小学奥数排列问题复习与解析

小学奥数排列问题复习与解析
小学奥数排列问题复习与解析

排列

【知识点睛】

(1)排列:一般地,从n 个不同元素中任意取出m 个(m n ≤)元素,按照一定的顺序.......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.

排列数:从n 个不同元素中任意取出m 个(m n ≤)元素的所有排列的个数,叫做从n 个 不同元素中取出m 个元素的排列数,记作m n A

(2)排列数公式:(1)(2)......(1)m n A n n n n m =---+ n 个元素的全排列就是n 的阶乘. 注:

1!=1 ; 2!=2 ; 3!=6 ; 4!=24 ; 5!=120; 6!=720; 7!=5040 特别地,规定0!=1.

(3)排列中的常用方法:

一个原则:特殊元素与特殊位置优先考虑. 1、捆绑法:必须在一起,先捆再排. 2、插空法:离我远点,先排再插空. 3、排除法:正难则反.

【例1】10个人走进只有6辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有

多少种不同的坐法?

解:从10个人中选6个出来坐碰碰车共有6

10

1098765151200A =?????=(种)不同的坐法. 【例2】某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增3个车站,铁路上两站之

间往返的车票不同,则这样需要增加多少种不同的车票?

解:新增前:从7个车站中选2个出来排队组成一张车票,共有42672

7

=?=A 种不同的车票;新增后:从10个车站中选2个出来排队组成一张车票,共有909102

10

=?=A 种不同的车票;需要增加484290=-种不同的车票.

【例3】书架上有3本不同的故事书,2本不同的作文选和1本漫画书,全部竖起来排成一排.

⑴ 如果同类的书可以分开,一共有多种排法?

解:6本书全排列7206

6

=A ⑵ 如果同类的书不可以分开,一共有多少种排法?

解:不分开则捆绑,先绑再排:共有723

3112233

=A A A A 【例4】4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:

⑴ 甲不在中间也不在两端;

解:优先考虑甲,从六个位置中选一个给甲,剩下的人全排列,共有2419208

816=A A 种排法.⑵ 甲、

乙两人必须排在两端;

解:优先排甲、乙,剩余学生全排列,共有27

2

72504010080=?=A A 种排法.⑶ 男、女生分别排在一起;

解:男、女分别捆绑后再排列,共有245

2

452241205760=??=A A A 种排法. ⑷ 男女相间.

解:相间插孔,先排后插,共有54

5

4241202880=?=A A 种排法. 【例5】有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.

⑴全体排成一行,其中甲只能在中间或者两边位置.

解:先排甲,有3种方法,其余人全排列.有6

6

32160A =种; ⑵全体排成一行,其中甲不在最左边,乙不在最右边.

解:甲在最右边和不在最右边: 656

5553720A A +??=种. ⑶全体排成一行,其中男生必须排在一起.

解:男生捆绑站入女生之间形成的5个间隙35

3

5720A A =种. ⑷全体排成一行,男、女各不相邻.

解:让男生去站女生中间的3个间隙,或者女生插入男生的4个空,共有34

3

4144A A =种(即男生全排列,女生全排列).

⑸全体排成一行,男生不能排在一起.

解:插空法.让男生插入女生的空隙,先排再插,共有43

4

51440=A A 种. ⑹排成前后二排,前排3人,后排4人.

解:实际为无要求的全排列.7

7

5040A =种. ⑺全体排成一行,甲、乙两人中间必须有3人.

解:先挑3个人放在甲乙中间,连同甲乙看成一个元素,再与其余元素进行排列.323

523720A A A =种.

【例6】由0,2,4,5,7,8组成无重复数字的数.

⑴五位数有几个?

解:注意首位不能选0,有5种选择,其余位置从5个数字中选4个数字排列,共有60054

5=A 个.⑵

五位奇数有几个?

解:个位有2种选择,首位有4种选择,其余位置从剩余的4个数字中选处3个数字排列,共有

192423

4=??A 个. ⑶五位偶数有几个?

解:方法一:分类讨论:若个位是0,则有1204

5

=A 个;若个位不是0,则个位有3种选择,首位有4种选择,其余位置从剩余的4个数字中选出3个数字排列,有288433

4

=??A 个。共有408288120=+个. 方法二:600-192=408 ⑷自然数有几个?

解:分类讨论:一位数:6个

两位数:2551

5

=A 个 三位数:10052

5

=A 个 四位数:30053

5=A 五位数:60054

5

=A 六位数:60055

5

=A 共有1631600600300100256=+++++个. ⑸是5的倍数的三位数有几个?

解:是5的倍数的数个位为0或5,若个位为0:202

5

=A 个;若个位为5,则有1644=?个。共有361620=+个。

小学奥数排列组合常见题型及解题策略备选题

小学奥数排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有 【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4 424 A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3

小学奥数~排列组合

5 数的一半,即 A = 60 种,选 B . 奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握, 实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效 途径;下面就谈一谈排列组合应用题的解题策略 . 1.相邻问题捆绑法 :题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排 列. 例 1. A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的 排法种数有 A 、60 种 B 、48 种 C 、36 种 D 、24 种 解析:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A 4 = 24 种, 4 答案: D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 解析:除甲乙外,其余 5 个排列数为 A 5 种,再用甲乙去插 6 个空位有 A 2 种,不同的排 5 6 法种数是 A 5 A 2 = 3600 种,选 B . 5 6 3.定序问题缩倍法 :在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3. A, B, C , D, E 五人并排站成一排,如果 B 必须站在 A 的右边( A, B 可以不相邻)那 么不同的排法种数是 A 、24 种 B 、60 种 C 、90 种 D 、120 种 解析: B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只是 5 个元素全排列 1 2 5 4.标号排位问题分步法 :把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如此继续下去,依次即可完成. 例 4.将数字 1,2,3,4 填入标号为 1,2,3,4 的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有 A 、6 种 B 、9 种 C 、11 种 D 、23 种 解析:先把 1 填入方格中,符合条件的有 3 种方法,第二步把被填入方格的对应数字填 入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3 ×1=9 种填法,选 B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例 5.(1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务,不同的选法种数是 A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 解析:先从 10 人中选出 2 人承担甲项任务,再从剩下的 8 人中选 1 人承担乙项任务, 第三步从另外的 7 人中选 1 人承担丙项任务,不同的选法共有C 2 C 1C 1 = 2520 种,选C . 10 8 7

小学奥数组合问题

组合 例1:计算:⑴ 26C ,46C ;⑵ 27C ,57C . 例2:计算:⑴ 198200C ;⑵ 5556C ;⑶ 981001001002C C -. 计算:⑴ 312C ;⑵ 9981000C ;⑶ 2288P C -. 例3:6个朋友聚会,每两人握手一次,一共握手多少次 某班毕业生中有20名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手 例4:学校开设6门任意选修课,要求每个学生从中选学3门,共有多少种不同的选法 例5:某校举行排球单循环赛,有12个队参加.问:共需要进行多少场比赛 芳草地小学举行足球单循环赛,有24个队参加.问:共需要进行多少场比赛 例6:一批象棋棋手进行循环赛,每人都与其他所有的人赛一场,根据积分决出冠军,循环赛共要进行78场,那么共有多少人参加循环赛 例7:某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛 例8:从分别写有1、3、5、7、9的五张卡片中任取两张,做成一道两个一位数的乘法题,问: ⑴ 有多少个不同的乘积 ⑵ 有多少个不同的乘法算式 9、8、7、6、5、4、3、2、1、0这10个数字中划去7个数字,一共有多少种方法 从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张,做成一道两个一位数的加法题,有多少种不同的和 例9:在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法 从19、20、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少 例10:一个盒子装有10个编号依次为1,2,3,L ,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少 例11:用2个1,2个2,2个3可以组成多少个互不相同的六位数 用2个0,2个1,2个2可以组成多少个互不相同的六位数 例12:从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数 例13:从0、0、1、2、3、4、5这七个数字中,任取3个组成三位数,共可组成多少个不同的三位数(这里每个数字只允许用1次,比如100、210就是可以组成的,而211就是不可以组成的). 例14:用2个1,2个2,2个3可以组成多少个互不相同的六位数用2个0,2个1,2个2可以组成多少个互不相同的六位数 用两个3,一个2,一个1,可以组成多少个不重复的4位数 例15:工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问: (1)一共有多少种不同的抽法 (2)抽出的3件中恰好有一件是次品的抽法有多少种 (3) 抽出的3件中至少有一件是次品的抽法有多少种 例16:200件产品中有5件是次品,现从中任意抽取4件,按下列条件,各有多少种不同的抽法(只要求列式)⑴都不是次品;⑵至少有1件次品;⑶不都是次品. 例17:在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的: ⑴ 直线段;⑵ 三角形;⑶ 四边形. 平面内有10个点,以其中每2个点为端点的线段共有多少条 在正七边形中,以七边形的三个顶点为顶点的三角形共有多少个 例18:平面内有12个点,其中6点共线,此外再无三点共线.

小学奥数:简单的排列问题.专项练习

1.使学生正确理解排列的意义; 2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列; 3.掌握排列的计算公式; 4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等. 一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P . 根据排列的定义,做一个m 元素的排列由m 个步骤完成: 步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法; 步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; …… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有 11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+L ()()() ,即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 二、排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????L ( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-????L L ()() . 教学目标 例题精讲 知识要点 7-4-1.简单的排列问题

小学奥数~排列组合

奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法种数是52 5 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列 数的一半,即5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务, 第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110 872520C C C =种,选C .

小学奥数之排列组合问题

计 数 问 题 教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 知识点拨: 例题精讲: 一、 排 列 组 合 的 应 用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法 (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所 以只要求出其中一种的排法数,再乘以2即可.4×3×5 5P ×2=2880(种).排队问题,一般先考虑特殊 情况再去全排列。 【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数 【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式, 一共可以组成255420P =?=(个)符合题意的三位数。 【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数 【解析】 可以分两类来看: ⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有 44432124P =???=(种)放法,对应24个不同的五位数; ⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

小学奥数组合图形面积

第六讲:组合图形面积 组合图形是由两个以上的简单的几何图形组合而成的。组合的形式分为两种, 一是拼合组合,二是重叠组合,由于组合图形具有相“等”的特点,往往使得 问题无从下手。要正确解答组合图形的面积问题,应该注意以下几点: 1, 切实掌握有关简单图形的概念、公式,牢固建立空间概念; 2, 仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3, 适当采用增加辅助线等方法帮助解题; 4, 采用隔、补、分解、代换等方法,将复杂问题简单化。 例题 1:一个等腰直角三角形,最长的边 12 厘米,这个三角形的面积是多少 平方厘米? 思路导航: 我们可以假设有 4 个这样的三角形,如图合成一个边长为 12 厘米 的正方形,显然所求三角的面积是正方形面积的 5 厘米,下底是 7 厘米,如果只把上底增加 3 厘米,那么 面积就增加 4.5 平方厘米。求原来梯形的面积。 例题 2:右下图所示的正方形中套着一个长方形,正方形的边长是 12 厘米,长方形四个角 的顶点把正方形的四条边各分成两段, 其中长的一段是短的一段的 2 倍。求中间长方形的面 积。 思路导航: 图中的两个小三角形平移后可拼得一个小正方形, 两个大三角形平移后可拼得一 个大正方形。这两个正方形的边长分别是 12÷( 1+2) =4(厘米)和 4×2=8(厘米)。中间 长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。 练习 1:求四边形 ABCD 的面积。 单位:厘米) 练习 2:有一个梯形,它的上底是

练习1:下图长方形ABCD 的面积是16平方厘米,E、F 都是所在边的中点。求三角形AEF 的面积。 练习2:求下图长方形ABCD 的面积。(单位:厘米) 例题3:图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米) 思路导航:题中没有给出阴影三角形的底和高,所以无法直接用公式计算出它的面积。但是,如果把阴影部分分割成△ ABD 、△ ACD 和△ BDC 这三块,先分别求出这三个小三角形的面积,再把它们加起来就是阴影部分的面积。 练习1:计算下面图形的面积。(单位:厘米)

【教师版】小学奥数7-5-2 组合的基本应用(二).专项练习及答案解析

1.使学生正确理解组合的意义;正确区分排列、组合问题; 2.了解组合数的意义,能根据具体的问题,写出符合要求的组合; 3.掌握组合的计算公式以及组合数与排列数之间的关系; 4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等. 一、组合问题 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合. 从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合. 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C . 一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法. 根据乘法原理,得到m m m n n m P C P =?. 因此,组合数12)112321 ?-?-??-+==?-?-????m m n n m m P n n n n m C P m m m ()(() ()(). 这个公式就是组合数公式. 二、组合数的重要性质 一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤) 知识要点 教学目标 7-5-2.组合的基本应用(二)

(word完整版)小升初奥数—排列组合问题

小升初奥数—排列组合问题 一、 排列组合的应用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。 【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9, 那么确保打开保险柜至少要试几次? 【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3, 3;2,2,2,3六种。 第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择; 第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312?=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择. 综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次. 【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个 数字都不相同的时刻一共有多少个? 【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不 同的数字,所以有2 6P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有2 7P 种选法,所以共有2 6P ×27P =1260种选法。 从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。 【例 4】 4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法: ⑴ 甲不在中间也不在两端; ⑵ 甲、乙两人必须排在两端;

(完整版)小学奥数排列

排列 在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关. 前提测评 1、在1~500的自然数中,不含数字0和1的数有多少个? 2、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来? 例如某客轮航行于天津、青岛、大连三个城市之间.问:应准备有多少种不同船票? 为叙述方便,我们把研究对象(如天津、青岛、大连)看作元素,那么上面的问题就是在三个不同的元素中取出两个,按照一定的顺序排成一列的问题.我们把每一种排法叫做一个排列(如天津——青岛就是一个排列),把所有排列的个数叫做排列数.那么上面的问题就是求排列数的问题. 一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列. 由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.

例2有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号? 例3用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?例4幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法? 例5幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法? 例6有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

(完整)小学数学排列组合

排列 例1:计算:⑴ ;⑵ . 25P 4377P P -计算:⑴ ;⑵ . 23P 32610P P -计算:⑴; ⑵. 321414P P -53633P P -例2:有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况? (照 相时3人站成一排) 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法? 9名同学站成两排照相,前排4人,后排5人,共有多少种站法? 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法? 丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,人并排站成一排,奶奶要站在正中间,有多少种不同 5的站法? 例3:一列往返于北京和上海方向的列车全程停靠个车站(包括北京和上海),这条铁路线共需要多少种不 14同的车票. 例4:班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问: 有多少种不同的分工方式? 例5:有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号? 有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的 信号?

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号? 例6:用1、2、3、4、5、6、7、8可以组成多少个没有重复数字的四位数? 由数字、、、、、可以组成多少没有重复数字的三位数? 123456 01234 例7:用、、、、可以组成多少个没重复数字的三位数? 例8:用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数? 用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数? 025678 例9:由,,,,,组成无重复数字的数,四位数有多少个? 12345 例10:用、、、、这五个数字,不许重复,位数不限,能写出多少个3的倍数? 例11:用1、2、3、4、5这五个数字可组成多少个比大且百位数字不是的无重复数字的五位数? 200003 用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数? 例12:由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在 个. 例13:千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有多少个? 09 例14:某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开保险柜至少要试几次?

小学奥数排列组合

小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一.计数专题:④排列组合 一.进门考 1.有四张数字卡片,用这四张数字卡片组成三位数,可以组成多少个? 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法? 3.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法? 4.从1到500的所有自然数中,不含有数字4的自然数有多少个? 5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米? (2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱? 58 7 6

6*.按1,2,3,4的顺序连线,有多少种不同的连法? 二.授新课 ①奥数专题:乘法原理 专题简析 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。 排列公式: 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边 从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 组合公式: 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .12)112321m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()().

小学奥数 排列问题

排列 例1:甲乙两人在16个方格的正方形中各放一枚棋子,要求两枚棋子不在同行同列,共有多少种放法? 例2:将赵钱孙李四位同学排成一排,有多少种排法? 解析:排位有四个位置,所以第一个位置有四种选择,第二个位置就只剩3种选择,第三个位置则2种选择,第四个只剩1种选择,又因是乘法原理,故4×3×2×1=24(种)。 可以引用乘法原理进行总结:从n个不同元素中取出m个(m≤n)元素的排列问题可以这样计算:第一步:排第一个位置上的元素从n个中任取,可以有n种选法; 第二步:排第二个位置的可以有n-1(n个抽掉1个只剩n-1个)种选法; 第三步:则有n-2种选法; 。。。。。。 第m步:前面已排了m-1个元素,这里只能从剩下的n-(m-1)中选,则有n-m+1种选法。 整理排列公式得:n×(n-1)×(n-2)。。。×(n-m+1) m个 例3、有5位同学排成一排拍照,问: (1)共有多少种排列 (2)如果有8个位置,有几种排法 (3)如果某人不坐两端,共有多少种排法 (4)如果二人不相邻,有多少种排法 (5)如果二人高,三人矮,高的不相邻有几种排法 练习: 1、一趟往返于杭州与上海之间的火车,中间要停靠6个站,要准备多少种不同的票? 2、有5面颜色不同的小旗,任意取出3面排成1行表示1种信号,共有多少种不同信号?

3、用0、1、2、3、 4、5可以组成多少个没有重复数字的三位数? 4个同学去郊游,拍照时必须有1位同学给其他三人拍照,共有多少种情况? 5、5个人排成一排,其中甲不站在两边,乙不站在中间,共有多少种排法? 6、有5本不同的书,7名同学去借,每人最多一本,书都借出去了,有多少种借法? 7、有5名同学拍照,其中甲乙不相邻,有多少种排法? 8、舰船信号兵用红、黄、蓝三色上下悬挂表示不同信号,可任挂一面、二面、三面,不同顺序不同信号,有多少种不同信号? 9、上午1到4节准备上语数英体各一节,限定数学只在前二,体育在后二,有几种排课方式

奥数(排列与组合)

排列组合应用题的教学设计 致远高中朱英2007.3 解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。 引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动: (1)选其中一人为负责人,共有多少种不同的选法。 (2)每组选一名组长,共有多少种不同的选法4 评述:本例指出正确应用两个计数原理。 引例2 (1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?评述:本例指出排列和组合的区别。 求解排列组合应用题的困难主要有三个因素的影响: 1、限制条件。 2、背景变化。 3、数学认知结构 排列组合应用题可以归结为四种类型: 第一个专题排队问题 重点解决: 1、如何确定元素和位置的关系 元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。 例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法? 分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案34(种),而有的同学则做出容易错误的答案43(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了! 法一:元素分析法(以信为主) 第一步:投第一封信,有4种不同的投法; 第二步:接着投第二封信,亦有4种不同的投法; 第三步:最后投第三封信,仍然有4种不同的投法。 因此,投信的方法共有:34(种)。 法二:位置分析法(以信箱为主) C(种); 第一类:四个信箱中的某一个信箱有3封信,有投信方法1 4第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,

小学一年级奥数题及答案---排队问题及答案

小学一年级奥数题及答案-> 排队问题及答案 一、计算题。( 共14题) 1. 排好队,来报数,正着报数我报七,倒着报数我报九,一共多少小朋友? 答案:见下图 一年级奥数题及答案:小朋友 正着报数"我"报了一次,倒着报数"我"又报了一次,所以把两次报数加起来时,"我"被加了两次。因此算这队的总人数时,应从两次报数之和减1。7+9-1=15(人)。 也可以这样想:正着报数报到我为止,倒着报数时,我就不报了,只报到我的后面相邻的那个人他应该报8,所以全队总人数是:7+(9-1)=15(人)。 一个"3"。因为若填两个1后,即使再填一个最大的3,这一行的这三个数之和才是5,小于6,不符合题目要求;同样,若填两个3后,即使再填一个最小的数1,这一行的三个数之和就是7,大于6,也不符合题目要求。如果在一行里填入两个"2",即使在此行里再填一个2,这一行的三个数之和也可等于6,符合题要求。由此得出,中间方格必须填"2"。中间方格填好之后其他各格中的数也就容易填出了。 2. 海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他孩子放回了家。问强盗放多少个孩子回家? 答案:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,第一次留下的:2,4,6,8,10,12,14,第二次留下的:4,8,12,第二次留下的也是最后回家的,所以一共放三个孩子回家。 3. 小朋友们排成一队去春游,从排头往后数,小刚是第10个小朋友;从排尾往前数,小刚后有11个小朋友,问一共有多少小朋友去春游? 答案:一共有21个小朋友去春游 一年级奥数题及答案:春游 4. 20个小朋友排成一队去春游,从排头往后数,小刚是第8个;从排尾往前数,小莉是第9个,问小刚和小莉中间有几个人? 答案:画示意图,用圆圈表示人,由图可以看出,小刚和小莉中间的人数是:20-(8+9)=3(人)一年级奥数题及答案:春游 5. 一队小朋友表演球操,每人都拿着一个球,其中拿篮球的比拿排球的多1人,拿排球的比拿足球的多1人。如果拿足球的人数是奇数,这队小朋友的人数是奇数还是偶数? 答案:拿足球的是奇数,则拿排球的是偶数,则拿篮球的是奇数。总人数为:奇数+偶数+奇数=偶数,所以这队小朋友的人数是偶数。 6. 15个小朋友排成一排报数,报双数的小朋友去打乒乓球,队伍还剩下( )人 答案:还剩下8人

小学奥数组合问题

组合例 i :计算:⑴ c;, C4;(2)C, C5 . 例 2 :计算:⑴ C200 ;(2)c5s ;(3)墨2C i 100 . 计算:⑴ C I32 ;(2) G需R2 Cg . 例 3 : 6 个朋友聚会,每两人握手一次,一共握手多少次? 某班毕业生中有20 名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手? 例 4:学校开设6 门任意选修课,要求每个学生从中选学3门,共有多少种不同的选法? 例 5:某校举行排球单循环赛,有12 个队参加.问:共需要进行多少场比赛?芳草地小学举行足球单循环赛,有24个队参加.问:共需要进行多少场比赛? 例 6 :一批象棋棋手进行循环赛,每人都与其他所有的人赛一场,根据积分决出冠军,循环赛共要进 行 78 场,那么共有多少人参加循环赛? 例 7:某校举行男生乒乓球比赛,比赛分成 3个阶段进行,第一阶段:将参加比赛的 48 名选手分成 8 个小组,每组 6人,分别进行单循环赛;第二阶段:将 8个小组产生的前 2名共 1 6人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由 4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛? 例 8:从分别写有1、3、5、7、9 的五张卡片中任取两张,做成一道两个一位数的乘法题,问: ⑴ 有多少个不同的乘积? ⑵ 有多少个不同的乘法算式? 9、8、7、6、5、4、3、2、1、0这 1 0个数字中划去 7个数字,一共有多少种方法?从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张,做成一道两个一位数的加法题,有多少种不同的和? 例 9 :在1~100 中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法? 从19、20、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少? 例 10:一个盒子装有10个编号依次为1,2,3,L ,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少? 例11:用 2个1, 2个2, 2个3可以组成多少个互不相同的六位数? 用2个0,2个1,2个2可以组成多少个互不相同的六位数? 例 12:从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数? 例 13:从0、0、1、2、3、4、5这七个数字中,任取 3个组成三位数,共可组成多少个不同的三位数?(这里每个数字只允许用1次,比如100、 210就是可以组成的,而211就是不可以组成的).例14:用 2个1, 2个2, 2个3可以组成多少个互不相同的六位数?用2个0, 2个 1, 2个2可以 组成多少个互不相同的六位数? 用两个 3,一个 2,一个 1,可以组成多少个不重复的 4 位数? 例 15:工厂某日生产的 10 件产品中有 2 件次品,从这 10 件产品中任意抽出 3件进行检查,问:(1)一共有多少种不同的抽法? (2)抽出的 3 件中恰好有一件是次品的抽法有多少种? (3)抽出的 3 件中至少有一件是次品的抽法有多少种?

相关文档
最新文档