数学三大难题
世界近代三大数学难题之一

世界近代三大数学难题之一数学是人类精神发展的重要标志。
在历史上,曾经出现过许多数学难题,这些难题充满了神秘和挑战,一度困扰了各国的数学家。
其中,世界近代三大数学难题之一,作为这一类问题中的代表,让人们耳目一新,感受到数学的魅力和力量。
世界近代三大数学难题之一,即费马大定理,又叫费马最后定理。
这个定理由法国数学家费马在17世纪末提出,该定理表述如下:对于任意大于二的自然数n,关于x、y、z的方程x^n+y^n=z^n没有正整数解。
这个问题之所以成为世界近代三大数学难题之一,是因为它的解答过程引发了顶尖数学家们的长期研究和探究,耗费了无数岁月和精力。
费马最后定理一直是数学家心中的一个难题,直到20世纪才得以解决。
在数学界,证明该定理的人被认为是最伟大的数学家之一。
证明费马最后定理的人是英国数学家安德鲁·怀尔斯(Andrew Wiles),他花了七年的时间证明了这个定理。
怀尔斯证明费马最后定理的过程是令人惊叹的。
他是在1986年开始思考这个问题的,在证明过程中,他运用了许多数学理论,尤其是代数几何和调和分析等数学分支中较为先进的理论,并在1993年终于完成了证明。
怀尔斯证明费马最后定理的过程中,透露出了他在数学研究方面的卓越才华。
他发现了一组复杂的代数变换,将费马最后定理转化为了一个新理论,这个理论可以依赖一些已有的数学理论来进行证明。
尽管他在证明中宝刀未出鞘,但他的谨慎和不断的尝试,使得他最终成功地找到了证明该定理的方法。
费马最后定理的解决彰显了数学的力量和神秘,也为数学研究开辟了新的探索方向。
对于普通人来说,虽然这个定理有些抽象和难以理解,但它背后的思想和精神却值得我们去领悟和尊重。
四色定理

解决历程
1.猜想的诞生 2.问题的提出
3.问题的证明
猜想的诞生
地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来 的。德· 摩尔根Augustus De Morgan180618711852年10月23日致哈密顿的一封信提供了有关四 色定理来源的最原始的记载。四色问题又称四色猜想是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年毕业于伦敦大学的弗南西斯· 格思里来到一家科研单位搞地图 着色工作时,发现了一种有趣的现象“看来每幅地图都可以用四种颜色着色使得有共同边界的 国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟 弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作 没有进展。 1852年10月23日他的弟弟就这个问题的证明请教了他的老师、著名数学家德· 摩尔根。摩尔根 也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密顿爵士请教。汉 密尔顿接到摩尔根的信后对四色问题进行论证。但直到1865年汉密尔顿逝世为止问题也没有能 够解决。
如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立只要
证明不存在一张正规五色地图就足够了。
问题的证明
肯普是用归谬法来证明的。大意是如果有一张正规的五色地图就会存在一张国数最少的“极小正规五色地图”。 如果极小正规五色地图中有一个国家的邻国数少于六个。就会存在一张国数较少的正规地图仍为五色的。这样一 来就不会有极小五色地图的国数也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是
缓慢的进展
当时由大数学家黎曼,康托尔,庞加莱等创立的拓扑学之发展可谓一日千里后来竟然盖过大数学家 高斯宠爱的数论成为雍荣华贵的数学女王。四色问题就是属于拓扑学范畴的一个大问题。拓扑学不 仅引进了全新的研究方式,对数学家来说他也是一场革命。回顾拓扑学的的历史就可以说明为什么 四色问题对于20世纪数学来说是重要的。通俗的说连续变换就是你可以捏,拉一个东西但不能将其 扯破也不能把原先不在一起的两个点黏在一起。比如26个大写英文字母一些拓扑学家就认为可将其 分为3类。
古典难题的挑战——几何三大难题及其解决

古典难题的挑战——几何三大难题及其解决位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。
这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。
这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。
三大难题的提出传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
另外两个著名问题是三等分任意角和化圆为方问题。
用数学语言表达就是:三等分角问题:将任一个给定的角三等分。
倍立方体问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。
化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。
然而,一旦改变了作图的条件,问题则就会变成另外的样子。
比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。
这三大难题在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。
貌似简单其实难从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。
也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。
可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。
其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。
可是谁也想不出解决问题的办法。
三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。
后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。
世界近代三大数学难题之一-哥德巴赫猜想

世界近代三大数学难题之一----哥德巴赫猜想哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
1742年6月,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。
但是对于更大的数目,猜想也应是对的,然而不能作出证明。
欧拉一直到死也没有对此作出证明。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。
随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。
世界近代三大数学难题之一-哥德巴赫猜想(2)

世界近代三大数学难题之一----哥德巴赫猜想哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
1742年6月,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。
但是对于更大的数目,猜想也应是对的,然而不能作出证明。
欧拉一直到死也没有对此作出证明。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。
随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。
世界数学十大未解难题

世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。
在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
三大几何难题-李霞

无限次尺规作图
斐尔科斯基(Fialkowski)
圆锥妙法
奥布里
倍立方问题:
作一个立方体,使它的体积是已知立方体的体积 的两倍;
倍立方体问题
提洛斯问题
关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫 流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修 女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停 止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立 刻动工做了一个新祭坛,使每一棱的长度都是旧祭坛棱长的二倍,但是瘟疫 不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出 了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。大家都 觉得这个说法很对,于是改在神前并摆了与旧祭坛同形状同大小的两 个祭坛,可是瘟疫仍不见消灭。人们困扰地再去问神,这次神回答说:你们 所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是 体积二倍,而形状仍是正方体。居民们恍然大悟,就去找当时大学者柏拉 图(Plato)请教。由柏拉图和他的弟子们热心研究,但不曾得到解决,并 且耗费了后代许多数学家们的脑汁。而由于这一个传说,立方倍积问题也就 被称为提洛斯问题。
画月牙为方
开奥斯的希波克拉底解决了与化圆为方有关的 画月牙为方.
圆内接正多边形逼近圆
诡辩学派安提丰 用圆内接正多边形逼近圆面积的方法来化圆为方。 安提丰认为这个极小的内接正多边形将与圆重合。
他认为:既然我们通常能够做出一个等于任何已 知多边形的正方形,那么事实上我们就能做出 等于一个圆的正方形. 虽然这种推理没有真正解决化圆为方问题, 但安提丰却因此成为古希腊“穷竭法”的始祖.
世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三: 庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口难题"之六:纳维叶-斯托克斯(Navier—Stokes)方程的存在性与光滑性难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton—Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题"之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元.以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人.你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的.然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的.不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学三大难题
古代数学史上有世界三大难题(倍立方体、方圆、三分角)。
近代数学史又有第五公设、费马大定理、任一大偶数表两素之和。
这些都已为前人攻破的攻破,将突破的将突破。现代发达国家的数学家们又在钻研什么呢?21世纪
数学精英们又攻什么呢?
现代数学上的三大难题:
一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18
行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会
有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿
佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有
志者。
三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认
识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类
热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家
讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)
单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。
20棵树植树问题,四色绘地图问题,单色三角形问题通称现代数学三大难题。