风力发电机组偏航系统开题报告

风力发电机组偏航系统开题报告
风力发电机组偏航系统开题报告

理工学院毕业设计(论文)开题报告

题目:风力发电机组偏航系统自动控制设计

学生姓名:学号:

专业:电气工程及其自动化

指导教师:

2013 年3 月25日

1

开题报告填写要求

1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;

2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;

3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册);

4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2010年2月26日”或“2010-02-26”。

2

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:

1.1 引言

能源与人类社会息息相关,它是发展生产与提高人类生活水平的重要物质基础。能源利用技术的每一次重大突破,都曾引起生产力的巨大发展,促进人类文明水平的提高,促进社会向前发展。世界上能源的主要形式是以煤、石油为主的化石能源、核能以及可再生的水利能源、太阳能。但是,人类所能够利用的化石资源是有限的,据第二届环太平洋煤炭会议资料介绍,按照目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年[1]。随着人口的增长和经济的发展,人们对能源的需求也在不断增长,近年来平均以5%的速度递增,造成能源供需矛盾的加剧。如果不尽早调整以化石能源为主体的能源结构,势必会形成对数亿年来地球积累的生物化石遗产更大规模的挖掘、消耗,由此将导致有限的化石能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。

随着人类社会的发展、科技的进步以及日益严重的资源和环境问题的挑战,世界能源结构开始经历第三次大的变革,即从煤炭、石油、天然气为主的能源系统,开始转向以可再生能源为基础的可持续发展的能源系统。1992年,联合国在巴西召开了世界各国首脑参加的世界环境与发展大会,再次强调了可再生能源的开发对环境和发展的深远历史意义。

1.2课题的目的与意义

世界经济的快速发展和激烈的竞争,新能源发电尤其是风力发电技术日趋受到世界各国的普遍重视。除水力发电技术外,风力发电是新能源发电技术中最成熟、最具大规模开发和最有商业化发展前景的发电方式。由于在改善生态环境、优化能源结构、促进社会经济可持续发展等方面的突出作用,目前世界各国都在大力发展和研究风力发电及其相关技术。

风能取之不尽,用之不竭,是非常重要的一种洁净的可再生能源,是人类能源结构的转变中一个非常重要的部分。风力发电是人们有效利用风能的方法之一,其技术在可再生能源利用中的运用也是比较成熟的。风力发电是一项高新技术,它涉及到气象学、空气动力学、结构力学、计算机技术、电子控制技术、材料学、化学、机电工程、电气工程、环境科学、等十几个专业学科,是一项系统技术。风力发电作为现在新能源利用的重要技术之一,电气工程和它是息息相关,密不可分的。目前全世界风电装机容量达到490万千瓦,而且还在以年均60%的速度增长,反映了当今国际电力发展的一个新动向。我国有丰富的风能资源,又有国外成熟的技术可以借鉴,大规模开发风电的条件已

3

经具备,应该积极发展。据专家估计,地球上所接收到的太阳辐射能大约有2%转换成风能,风力发电装机容量可达1000兆千瓦,每年可发出电力1.3×1011度。风力发电有其自身独特的优越性,大力发展风力发电实现了低碳环保,风能不需要成本,也不造成辐射或空气污染,可带来巨大的经济效益;还有我国的风力资源是相当雄厚的,也为风能来源提供充足的保障。

1.3国际风电技术的发展现状和趋势

随着国际社会对环境关注程度的不断提高,风力发电越来越受到了各国的重视,国外政府纷纷制定优惠政策,鼓励企业和个人积极参与风力发电事业,加大风电的开发力度。如法国、德国等欧洲发达国家都将风电定为优先发展级别。1999年10月5日,欧洲风能协会的一项国际能源研究报告指出:到2020年,风能可提供世界电力需求10%,创造170万个就业机会,并在全球范围减少100多亿吨二氧化碳废气[7]。风电技术经过20年的开发日益成熟,商业化机组的单机容量从55kW增加到6000kW,风电成本从20美分/kWh 持续下降到3美分/kWh,运行可靠性的发电成本接近于常规火电,迅速发展为初具规模的新兴产业。

国外风电发展速度非常快,装机容量以每年30%的速度增长。例如欧洲风能协会和绿色和平组织签署的《风力12—关于2020年风电达到世界电力总量的12%的蓝图》的报告中,指出期望并预测2020年全球的风力发电装机将达到12.31亿千瓦这是2002年世界风电装机容量的38.4倍,年安装量达到1.5亿千瓦,风力发电量将占全球发电总量的12%。就目前情况看,欧洲的风力发电机研发水平最高,其中以德国与丹麦发展风力发电机最为积极。丹麦是开发风电最早的国家,而且当前在风电机组技术和生产方面仍处于领先地位,2002年初丹麦全国风电装机2714MW,占发电总装机容量的11.09%;德国风电装机8753MW,超过美国(4245MW) 居世界第一;风电装机超过100MW的国家还有西班牙(3335MW)、意大利(197MW)等,己经达到了16个之多。欧盟2001年实际已装机17361MW,风电发展规划目标是2010年要达到40GW, 2020年达到100GW,届时风电的比例将超过10%[9]。亚洲的风电事业也蓬勃兴起,到2002年初,装机总容量达到2220MW占世界风电装机总容量的9.1%。其中印度发展最为迅速,在短短几年时进入世界装机总量前五名。

目前国外变桨距机构主要应用于MW级以上的大型风力发电机上,多采用两种方案:液压执行机构和电机执行机构。两者都以应用到2.5到6MW风力发电机上。在海上风力发电机也用到这两种方案。液压执行机构以其响应频率快、扭矩大、便于集中布置和集成化程度高等优点在目前的变桨距机构中占有主要的地位, 它特别适合于大型风力机的场合;而电机执行机构以其结构简单、能对桨叶进行单独控制, 也受到许多厂家的青睐。国外厂商开发的变距型风力发电机组的变距机构从驱动控制形式上可分为一个液压缸推动三片桨叶同步运行的结构形式;三个液压缸分别驱动三片桨叶的驱动形式和采用三

4

个电动机通过减速器分别驱动三片桨叶的驱动形式,其中以VESTAS的一个液压缸驱动三片桨叶的变距系统最具有代表性。现在这三种变桨距结构在国外均有商品化机型,但是生产制造这种机型的国家基本上只有丹麦、德国、美国、西班牙等几个国家,如世界著名厂商NORDEX,VESTAS,DEWIND等这些公司均开发了大型变距型风力发电机组,并以实现了商业化运行。

1.4我国风电技术的发展现状和趋势

我国的风能资源十分丰富,据中国气象科学研究院估算,全国平均风能密度为100w/㎡,IOM高层的风能资源总储量为32.26亿kW,其中实际可开发利用的陆地风能资源储量为2.53亿kW,居世界首位。东南沿海及附近岛屿、新疆、内蒙古和甘肃河西走廊,东北、西北、华北和青藏等地区属我国的风资源丰富区,每年风速在6m/s以上的时间近4000小时左右,一些地区年平均风速可达8m/s以上,具有很好的开发利用条件和开发价值。因此从宏观上看,我国具备大规模发展风力发电的资源条件[11]。2005年我国除台湾外新增风电机组592台,装机容量50.3万kW。与2004年当年新增装机19.8万kW 相比,2005年当年新增装机增长率为254%。截至2006初,我国除台湾外累计风电机组1864台,装机容量126.6万kW,风电场62个。分布在15个省(市、区、特别行政区)。与2004年累计装机76.4kW相比,2005年累计装机增长率为65.6%[12]。尽管近几年,我国风力发电机组事业发展迅速,但是风电基础还很薄弱,风电绝大部分关键技术落后,有些甚至是空白。我国在“九五”期间重点对600kW三叶片、定桨距、失速型、双速发电机的风力发电机组进行了研制,掌握了整体总装技术和关键部件如叶片、电控箱、发电机、齿轮箱等的设计制造技术,并初步掌握了总体设计技术。600kW失速型风电机组及其主要部件如电气控制系统、叶片等实现了国产化批量生产。对变桨距600kW风电机组也研制了样机。“十五”期间在“863”计划中对兆瓦级变速恒频风电机组进行攻关,在攻关计划中对750kW的失速型风电机组的产品化和产业化进行攻关。主要课题如下:

(1)兆瓦级直驱式变速运行风力发电机组研制

该课题采取和国外公司合作设计,在国内采购生产主要部件组装风力发电机组的方式进行。第一台样机计划于2005年上半年投入运行,国产化率25%;第二台样机计划于2005年9月投入运行,国产化率超过90%。课题完成后,形成具有一定自主知识产权的1.2MW直驱永磁风力发电机组产品样机。同时初步形成大型风力发电机组的自主设计能力;初步形成叶片、电控系统、发电机等关键部件的设计能力;基本形成叶片、电控系统、发电机等关键部件的制造和批量生产能力;形成塔架、机舱等辅助部件的批量制造和生产能力。

(2)兆瓦级双馈式变速恒频风力发电机组研制

该课题完全立足于自主设计,技术方案采取双馈发电机、多级增速箱、变桨距、变

5

速技术。研制出的兆瓦级变速恒频风力发电机组多功能缩比模型,填补了我国大型风力发电机组实验室地面试验、仿真测试设备的空白;2005年开始现场安装,进行并网试车和运行考核。课题完成后制造安装1MW双馈式变速恒频风力发电机组的科研样机;设计制造叶片、齿轮箱、发电机、电控系统等关键部件的科研或商品样机;总结和发展一套风电机组的设计开发方法,为全面掌握风力发电机组的设计技术提供基础。

(3)我国海上风资源调查研究

课题调研了国外海上风资源评估技术研究状况,收集了原始数据和计算所需资料;进行了数据预处理、微波遥感风场信息反馈和海上风场数值模拟研究。课题完成后,为评估海上风能资源提供了方法,为进一步估算我国的海上风能资源总量奠定了基础。

(4)风电系统检测技术和技术规范研究

完成了风力发电机组整机功率特性测试系统、电能品质测试系统和噪音测试系统的详细设计工作,并进行上述系统的硬件和软件开发工作;对具体的发电机组进行了功率特性测试;基本完成了风力发电机组载荷计算软件和强度分析软件的完善工作;完成了检测技术手册的编写工作。课题完成后为形成我国自己的风电技术的质量标准体系、风电产品的测试能力以及产品认证体系。

1.5风能技术发展中的几个问题

1.风力发电的技术还不是成熟,仍有一些技术问题尚未解决,设备资金和一些成本较高;

2.相关的政策和法律保护还不是很完善;

3.缺少相关的对各地风力资源的勘探和调查。

2.本课题要研究或解决的问题和拟采用的研究手段及途径:

2.1 什么是偏航系统

风力发电机组的偏航执行机构由偏航控制系统控制,完成对风的跟踪,在一定角度范围内实现风轮的准确对风,从而使风机在变风向的自然情况下,依然能获得较稳定的功率输出。课题着眼于风电机组的偏航执行机构的设计。

偏航系统是水平轴式风力发电机组必不可少的组成系统之一。偏航系统的主要作用有两个。其一是与风力发电机组的控制系统相互配合,使风力发电机组的风轮始终处于迎风状态,充分利用风能,提高风力发电机组的发电效率;同时在风向相对固定时能提供必要的锁紧力矩,以保障风电机组的安全运行。其二是由于风电机组可能持续地一个方向偏航,为了保证机组悬垂部分的电缆不至于产生过度的纽绞而使电缆断裂、失效,在电缆达到设计缠绕值时能自动解除缠绕。

2.2 偏航系统的类型

风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。被动偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有尾舵、舵轮和下风

6

向三种;主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,常见的有齿轮驱动和滑动两种形式。对于并网型风力发电机组来说,通常都采用主动偏航的齿轮驱动形式。偏航系统的方案有多种,如阻尼式偏航系统、带有偏航制动器的固定式偏航系统、软偏航系统、阻尼自由偏航系统和可控自由偏航系统等。目前应用最为普遍的有两种,一种是采用滑动轴航系统。本课题主要采用滑动轴承的阻尼式主动偏航的齿轮驱动的偏航系统

2.3 偏航系统的组成

偏航系统是由偏航控制机构和偏航驱动机构两大部分组成。其中偏航控制机构包括风向传感器、偏航控制器、解缆传感器等几部分,偏航驱动机构包括偏航轴承、偏航驱动装置、偏航制动器(或偏航阻尼装置)等几部分组成。风力发电机组的偏航系统一般有外齿形式和内齿形式两种。偏航驱动装置可以采用电机驱动或液压马达驱动,制动器可以是常闭式或常开式。常开式制动器一般是指有液压力或电磁力拖动时,制动器处于锁紧状态的制动器;常闭式制动器一般是指有液压力或电磁力拖动时,制动器处于松开状态的制动器。采用常开式制动器时,偏航系统必须具有偏航定位锁紧装置或防逆传动装置。在课题中在作出相应的硬件设计。

2.4偏航的功能

偏航控制系统主要具备以下几个功能:

(1)风向标控制的自动偏航;

(2)人工偏航,按其优先级别由高到低依次为:顶部机舱控制偏航、面板控制偏航、远程控制偏航;

(3)风向标控制的90°侧风;

(4)自动解缆。

2.5偏航的执行机构

风力发电机的偏航执行机构由偏航控制系统控制机构完成对风的跟踪,在一定角度范围内实现风轮的准确对风,从而使风机在变风向的自然情况下,依然能获得较稳定的功率输出。并且具有当电缆发生缠绕时,能够自动解除缠绕功能。课题着眼于风电机组的偏航执行机构的设计。

2.6 预期目标

1.完成离网小型风力发电机组选型。

2.针对特定小型风力发电机组,结合其风能最大捕捉及风能-电能最大效率转换的有效

控制手段,研究偏航系统的控制方法和实现手段。

3.设计偏航系统自动控制的系统原理图和电气线路图。

4.编制控制软件。

7

参考文献

[1] 叶杭冶编著风力发电机组的控制技术北京:机械工业出版社,2002

[2] 叶杭冶著风力发电机组的控制技术机械工业出版社,2002

[3] (美)牛春匀著风力发电与抽水北京:中国友谊出版社,1987.9

[4] 站殷炳山等编著怎样建立风力发电站和动力南京:江苏人民出版社,1958

[5] 吴增耆编译简易风力发电北京:水利电力出版社,1958

[6] 李俊峰,施鹏飞,高虎. 2010中国风电发展报告.海口:海南出版社,2010,3-24.

[7] 李军军,吴政球,陈波. 风力发电及其技术发展综述. 北京:中国电力出版社, 2011,8.

[8] 吴聂根,程小华. 变速恒频风力发电技术综述. 微电机,2009,69-73.

[9] 沙非,马成廉,刘闯. 变速恒频风力发电系统及其控制技术研究. 电网与清洁

能源,2009,2.

[10] 李珊珊,何凤有,昌现钊. 变速恒频交流电机风力发电技术.电机与控制应用, 2008,3.

[11] 董萍,吴捷,陈渊睿. 新型发电机在风力发电系统中的应用. 微特电机,2004, 13-17.

[12] 魏伟. 风力发电及相关技术发展现状和趋势. 电气技术,2008,5-11.

[13] 包耳,胡红英. 风力发电的发展状况与展望. 大连:大连民族学院出版社,

2011,1.

[14] 仲昭阳,王述洋,徐凯宏. 风力发电的现状及对策. 林业劳动安全,2008,34-37.

[15] 兰立君,王培红,陆璐等. 风力发电及其关键技术研究. 能源技术,2005,

148-150.

8

9

10

PLC的风力发电机偏航系统控制

酒泉职业技术学院 毕业设计 题目:风力发电机组偏航系统的控制学院:酒泉职业技术学院 班级:10级风电(1)班 姓名:李世辉 指导教师:赵玉丽 完成日期:2012年12月20日

摘要 随着社会经济的发展,人们对电的需求日益提高。以石油、煤炭、天然气为的常规能源,不仅资源有限,而且还会在使用中造成严重的环境污染。在我们进入21世纪的今天,世界能源结构正在孕育着重大的转变,即由矿物能源系统向以可再生能源为基础的可持续能源系统转变。风能作为取之不尽,用之不竭的绿色清洁能源己受到全世界的重视,而风力机的偏航系统能使风能得到更好的利用,所以偏航系统的设计非常的重要。 本设计首先分析了偏航系统的工作原理,然后以三菱PLC作为控制器,触摸屏为监控器,设计了硬件系统模块,整个硬件系统采用了闭环控制,并说明了开环控制的缺点。根据偏航控制要求,设计了自动对风控制算法,自动解缆控制算法,90°背风控制算法,不仅提高了风能利用率,增大了发电效率,而且还保证了整个系统的安全性、稳定性,让风力发电机更好的运行。 关键词:偏航系统硬件设计自动对风自动解缆

目录 摘要 (1) 第一章概述.......................................................错误!未定义书签。 1.1设计背景 (2) 1.2设计研究意义 (2) 1.3国内外风力发电概况 (2) 1.3.1世界风电发展 (2) 1.3.2我国风电发展 (3) 第二章偏航控制系统功能简介和原理 (3) 2.1偏航控制系统的功能............................................错误!未定义书签。 2.2风力发电机组偏航控制原理......................................错误!未定义书签。 第三章偏航系统的控制过程.........................................错误!未定义书签。 3.1自动偏航控制..................................................错误!未定义书签。 3.1.1自动偏航传感器ASS状态...................................错误!未定义书签。 3.1.2参数说明和电机运行状态...................................错误!未定义书签。 3.1.3偏航控制流程图..........................................错误!未定义书签。 3.1.4偏航电机电气连接原理图..................................错误!未定义书签。 3.1.5偏航对风控制PLC程序....................................错误!未定义书签。 3.290°侧风控制................................................错误!未定义书签。 3.3人工偏航控制.................................................错误!未定义书签。 3.4自动解缆控制.................................................错误!未定义书签。 第四章总结 (5) 参考文献 (12) 致谢 (13)

风力发电机组变桨系统毕业论文

风力发电机组变桨系统的维 护与检修 毕业顶岗实习报告书 专业:电力系统自动化技术(风电方向) 班级: 姓名: 顶岗实习单位:金风科技股份有限公司 校外指导师傅: 校内指导教师: 报告完成日期: 新疆农业大学 2015年6月

风力发电机组变桨系统的维护与检修 学生姓名: 专业班级: 学生诚信签名: 完成日期: 指导教师签收: 摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等

优点,所以其受到世界各国的重视。 可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。所以对风力发电机组尤其是大型风电机组的控制技术及风力发电后期的维护和检修就具有相当重要的意义。 本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,变桨距风机的维护和检修,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。 关键词:变桨距控制,维护,检修

目录 摘要 (2) 一顶岗实习简历 (1) 二顶岗实习目的 (1) 三顶岗实习单位简介 (2) 目前行业发展地位 (2) 四顶岗实习内容 (3) 第一章变桨距系统 (3) 变桨距与定桨距 (5) 定桨距 (5) 变桨距 (5) 定桨距与变桨距的比较 (6) 而变桨距风力发电机可以克服上述定桨距风力发电机的缺点,在很宽的风速范围内保持最佳叶尖速比,从而提高风力机的运行效率和系统稳定性。变桨距风力发电机在变桨距的同时通过配合使用双馈发电机或永磁风力发电机,可以减轻风速突变产生的转距波动,减轻传动机构承受的扭矩波动,提高齿轮箱寿命,减少传动系统故障率。此外,可结合对电机的励磁控制,实现无电流冲击的软并网,使机组运行更加平稳安全[2]变桨矩调节原理 (7) 变桨距控制过程 (7) 变桨距风力机组的运行状态分析 (8) 启动状态 (8) 欠功率状态 (9) 额定功率状态 (9) 变桨距控制的特点 (9) 输出功率特性 (9) 风能利用率 (10) 额定功率 (10) 启动与制动性能 (10) 对机械部件的影响 (10) 第二章变桨矩系统的原理与结构 (11) 变桨矩调节原理 (11) 变桨矩系统分类 (11) a) 液压变桨矩 b) 电动变桨矩 (12) 图变桨矩系统的轮毂照片 (12) 风力发电机组变桨矩驱动装置比较和选择 (15) 液压变桨与电动变桨技术比较 (15) 见表[6]。 (15) 表液压变桨系统与电动变桨系统的比较 (15) 项目 (15) 液压变桨矩系统 (15) 电动变桨矩系统 (15) 桨矩调节 (15) 响应速度慢 (15)

科技写作结课作业(时域有限差分法的Matlab仿真开题报告)

开题报告 论文题目:基于matlab的时域有限差分法的电磁仿真研究(10分) 学院:电气工程及其自动化学院学号:1103000105姓名:__杨志刚___ 一、论文选题的目的和意义(300字以内;15分) 时域有限差分法,因具有多种优点被运用到电磁场理论研究的各个方面,而且其使用成效和应用领域还在迅速扩大和提高,在现代电磁场理论研究中具有很大的重要性和很强的可操作性。但是同时这种方法也存在一定的缺陷,主要表现在对无边界问题需要吸收边界条件处理,有色散误差,消耗内存大等方面。本课题在利用时域有限差分法对一些实际的算例进行实验仿真和验证,同时对这种方法在解决实际问题的缺陷进行一定程度的研究和分析。 Matlab作为一种工程仿真工具得到了广泛应用。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 二、国内外关于该论题的研究现状和发展趋势(500字以内;15分) 时域有限差分方法作为一种典型的全波时域分析方法,因其原理直观、编程简便、实用性强在目前的计算电磁学领域内被人们广泛深入地研究,并取得巨大应用成功的方法。时域数值技术的一个突出优点是可以给出关于问题空间的丰富的时域信息,而且经过简单的时频变换,即可得到宽带范围的频域信息,相对频域方法显著地节约了计算量。最近几十年,是电磁场数值计算时域技术蓬勃发展的时期,各具优势和特色的新颖时域算法层出不穷。 但是到目前为止国内关于时域有限差分法中的PML 算法文献较少,其中绝大多数文献集中在综述和应用方面。而在国际的学报和杂志上对于这方面的文献非常多。时域有限差分法经过了三十年多年的高速发展之后,仍然还是计算电磁学制高点的研究热潮,而且其应用的范围和成效还在迅速的扩大和提高。本课题正是利用时域有限差分法的基础理论,利用matlab对一些实际的电磁场问题进行仿真研究。 三、论文的主攻方向、主要内容、研究方法及技术路线(1000字左右;40分) 通过对时域有限差分法理解基础之上,利用matlab仿真软件按照这种方法编程,实现对三种情况下的电磁场情况的仿真研究。

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15 资讯频道 偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。 使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。电机组的安全运行。舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。形式。 1.偏航系统的技术要求 1.1. 环境条件 在进行偏航系统的设计时,必须考虑的环境条件如下: 1). 温度; 2). 湿度; 3). 阳光辐射; 雨、冰雹、雪和冰;4). 5). 化学活性物质; 机械活动微粒;6). 盐雾。风电材料设备7). 近海环境需要考虑附加特殊条件。8). 应根据典型值或可变条件的限制,确定设计用的气候条件。选择设计值时,应考虑几 气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。不影响所设计的风力发电机组偏航系统的正常运行。 1.2. 电缆 必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效, 电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。的。阻尼1.3. 偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振, 阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。确定。阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。 1.4. 解缆和纽缆保护 偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。 所以在偏航系统中应设置与方向有关的计数作会导致机舱和塔架之间的连接电缆发生纽绞,检测装置或类一般对于主动偏航系统来说,装置或类似的程序对电缆的纽绞程度进行检测。对于被动偏航系统检测装置或类似似的程序应在电缆达到规定的纽绞角度之前发解缆信号;偏航系并进行人工解缆。的程序应在电缆达到危险的纽绞角度之前禁止机舱继续同向旋转,一般与偏航圈统的解缆一般分为初级解缆和终极解缆。初级解缆是在一定的条件下进行的,这个装置的控制逻纽缆保护装置是风力发电机组偏航系统必须具有的装置,数和风速相关。辑应具有最高级别的权限,一旦这个装置被触发,则风力发电机组必须进行紧急停机。偏航转速 1.5. 1 对于并网型风力发电机组的运行状态来说,风轮轴和叶片轴在机组的正常运行时不可避免的产生陀螺力矩,这个力矩过大将对风力发电机组的寿命和安全造成影响。为减少这个力矩对风力发

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

信道编码仿真开题报告

2010届本科生毕业设计(论文) 开题报告 课题名称基于matlab的几种信道编码仿真专业电子信息工程 专业方向电子工程 班级 学号 学生姓名 指导教师 教研室

基于matlab的几种信道编码仿真 1开题依据 移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是进几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素, 3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。本文将主要关注在几代移动通信系统中所使用的不同的纠错编码技术,以展示纠错编码在现代数字通信中的重要作用。 2文献综述 1948年,香农(Shannon)在他那篇著名的论文《通信的数学理论》中提出并证明了:对于一个信道容量为C的有扰信道,消息源产生信息的速率为R,只要R≤C,则总可以找到一种信道编码和译码方式使编码错误概率P随着码长n的增加,按指数下降到任意小的值,表示为,这里E( R )称为误差指数;若R>C,则不存在编译码方式来实现无误传输。这一结论为信道编码指出了方向,但它仅是一个存在性定理,并未给出怎样去寻找这种性能优良的码。近50年来,在信

风力发电机组主控制系统

密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。 图0-1-1

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机偏航系统控制

题目:风力发电机偏航系统控制 风力发电机偏航系统控制 摘要 本文介绍了风力机的偏航控制机构、驱动机构的基础上,采用PLC作为主控单元,设计了风电机组的偏航控制系统。系统根据风向、风速传感器采集的数据,采取逻辑控制主动对风,实现了对风过程可控。论文给出了基于风向标、风速仪的偏航控制系统的软硬件设计结果。 关键词:

Wind turbine yaw control system Abstract In this paper, the wind turbine yaw control mechanism, drive mechanism, based on the use of single-chip PLC as the main control unit, designed for wind turbine yaw control system. Systems based on wind direction, wind speed data collected by sensors, logic control to take the initiative on the wind, to achieve controllability of the wind process. Papers are given based on the wind direction, wind speed sensor yaw control system hardware and software design. Key words:Wind turbine ;Yaw control system;

风力发电机变桨系统

风力发电机变桨系统 摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电偏航系统

风力发电偏航系统 ―科学技术是第一生产力‖,随着社会的发展,前国家领导人邓小平同志说的这句话已得到了足够彻底的肯定! 正当人们迈向21世纪时,科学技术的长足进步,促使世界各地各类产业都进入了结构调整时期。结构调整与重组已使那些最传统、最垄断的产业也发生了人们难以预想到的变化。社会发展将在大重组、大调整的过程中走向新时代。 从能源、电力产业看,20世纪90年代,世界能源、电力市场发展最迅速的已不再是石油、煤和天然气,太阳能发电、风力发电等可再生能源异军突起。全世界风力发电容量从1990 年的200万KW,发展到1998年的960万KW。因此,在20世纪末,国际一些能源专家预言:新能源、电力方面而言,21世纪将是可再生能源的世纪,能源、电力的开发利用将面临历史的变革。 不可否认,目前能源界存在两种观点:一是新能源仍然微不足道,也不可能满足几十亿人对能源的需求;二是现有的能源技术系统是可靠的、经济的、完全成熟的,全球能源技术和系统不会在短期内发生变化——石油、煤炭、天然气、水力发电、火力发电仍主宰能源事业,不会被代替。今天,社会的可持续发展已成为政治问题,新技术、产业调整以及更为严厉的环境政策,必将推动世界能源和能源经济的变革。20世纪中,电子技术、新材料和生产技术取得了长足进步,并在能源产业得到广泛的应用,各国政府对新能源技术的研究和发展给予了不同于常规能源技术的大力支持,技术、科技的进步将使风能在不久的将来被大规模应用。此外,风力发电有利于环境的保护。人类强烈的意识到对已遭破坏的地球环境必须进行保护,为此,必须对能源、电力的应用进行变革。由于世界上许多国家对火电厂废气废物的排放都有明确的法律规定,使火电厂生产成本大大提高。核能由于造价高和具有危险性,也难以大规模应用。能源发展是一个公共政策问题。1981年在内罗比举行的联合国新能源和的再生能源开发利用大会,强调替代能源和可再生能源可减轻对石油依赖的重要性。等等这些会议,都说明了一点,那就是能源利用和环境问题。 风力发电已经发展了100年,取得了很大的进展,风电技术已经成熟。目前市场分额最大的风电机组主要分两类:一类是变桨距调节型,即运行中改变桨距角获得最佳空气动力性能,其整机重量较轻,但结构复杂一些,机组价格较高;另一类是定桨距失速调节型机组,其轮毂结构简单,叶片固定在轮毂上,当风速超过额定值时,叶片失速使升力下降,将功率调节在额定值以下防止发电机超负荷,缺点是空气动力效率较低,整机重量大。风电技术开发的趋势是重量更轻,结构更具柔性,直接驱动发电机和变转速运行。更大单机容量的机组仍在继续研制。随着风电容量在电力系统中的比例越来越大,对系统的影响日益明显。人们已经开始利用天气预报的技术预测风电场的功率输出,以优化运行调度。 风力发电的基本原理是:风能具有一定的动能,通过风力发电机把风能转化为机械能,拖动发电机发电,经整流器得到稳定的直流电供给直流负荷,通过逆变器输出三相交流电,供给三相负荷,这里蓄电池既有储能作用,又起稳定电压的作用。 并网方式是:采用同步发电机或者异步发电机作为风力发电机与电网并联运行,并网后的电压和频率完全取决于电网。无穷大电网具有很强的牵制能力,也具有巨大的能量吞吐能力。并网后的风力发电机按风力大小自动输出大小不同的电能。这种方式中风力发电机必须具有并网和解列控制,只有当风力发电机电压、频率与电网一致时才能并网,当风力发电机因风速太小而不能输出电能时,就会从电网解列。 风力发电的特点是:可再生的洁净能源;建设周期短;装机规模灵活;可靠性高;造价低;运行维护简单;实际占地面积小;发电方式多样化;单机容量小。 我厂现有装机容量11.2万KW,共132台,单机容量850KW。有西班牙Gamesa和丹麦Vestas制造的两种机型。两种风机的原理和使用基本相同,不同的是,采用的零部件牌号不同。

潮流仿真开题报告

青岛大学 毕业论文(设计)开题报告 院系: 自动化工程学院电气系 专业: 电气工程及其自动化 班级: 电气一班 学生姓名: 祝昆 指导教师: 马力 2012年3月18 日

1.文献综述 1.1 电力系统仿真技术的发展 随着社会对能源需求的增长和发电技术的进步, 现代电力系统发展很快, 大容量发电机组不断涌现, 自动化程度更趋提高, 计算、监视及控制问题日益复杂, 这就需要运行人员具有更强的应变能力和更熟练地操作。新的电气研究也需做各种试验, 但无论从现有技术上还是从供电的可靠性及设备的安全性考虑, 直接在实际的电力系统及厂矿企业变电所中进行操作人员的培训和科学研究, 可能性很小, 因此运行电力系统仿真技术脱离现场对运行人员培训及电气研究成了迫切的需要。 电力系统仿真技术的研究可追塑到50 年代, 最早的电力系统仿真设备可认为是直流计算台, 以后出现支流计算台, 主要用做短路、潮流及稳定计算。真正成为实用技术是从60 年代末70 年代初用于电气培训。美、日、英等国推出了核电、火电仿真系统, 培训运行人员效果良好, 各国纷纷仿效。1975 年美国编制了第一个全复制型培训仿真器国家标准。目前国外电厂培训仿真技术的研制和开发已日趋成熟。 我国清华大学1983 年研制成功了国产200MW 燃煤机组原理型培训系统, 同年又以哈尔滨电厂机组为原理, 研制成功200MW 全复制型培训系统。目前电力部已作出规定, 大型火电机组操作人员应经过仿真培训取得合格证方可录用。部分地区(如重庆) 的厂矿企业变电所值班人员也分批参加仿真培训。现在国内各大电业局几乎都已经或准备购置培训用仿真装置, 成立仿真培训中心。 电力仿真技术在电力系统中的发展和应用与电力发展对仿真的要求、计算机硬件、软件技术发展密切相关, 某些电力仿真装置就象一个缩小的电力系统, 凡是与电力相关部门的技术人员, 通过对仿真技术的学习, 了解及参加仿真培训, 就能迅速地熟悉电力系统, 掌握电力运行操作的一些基本方法。 电力系统是一个大规模、时变的复杂系统,而且在国民经济中有非常重要的作用,电力系统数字仿真技术已成为电力系统研究、规划和设计的重要手段。因此电力系统仿真软件的功能特性对于提高研究、设计的效率和可信性有重要作用。随着现代电力系统网络规模的不断扩大和电网电压等级的不断升高,电力系统规划、运行和控制的复杂性亦日益增加,因此在电力系统的生产和研究中仿真软件的应用越来越广泛。 1.2 PSASP仿真软件简介 《电力系统分析综合程序》(Power System Analysis Software Package,PSASP)是由中国电力科学研究院研发的电力系统分析程序。主要用于电力系统规划设计人员确定经济合理、技术可行的规划设计方案;运行调度人员确定系统运行方式、分析系统事故、寻求反事故措施;科研人员研究新设备、新元件投入系统等新问题以及高等院校用于教学和研究。 基于电网基础数据库、固定模型库以及用户自定义模型库的支持,PSASP可进行电力系统(输电、供电和配电系统)的各种计算分析。包括:稳态分析的潮流计算、网损分析、最优潮流和无功优化、静态安全分析、谐波分析、静态等值等;

风力发电机偏航系统控制

摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。风力发电作为一种可持续发展的新能源,不仅可以节约常规能源,而且减少环境污染,具有较好的经济效益和社会效益,越来越受到各国的重视。 由于风能具有能量密度低、随机性和不稳定性等特点,风力发电机组是复杂多变量非线性不确定系统,因此,控制技术是机组安全高效运行的关键。偏航控制系统成为水平轴风力发电机组控制系统的重要组成部分。风力发电机组的偏航控制系统,主要分为两大类:被动迎风偏航系统和主动迎风系统。前者多用于小型的独立风力发电系统,由尾舵控制,风向改变时,被动对风。后者则多用大型并网型风力发电系统,由位于下风向的风向标发出的信号进行主动对风控制。本文设计是大型风力发电机组根据风速仪、风向标等传感器数据,对风、制动、开闸并确定起动,达到同步转速一段时间后,进行并网操作,开始发电。 本文介绍了风力机的偏航控制机构、驱动机构的基础上,采用PLC作为主控单元,设计了风电机组的偏航控制系统。系统根据风向、风速传感器采集的数据,采取逻辑控制主动对风,实现了对风过程可控。论文给出了基于风向标、风速仪的偏航控制系统的软硬件设计结果。 关键词:风力发电机;风向标;偏航控制系统;驱动机构

目录 第1章绪论 (2) 1.1 课题的背景和意义 (2) 1.2 国内风力发电的发展 (3) 第2章风力发电机组系统组成及功能简介 (5) 2.1 风力机桨叶系统 (5) 2.2 风力机齿轮箱系统 (6) 2.3 发电机系统 (7) 2.4 偏航系统 (8) 2.6 刹车系统 (8) 2.8 控制系统 (8) 第3章偏航控制系统功能和原理 (10) 3.1 偏航控制机构 (10) 3.1.1 风向传感器 (10) 3.1.2 偏航控制器 (12) 3.1.3 解缆传感器 (12) 3.2 偏航驱动机构 (13) 3.2.2 偏航驱动装置 (15) 3.2.3 偏航制动器 (16) 第4章偏航控制系统设计及结果分析 (18) 4.1 偏航系统控制过程分析 (18) 4.1.1 自动偏航 (18) 4.1.2 90度侧风控制 (19) 4.1.3 人工偏航控制 (20) 4.1.4 自动解缆 (20) 4.1.5 阻尼刹车 (21) 4.2 偏航控制系统总体设计结构与思想 (22) 4.3 偏航控制系统设计各组成器件简介、选型及原理 (22) 总结与展望 (23) 参考文献 (24) 致谢 (24)

风力发电系统的控制原理

风力发电系统的控制原理 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。 涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

风力发电偏航控制系统

风力发电偏航控制系统

风力发电偏航控制系统的研究 0 引言 风能是一种清洁能源,在人类实现可持续发展中有着重要作用,由于它的作用大,故此吸引的许多人的开发,风力发电更是受到广大的青睐。其可靠优秀可靠优秀也被更多人认识。 本文主要是对风力偏航控制系统的组成和原理做一个简单的了解,偏航系统主要是由偏航控制机构和偏航驱动机构两大部分组成,控制机构包括风向传感器,偏航控制器,解缆传感器组成,而驱动机构是由偏航轴承,偏航驱动装置,偏航制动器组成。本课题也是在了解了风力发电的一些基本原理的前提下面,进一步对偏航做一个更好的认识,了解简单的控制流程。同样就风力在全世界的快速发展,因此带动了一大批产业的崛起,它对世界经济的上升带来了不可忽视的重大作用。 1 风力发电概况 1.1国外风力发电的发电 根据全国风能理事会发布的全球风电市场装机数据,2011年,全球新增风电装机达到237669MW。这一数据表明全球累计装机实现了21%的年增长,新装数据达到6%。到目前,全球75个过国家有商业运营的风电装机,其中22个国家的装机容量超过1000MW。1996~2011年全球风电发展情况如图1-1和图1-2。

图1-1 1996~2011年全球风电每年新增装机容 量 图1-2 1996~2011年全球风电每年累计装机容量 1.2国内风力发电的发展 风电行业在2011年仍然保持了较快的发展,根据不完全统计,截止到2011年12月末,中国风电累计装机容量达6580.21万千瓦(包括已经并网发电和等待并网发电),分布在31个省、直辖市、自治区和特别行政区。其中,广州和四川在2011年填补了无风电的空白。累计风电装机超过200万千瓦的省级地区有10个,其中内蒙古风电装机容量以1853.63万千瓦位居第一,河北与甘肃分

【开题报告】基于MATLABsimulink的船舶电力系统建模与故障仿真

开题报告 电气工程及其自动化 基于MATLAB/simulink的船舶电力系统建模与故障仿真 一、综述本课题国内外研究动态,说明选题的依据和意义 1、本课题国内外研究动态 船舶电力系统是一个独立的、小型的完整电力系统,主要由电源设备、配电系统和负载组成。船舶电站是船上重要的辅助动力装置,供给辅助机械及全船所需电力。它是船舶电力系统的重要组成部分,是产生连续供应全船电能的设备。船舶电站是由原动机、发电机和附属设备(组合成发电机组)及配电板组成的。最近几年,船舶电站采用电子技术、计算机控制技术,实现船舶电站自动化和船舶电站的全自动控制,实现无人值班机舱。船舶自动化技术正朝着微机监控、全面电气、综合自动化方向发展。船舶电站运行的可靠性、经济性及其自动化程度对保证船舶的安全运营具有极其重要的意义。 国外的某些造船业发达的国家在二十世纪中叶就着手船舶电力系统领域的探索,在船舶电力系统稳态、暂态过程等方面进行了细致的研究。近些年来,挪威挪控公司困.R.co咖l)、英国船商公司(TRANSS)、德国西门子公司(SIEMENS)、-日本三菱公司(MITSUBISHD等大公司开始进行船舶电力系统的建模与分析方面的研究工作。国内针对船舶电力系统的研究起步相对较晚,虽然取得了一定成果,但在理论先进性、系统完整性等方面还存在一定差距,这也在一定程度上导致了目前国产船电设备与世界主要造船国家船电设备存在一定差距、装船率偏低等一系列问题。 目前,国内外最常用的建模软件有四中:分别是:matlab、lingo、Mathematica 和SAS。MATLAB用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。Matlab开发效率高,自带很多数学计算函数,对矩阵支持好。Lingo可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。SAS 是一个模块化、集成

相关文档
最新文档