课件模型预测控制

合集下载

模型预测控制MIMOExamplePPT课件

模型预测控制MIMOExamplePPT课件

Amplitude
0.5
0
0
10
20 0
10
20 0
Time (sec)
第22页/共37页
10
20
动态矩阵控制---例子
• 阶跃响应模型 • S=step(model) ? • S=[S(:,:,1),S(:,:,2),S(:,:,3)] ? • S(k,j,i), 时间k,输出j,输入i
第23页/共37页
• [A,B,C,D]=ssdata(sys);
第27页/共37页
动态矩阵控制---例子
• Now simulate closed-loop MPC in Simulink • Tstop=30; % Simulation time • mpc_miso • 解释:t=10,20时加入可测/不可测系统输入的动态特性
• %% • % We also revised the MPC design • MPCobj.Model.Disturbance=.1; % Model for unmeasured
• % measurement noise of frequency 0.1 Hz. We want to inform the MPC object
• % about this so that state estimates can be improved
• omega=2*pi/10; • MPCobj.Model.Noise=0.5*tf(omega^2,[1 0 omega^2]);
pulatedVariables; • ServoMPC.OutputVariables=OutputVar
第15页/共37页
Se r vo m o to r- 参 数 设 置 对 性 能 作用

模型预测控制课件

模型预测控制课件
• 从基本思想看,预测控制优于PID控制
PPT学习交流
8
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
PPT学习交流
9
第二节 预测控制的基本原理 一.预测模型(内部模型)
• 预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} • 预测模型形式
• 参数模型:如微分方程、差分方程 • 非参数模型:如脉冲响应、阶跃响应
• Adersa(法) : HIECON
• Invensys : Predictive Control Ltd : Connoisseur
• DOT(英) : STAR
PPT学习交流
6
第一节 预测控制的发展
预测控制的特点 • 建模方便,对模型要求不高 • 滚动的优化策略,具有较好的动态控制效果 • 简单实用的反馈校正,有利于提高控制系统的鲁
5
第一节 预测控制的发展
预测控制有关公司及产品
• SetPoint : IDCOM
• DMC
: DMC
• AspenTech : SetPoint Inc : SMC- IDCOM
DMC Corp : DMCplus
• Profimatics: PCT

模型预测控制讲解

模型预测控制讲解
? 系统的线性性
– 则保证了可用线性系统的迭加性等
2019/6/9
第五讲 模型预测控制
16
计算机控制系统理论与应用
5-2 DMC的预测模型(1)
----Coperight by SEC----
t/T 12
计算机控制系统理论与应用
5-1 反馈校正(1)
----Coperight by SEC----
? 每到一个新的采样时刻,都要通过实际 测到的输出信息对基于模型的预测输出 进行修正,然后再进行新的优化。不断 根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利 用了反馈信息,构成闭环优化。
----Coperight by SEC----
2019/6/9
第五讲 模型预测控制
2
计算机控制系统理论与应用
----Coperight by SEC----
模型预测控制的发展背景(1)
? 现代控制理论及应用的发展与特点
– 要求 ? 精确的模型 ? 最优的性能指标 ? 系统的设计方法
– 应用 ? 航天、航空 ? 军事等领域
4
计算机控制系统理论与应用
预测控制的特点(1)
----Coperight by SEC----
? 建模方便,不需要深入了解过程内部机理 ? 非最小化描述的离散卷积和模型,有利于
提高系统的鲁棒性 ? 滚动的优化策略,较好的动态控制效果 ? 不增加理论困难,可推广到有约束条件、
大纯滞后、非最小相位及非线性等过程 ? 是一种计算机优化控制算法
第五讲 模型预测控制
11
计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化) (2)

第三篇(第789章)模型预测控制及其MATLAB实现精品PPT课件

第三篇(第789章)模型预测控制及其MATLAB实现精品PPT课件

一般取
w(k j) a j y(k) (1 a j ) yr ( j 1,2,, n)
其中 为柔化系数 0 1 ;y(k)为系统实测输出 值;yr 为系统的给定值。
i 1
i j1
( j 1,2,, n)
(7-4)
上式右端的后二项即为过去输入对输出n步预估,记为
p 1
y0 (k j) ai u(k j i) a p u(k j p) i j1
将式(3-4)写成矩阵形式
( j 1,2,, n)
(7-5)
yˆ(k 1) a1
yˆ(k
(7-3)
yˆ(k j) ai u(k j i) a p u(k j p) ( j 1,2,, n)
i 1
8
由于只有过去的控制输入是已知的,因此在利用动 态模型作预估时有必要把过去的输入对未来的输出贡 献分离出来,上式可写为
j
p 1
yˆ(k j) ai u(k j i) ai u(k j i) a p u(k j p)
6
7.1.1 预测模型
从被控对象的阶跃响应出发,对象动态特性用一系 列动态系数 a1, a2 ,, ap 即单位阶跃响应在采样时刻的值 来描述,p称为模型时域长度,ap是足够接近稳态值的 系数。
图7-1 单位阶跃响应曲线
7
根据线性系统的比例和叠加性质(系数不变原理),若
在某个时刻k-i(k>=i)输入u(k-i),则 u(k i) 对输出y(k)的
第三篇 模型预测控制 及其MATLAB实现
1
第7章 预测控制理论
❖7.1 动态矩阵控制理论 ❖7.2 广义预测控制理论 ❖7.3 预测控制理论分析
2
模型预测控制(Model Predictive Control:MPC) 是20世纪80年代初开始发展起来的一类新型计算机控 制算法。该算法直接产生于工业过程控制的实际应用, 并在与工业应用的紧密结合中不断完善和成熟。模型 预测控制算法由于采用了多步预测、滚动优化和反馈 校正等控制策略,因而具有控制效果好、鲁棒性强、 对模型精确性要求不高的优点。

第7章 模型预测控制4MIMOExample ppt课件

第7章 模型预测控制4MIMOExample ppt课件
y(t) = Cx(t) + Du(t)
2020/12/27
12
MPC Control of a DC Servomotor模型描述
sys
a=
x1 x2 x3 x4
x1 0 1 0 0
x2 -51.21 -1 2.56 0
x3 0 0 0 1
x4 128 0 -6.401 -10.2
b=
u1
x1 0
备注:下面文件单独键入运行界面 ManipulatedVariables=struct('Min',umin,'Max',umax,'Units','V'); OutputVariables(1)=struct('Min',-Inf,'Max',Inf,'Units','rad'); OutputVariables(2)=struct('Min',Vmin,'Max',Vmax,'Units','Nm'); Weights=struct('Input',uweight,'InputRate',duweight,'Output',yw
2020/12/27
7
动态矩阵控制---参数设置对性能 作用
A single input, V, one measured and fead back to the controller, qL, and one unmeasured, T.
2020/12/27
8
动态矩阵控制---参数设置对性能 作用
eight);

模型预测控制全面讲解..pdf

模型预测控制全面讲解..pdf
有限脉冲响应(Finite Impulse Response,FIR)
hT={h1,h2,…,hN} 可完全描述系统的动态特性
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
h11 h2
有限个采样周期后
lim
j
h
j
0
hN
0 12
t/T N
系统的离散脉冲响应示意图第节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化

模型预测控制 PPT课件

模型预测控制 PPT课件

现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
工业自动化工具的发展(仪表)
年代 1950
1960
工业发展状况
仪表技术
化工、钢铁、纺织、造纸等,规 气动仪表,标准信号:20~100kPa
模较小;电子管时代
采用真空电子管;自动平衡型
记录仪
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA
大型电站;过程工业大型化
仪表控制室;模拟流程图;DDC
反馈校正
y (k+j|k)= ym(k+j|k) +e(k+j|k) e (k+j|k)= y (k|k) - ym (k|k)
反馈校正
2 3 y
u
4
yˆ(k 1) ym (k
e(k 1) yˆ(k
1
k k+1
t/T
1─k时刻的预测输出ym(k)
2─k+1时刻实际输出y (k+1)
3─预测误差e(k+1)
预测模型形式
➢ 参数模型:如微分方程、差分方程、状态方程、 传递函数等
➢ 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去
未来
3
y
4
1u2ຫໍສະໝຸດ k 时刻1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出

预测控制-1ppt课件

预测控制-1ppt课件

26.04.2020
.
5
预测控制的产生背景
❖ 理论背景:
▪ 状态空间理论 ▪ 最优控制理论 ▪ 多变量控制理论 ▪ 应用:航空、机电等 ▪ ……
现代控制理论
(理论体系、方法、指标…..)
❖ 应用背景:
▪ 工业生产规模不断扩大 ▪ 对生产过程要求不断提高:质量、性能、安全…… ▪ 复杂性:非线性、不确定性、时变性、耦合、时滞……
Model Predictive Heuristic Control)
❖ 1980年,Cutler等提出动态矩阵控制(DMC,Dynamic Matrix
Control)
❖ 1982年, Meral等在MPHC基础上进一步提出模型算法控制(MAC ,
Model Algorithm Control)
❖ 1987年,Clarke等提出广义预测控制(GPC,Generalized
控制科学与工程学科研究生学位课程
预测控制
Predictive Control
宋执环 浙江大学控制科学与工程学系
课程主要内容
预测控制概论 相关课程基础 模型算法控制-MAC 动态矩阵控制-DMC 广义预测控制-GPC 基于状态空间模型的预测控制 其它预测控制算法 预测控制研究现状与工业应用
26.04.2020
.
18
预测控制
❖ 经典控制:
▪ 仅利用当前及过去测量值: u(k-1), ……,u(k-m), y(k), y(k-1), ……,y(k-n)
26.04.2020
.
17
滤波、预测与控制
❖ 控制:
▪ 已知信号的过去测量值: u(k-1), ……,u(k-m), y(k), y(k-1), ……,y(k-n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
0 12
t/T
t/T
y u
4.6 6 5 2
3 1.6
0 12
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y 7.6 8.5
6.5
4.6 6 3.8
5
3 2.3 3 2.5 1.5 0.8 0 1 2 34 5 6 u
2 1 u(0) u(1)
y(1) h1u(0) y(2) h2u(0) h1u(1) y(3) h3u(0) h2u(1) y(4) h4u(0) h3u(1) y(5) h5u(0) h4u(1)
内容要点
1 预测控制的发展 2 预测控制的基本原理 3 模型算法控制(MAC) 4 动态矩阵控制(DMC) 5 内部模型控制(IMC) 6 状态反馈预测控制(SFPC)
第一节 预测控制的发展
现代控制理论的发展与特点 特点 状态空间分析法 最优性能指标设计 应用 航天、航空等军事领域 要求 精确的数学模型
N
t/T
y(k) hiu(k i)
i 1
y(t) 0 g()u(t )d
t/T
第三节 模型算法控制(MAC) 一. 预测模型
采用脉冲响应模型对未来时刻输出进行预测
N
ym (k j) hiu(k j i) i 1
P 称为预测时域
j 1, 2, , P
取u(k + i)在i = M - 1后保持不变
滚动优化示意图
k 时刻优化
yr
y
2 1
3
u
k+1 时刻优化
yr
2
1
y
3
u
k k+1
1─参考轨迹yr (虚线) 2─最优预测输出y(实线) 3─最优控制作用u
t/T
第二节 预测控制的基本原理 三.反馈校正(误差校正)
模型失配
实际被控过程存在非线性、时变性、不确定性等原因, 使基于模型的预测不可能准确地与实际被控过程相符
局部优化
不是采用一个不变的全局最优目标,而是采用滚动式的 有限时域优化策略。在每一采样时刻,根据该时刻的优 化性能指标,求解该时刻起有限时段的最优控制率
在线滚动
计算得到的控制作用序列也只有当前值是实际执行的, 在下一个采样时刻又重新求取最优控制率
第二节 预测控制的基本原理 二.滚动优化(在线优化)
第一节 预测控制的发展
预测控制的特点 建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果 简单实用的反馈校正,有利于提高控制系统的
鲁棒性 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制 PID控制:根据过程当前的和过去的输出测量值
第一节 预测控制的发展
工业过程的特点
多变量高维复杂系统难以建立精确的数学模型 工业过程的结构、参数以及环境具有不确定性、
时变性、非线性,最优控制难以实现
预测控制的产生
基于模型的控制,但对模型的要求不高 采用滚动优化策略,以局部优化取代全局最优 利用实测信息反馈校正,增强控制的鲁棒性
第一节 预测控制的发展
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
h1
h2
h2
0
hN hN 1
0
hN
h2
h3
H1
H2
0
hN
hP1 P( N 1)
hM hM 1
hM 1 hM
h1
h1
h2
hP hP1
PM 1
hPM 2
hi
i1
PM
U1(k) u(k N 1) u(k N 2)
u(k
1)
T 1(
N
1)
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
第二节 预测控制的基本原理 三.反馈校正(误差校正)
反馈校正示意图
2
4 3
y
1
u
k
k+1
过去 yd
未来
y(k)
yr(k)
y1
k+P
t/T
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
根据设定值和当前过程输出测量值确定参考轨迹 最广泛使用的参考轨迹为一阶指数变化形式
yr (k j) j y(k) (1 j ) yd j 1, 2, , P
Ts
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
e T
Ts ——采样周期 T ——参考轨迹的时间常数 y(k)——当前时刻过程输出
yd ——设定值
Yr (k) yr (k 1) yr (k 2)
yr
(k
P)
T 1P
第三节 模型算法控制(MAC) 四.最优控制
优化控制的目标函数
min J
YP (k) Yr (k)
2 Q
U 2 (k )
2 R
第二节 预测控制的基本原理 一.预测模型(内部模型)
基于模型的预测示意图
过去
未来
3
y
4
1
u
2
k 时刻
1—控制策略Ⅰ 2—控制策略Ⅱ
3—对应于控制策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
第二节 预测控制的基本原理 二.滚动优化(在线优化)
最优控制
通过使某一性能指标最优化来确定其未来的控制作用的
1978年,Richalet 、Mehra提出了基于脉冲响应的模型预 测启发控制(Model Predictive Heuristic Control , MPHC),后转化为模型算法控制(Model Algorithmic Control,MAC)
1979年,Cutler提出了基于阶跃响应的动态矩阵控制 (Dynamic Matrix Control,DMC)
u(k i) u(k M 1) i M , M 1, , P 1
M 称为控制时域,M < P
第三节 模型算法控制(MAC) 一. 预测模型
未来输出值的P步预测值
N
ym (k j) hiu(k j i) j 1, 2, , M 1 i 1
jM 1
N
ym (k j) hiu(k M 1) hiu(k j i)
有限脉冲响应(Finite Impulse Response,FIR)
hT={h1,h2,…,hN} 可完全描述系统的动态特性
N称为建模时域
系统的渐近稳定性
保证了模型可用有限的脉冲响应描述
系统的线性
保证了可用线性系统的迭加性
第三节 模型算法控制(MAC) 一. 预测模型
y
u
2.3 3 2.5 1.5 0.8
U2(k) u(k) u(k 1)
u(k
M
1)
T 1M
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) jy(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
第二节 预测控制的基本原理 一.预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} 预测模型形式 参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
1973年,DMC应用于美国壳牌石油公司的生产 装置上
1979年,Cutler等在美国化工学会年会上首次介 绍了DMC算法
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第四节 动态矩阵控制(DMC) 一. 预测模型
DMC的预测模型
u(k N 1) h1
u(k N 2)
h2
u(k N M )
u(k N M 1)
u(k M 2) u(k M 3) u(k P N ) hN
第三节 模型算法控制(MAC) 一. 预测模型
Ym (k) H1U1(k) H2U2 (k)
和给定值的偏差来确定当前的控制输入 预测控制:不仅利用当前的和过去的偏差值,
而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小 从基本思想看,预测控制优于PID控制
相关文档
最新文档