学的基础。
应用领域热力学与统计物理广泛应用于各个科学领域,主要包括以下几个方面:1.材料科学:热力学与统计物理研究材料的热学性质、相变等,对材料的设计和制备有重要指导作用。
热力学与统计物理知识点,考试必备

体胀系数p T V V α⎪⎭⎫ ⎝⎛∂∂=1压强不变,温度升高1K 所引起的物体体积的相对变化。
压强系数VT P P ⎪⎭⎫ ⎝⎛∂∂=1β体积不变,温度升高1K 所引起的物体压强的相对变化。
等温压缩系数:T T P V V κ⎪⎭⎫ ⎝⎛∂∂-=1温度不变,增加单位压强所引起的物体体积的相对变化。
α=-βκT卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率最高。
证明:设有两个热机A 和B 。
它们的工作物质在各自的循环中,分别从高温热源吸取热量Q 1和Q 1’,在低温热源放出热量Q 2和Q 2’,对外做功W 和W ’。
它们的效率分别为ηa =W/Q 1ηb = W ’/Q 1’ 假设A 为可逆机,我们要证明ηa ≥ηb 。
证明:假设Q 1=Q 1’,假设定理不成立,即如果ηa <ηb ,则由Q 1=Q 1’可知W ’>W 。
A 既然是可逆机,而W ’又比W 大,就可以利用B 所作的功的一部分(等于W )推动A 反向运行A 将接受外界的功,从低温热源吸取热量Q 2,在高温热源放出热量Q 1。
在两个热机的联合循环终了时,两个热机的工作物质恢复原状,高温热源也没有变化,但却对外界做功W ’—W 。
这功显然是由低温热源放出的热量转化而来的。
因为根据热力学第一定律有W=和W ’=Q 1’—Q 2’ 而Q 1=Q 1’,两式相减得W ’—W= Q 2—Q 2’ 这样,两个热机的联合循环终了时,所产生的唯一变化就是从单一热源(低温热源)吸取热量Q 2—Q 2’而将之完全变成了有用的功。
这与热力学第二定律的开氏表述相违背,因此不能有ηa <ηb 而必须有ηa ≥ηb 。
证毕。
从卡诺定理可得:所有工作于两个一定温度之间的可逆热机,其效率相等。
热了力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变数学表达式U A —U B =W+Q 意义:系统在终态B 和初态A 的内能之差U A —U B 等于在过程中外界对系统所作的功与系统从外界吸收的热量之和。
热力学统计物理

《热力学统计物理》复习资料热力学部分第一章 热力学的基本定律基本概念:平衡态,热力学参量,热平衡定律,温度,三个实验系数(、、),转换关系,物态方程,功及其计算,热力学第一定律(数学表述式),热容量(C 、C V 、C P 的概念及定义),理想气体的内能,焦耳定律,绝热过程特征,热力学第二定律(文学表述、数学表述),克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵,熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(S )计算。
第二章 均匀物质的热力学性质基本概念:焓H ,自由能F ,吉布斯函数(自由焓)G 的定义,全微分式,热力学函数的偏导数关系、麦克斯韦关系及应用,能态公式,焓态公式,节流过程的物理性质,焦汤系数定义及热容量(C P )的关系,绝热膨胀过程及性质、特性函数F 、G ,辐射场的物态方程,内能、熵,吉布函数的性质、辐射通量密度的概念。
综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)。
第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系平衡条件,复相多元系的平衡条件,多元系的热力学函数及热力学方程,相变的分类、一级与二级相变的特点及相平衡曲线斜率的推导、吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律的标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态代表点,三维自由粒子的μ空间,德布罗意关系(=,=),相格,量子态数、等概率原理,对应于某种分布的玻尔兹曼系统,玻色系统,费米系统的微观态数(热力学概率)的计算公式,最概然分布,玻尔兹曼分布律(),配分函数(),用配分函数表示的玻尔兹曼分布(),f s ,P λ, P s的概念,经典配分函数(),麦克斯韦速度分布律。
综合运用:能计算在体积V 内,在动量范围p —p+dp 内,或能量范围+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。
热力学统计物理第4章_详解

3
一 μ空间(相空间) :粒子位置和动量构成的空间 经典力学: 确定一个粒子的运动状态用 r 和 p。
d = dq1 dq2 … dqr · dp1 dp2 …dpr
5
二
经典描述方法例子
px
x
L
1 自由粒子
不受外力作用的粒子(如理想气体 O 分子、金属自由电子等),其能量 p2 2m ① 1D自由粒子: 限制在长L范围内 (线状材料等); 互相正交的 x、px 轴构成2D的μ空间。 相轨道“——”等能面是一条直线.
1
统计物理: 关于热现象的微观理论。
研究对象: 大量微观粒子组成的宏观物质系统。 (微观粒子:如分子、原子、自由电子、光子等) 统计物理认为: 宏观性质是大量微观粒子运动的集体表现。 宏观物理量是相应微观物理量的统计平均值。 经典统计: 粒子满足经典力学规律 (运动状态的经典描述) 量子统计: 粒子满足量子力学规律 (运动状态的量子描述)
px p sin cos , p y p sin sin , pz p cos .
V dp x dp y dpz 3 h
z
p
则动量空间的体积元:
V p sin d pd dp p 2 sin dp d d
在体积V 内,动量大小在 p 到 p + dp, 动量方向在 到 + d, φ 到 φ + dφ内,自由粒子可能的状态数为:
px
dp x
01热力学与统计物理大总结范文

01热力学与统计物理大总结范文热力学与统计物理总复习一、填空题1、理想气体满足的条件:①玻意耳定律温度不变时,PVC②焦耳定律理想气体温标的定义PT在相同的温度和压强下③阿伏伽德罗定律,相等体积所含各种气体的物质的量相等,即nV11等于kT,即:a某i2kT222、能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值广义能量均分定理:某i某jijkT3、吉布斯相律:fk2其中k是组元数量,是相的数量。
4、相空间是2Nr维空间,研究的是:一个系统里的N个粒子;空间是2r维空间,研究的是:1个粒子二、简答题1、特性函数的定义。
答:适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数即称为特性函数。
2、相空间的概念。
答:为了形象地描述粒子的力学运动状态,用q1,,qr;p1,,pr共2r 个变量为直角坐标,构成一个2r维空间,称为空间。
根据经典力学,系统在任一时刻的微观运动状态由f个广义坐标q1,q2,,qf及与其共轭的f个广义动量p1,p2,,pf在该时刻的数值确定。
以q1,,qf;p1,,pf共2f个变量为直角坐标构成一个2f维空间,称为相空间或空间。
3、写出热力学三大定律的表达和公式,分别引出了什么概念?答:热力学第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B-1-进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律。
即gA(PA,VA)gB(PB,VB),并引出了“温度T”这概念。
热力学第一定律:自然界一切物质都具有能量,能量有各种不同形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。
即dUdQdW,并引出了“内能U”的概念。
热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概念1.系统:孤立系统、闭系、开系与其他物体既没有物质交换也没有能量交换的系统称为孤立系;与外界没有物质交换,但有能量交换的系统称为闭系;与外界既有物质交换,又有能量交换的系统称为开系;2.平衡态平衡态的特点:1.系统的各种宏观性质都不随时间变化;2。
热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态.3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数.当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这是态函数焓的重要特性克劳修斯引进态函数熵.定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。
7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状.8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡.三要素:(1)选择测温质;(2)选取固定点;(3)测温质的性质与温度的关系。
(如线性关系)由此得的温标为经验温标.2.热力学第一定律-第一类永动机、内能、焓热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律。
UB-UA=W+Q。
能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
第一类永动机:不需要任何动力的,不断自动做功的机器.3.焦耳定律-理想气体气体的内能只是温度的函数,与体积无关。
这个结果称为焦耳定律.对理想气体,第二项为零,则有:4.热力学第二定律-第二类永动机、熵热力学第二定律:1、克氏表述—不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述—不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成第二类永动机:能够从单一热源吸热,使之完全变成有用的功而不产生其它影响的机器。
熵取微分形式5.卡诺定理及推论卡诺定理:所有工作于两个一定的温度之间的热机,以可逆机的效率为最大推论:所有工作于两个一定的温度之间的可逆热机,其效率相等6.熵增加原理熵增加原理:系统经绝热过程由初态变到终态,它的熵永不减少,熵在可逆绝热过程中不变,在不可逆绝热过程后增加。
7.最大功原理在等温过程中,系统对外界所作的功-W不大于其自由能的减少。
或系统自由能的减少是在等温过程中从系统所能获得的最大功.方程第二章概念1.麦氏关系2.焦-汤效应和焦-汤系数在节流过程前后,气体的温度发生了变化.该效应称为焦-汤效应定义焦—汤系数:焓不变的条件下,气体温度随压强的变化关系。
H=H(T,P)3.特性函数4.平衡辐射和辐射通量密度平衡辐射:当物体对电磁波的吸收和辐射达到平衡时,电磁辐射的特性将只取决于物体的温度,与物体的其它特性无关。
辐射通量密度:单位时间内通过小孔的单位面积向一侧辐射的辐射能量。
与辐射内能密度的关系:5.磁介质的麦氏关系、热力学基本微分方程热力学的基本微分方程dU = TdS —PdV定律1.焦耳定律2.斯特藩—玻耳兹曼定律3.基尔霍夫定律方程第三章概念1.热动平衡判据:熵判据、内能、焓、自由能、吉布斯判据熵判据孤立系dS 0 U,V不变,平衡态S极大。
对系统的状态虚变动,熵的虚变动2.均匀系统的热动平衡条件和稳定条件3.化学势名为化学势,它等于在温度和压力不变的条件下,增加1摩尔物质时吉布斯函数的改变.4.巨热力学势巨热力学势J是以T,V为独立变量的特性函数5.单元复相系平衡条件整个系统达到平衡时,两相的温度、压力和化学势必须相等。
这就是复相系达到平衡所要满足的平衡条件。
6.相图、三相点、相平衡曲线AC—汽化线,分开气相区和液相区;AB—熔解线,分开液相区和固相区;OA—升华线,分开气相区和固相区。
A点称为三相点,系统处于该点的状态时,为气,液,固三相共存状态。
C点称为临界点,它是汽化线的终点。
在单元两相系中,由相平衡条件所得到的T-P 之间的关系P =P(T),在T-P 图上所描述的曲线称为相平衡曲线.AC, AB,OA线。
7.一级相变、二级相变、连续相变一级相变:相变时两相的化学势连续,而化学势对温度和压强的一阶偏导数存在突变.二级相变的特征是,在相变时两相的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变。
朗道(Landau, 1937)连续相变理论:连续相变的特征是物质有序程度的改变及与之相伴随的物质对称性质的变化。
通常在临界温度以下的相,对称性较低,有序度较高,序参量非零;临界温度以上的相,相反,序参量为零。
8.开系的热力学基本微分方程dU =TdS —PdV +dn9.麦克斯韦等面积法则方程1.克拉珀龙方程2.爱伦费斯特方程第四章概念1.多元系、复相平衡、化学平衡多元系是指含有两种或两种以上化学组分的系统。
化学平衡条件:多元系中各组元发生化学反应时系统达到平衡所要满足的条件.2.多元系的热力学基本微分方程3.单相化学反应式的化学平衡条件4.吉布斯佯谬对于同种气体,混合前后熵不变。
因此,由性质任意接近的两种气体过渡到同种气体,熵增突变为零-吉布斯佯谬。
5.化学反应的平衡常量定义Kp称为化学反应的定压平衡常量,简称平衡常量.6.绝对熵定律、方程1.吉布斯关系2.吉布斯相律3.杠杆定则4.赫斯定律赫斯定律:如果一个反应可以通过两组不同的中间过程达到,两组过程的反应热之各彼此应当相等.5.亨利定律亨利(Henry)定律:稀溶液中某溶质蒸气的分压与该溶质在溶液中的摩尔分数成正比6.质量作用律化学反应平衡条件为,称为质量作用律。
7.能斯特定理能斯特(Nerst)定理:凝聚系的熵在等温过程中的改变随绝对温度趋于零.8.热力学第三定律不可能使一个物体冷却到绝对温度的零度.即绝对零度不可到达。
第六章概念1.相空间、状态数相空间:以描述粒子运动状态的广义坐标和广义动量为轴构成的一个2r维的正交坐标空间。
状态数:相空间的相体积~ 相点的集合(即态的集合)2.全同粒子系统全同粒子系统-具有完全相同的内禀属性(质量、电荷、自旋等)的同类粒子组成的系统.3.近独立粒子组成的系统近独立粒子组成的系统-系统中粒子间相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可忽略粒子间相互作用。
系统的能量为单个粒子能量之和:4.玻耳兹曼系统、玻色系统、费米系统由费米子组成的系统称为费米系统,遵从泡利(Pauli)不相容原理:一个个体量子态最多能容纳一个费米子.由玻色子组成的系统为玻色系统,不受泡利不相容原理约束.玻尔兹曼系统:由可分辨全同近独立粒子组成,且在一个个体量子态上的粒子数不受限制的系统。
5.等概率原理对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
6.微观状态、分布玻耳兹曼系统,粒子可以分辨,有与分布{al}相应的系统的微观状态数为:玻色系统,粒子不可分辨,每一量子态能够容纳的粒子数不受限。
与分布{al}相应的微观状态数费米系统,粒子不可分辨,每一个量子态最多一个粒子.与分布{al}相应的微观状态数在经典统计中与分布{al}相应的微观状态数为7.最概然分布根据等概率原理,处于平衡状态的孤立系统,每一个可能的微观状态出现的概率是相等的。
因此,微观状态数最多的分布,出现的概率最大,称为最概然分布。
8.玻耳兹曼分布、玻色分布、费米分布9.经典极限条件和非简并条件10.定域系统和满足经典极限条件的玻色(费米)系统定域系统和满足经典极限条件的玻色(费米)系统都遵从玻尔兹曼分布。
方程、定律1.自由粒子态密度2.玻耳兹曼系统的微观状态数玻耳兹曼系统,粒子可以分辨,有与分布{al}相应的系统的微观状态数为:3.玻色系统的微观状态数玻色系统,粒子不可分辨,每一量子态能够容纳的粒子数不受限。
与分布{al}相应的微观状态数4.费米系统的微观状态数费米系统,粒子不可分辨,每一个量子态最多一个粒子。
与分布{al}相应的微观状态数5.拉格朗日未定乘子法和拉氏乘子玻耳兹曼统计概念1.配分函数2.玻耳兹曼系统的配分函数量子和经典表达式经典统计理论,其玻耳兹曼经典统计的配分函数为量子表达式:3.玻耳兹曼关系4.满足经典极限条件的玻色(费米)系统的熵5.其特性函数和自由能6.理想气体的经典极限条件7.理想气体的麦克斯韦速度、速率分布率麦克斯韦速度分布律其中f(vx,vy,vz)满足:气体的速率分布其满足:8.其最概然、平均和均方根速率平均速率方均根速率方程、定律1。
玻耳兹曼系统的热力学量的统计表达式(内能、广义力、熵、自由能)外界对系统的广义作用力为:熵的统计表达式:自由能的统计表达式:2.其特性函数3.碰壁数和泻流问题4.能量均分定理对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于1/2kT。
5.理想气体的平动、转动、振动配分函数及特征温度平动配分函数为:振动配分函数:转动配分函数为:6.理想气体的熵-萨库尔-铁特罗特公式7.固体热容量的爱因斯坦理论和爱因斯坦特征温度8.顺磁性固体的极限条件下热力学性质玻色统计和费米统计概念1.玻色系统和费米系统的平均分布2.其巨配分函数玻色系统引入巨配分函数:费米系统,巨配分函数改为:3.统计特性函数及其自变量4.弱简并条件及相应玻色、费米系统的内能及差异费米气体的附加内能为正而玻色气体为负量子统计关联使得费米粒子间出现等效的排斥作用,而玻色粒子-吸引作用.5.玻色-爱因斯坦凝聚、凝聚温度凝聚温度:6.玻色凝聚体的热力学性质内能为:7.理想玻色子凝聚的条件通过降低温度和增加气体粒子密度的方法来实现玻色凝聚。