水性聚氨酯的制备方法及应用毕业论文
双组分水性聚氨酯漆膜制备实验设计论文

双组分水性聚氨酯漆膜制备实验设计论文双组分水性聚氨酯漆膜制备实验设计论文1实验部分1.1实验目的理解聚氨酯乳液的合成原理,掌握聚氨酯乳液的制备、稳定性评价办法,了解激光粒度仪的原理及测试方法,掌握红外光谱仪的原理及测试方法。
1.2实验药品、仪器1)药品聚己内酯1000(PCL1000,分析纯,天津市科密欧化学试剂有限公司);二羟甲基丙酸(DMPA,分析纯,天津市化学试剂厂);三乙胺(TEA,分析纯,天津市博迪化工有限公司);甲苯二异氰酸酯(TDI,分析纯,广州昊毅化工科技有限公司);丙酮(分析纯,国药集团化学试剂厂);二月桂酸二丁基锡(DBTDL,分析纯,天津市富宇精细化工有限公司);HDI三聚体固化剂(分析纯,烟台万华聚氨酯股份有限公司);N2(99.999)。
2)仪器三口烧瓶、油浴加热锅、机械搅拌装置、循环水真空泵、离心分离机、分析天平、微量注射器(100μL)、移液管(1mL)。
激光粒度仪(MalvernZetasizerNanoS),检测聚氨酯分散体的平均粒径大小及其分布。
红外光谱仪(JASCOFT-IR430),检测聚氨酯漆膜的结构。
1.3实验方法1)水性聚氨酯分散体的合成准确称量PCL10001.0g和一定质量的DMPA(其质量占原料总质量的6),装入带有机械搅拌装置的三口烧瓶中,在N2保护下加热到60℃,体系充分混合、溶解后,按n(NCO)/n(OH)=1.3,用移液管向体系内加入一定质量的TDI,并加入催化剂DBTDL1~2滴,反应时间0.5h;待升温至75℃反应时间4.5h,反应过程中,适时加入丙酮降黏;降温至45℃,用微量注射器加入与DMPA等摩尔的TEA,搅拌30min。
将三口烧瓶置于冰浴中,向体系内加适量水(按不同的固含量设计确定)乳化15min,真空抽除丙酮,制成固含量为25~45的乳液,即聚氨酯分散体。
其合成过程。
2)双组分水性聚氨酯漆膜的制备向聚氨酯分散体中加入占其质量30的HDI三聚体固化剂,加入适量去离子水或溶剂调节乳液黏度,搅拌均匀,即得到双组分水性聚氨酯乳液。
水性聚氨酯的制备与性能

第一章聚氨酯(PU)相关概述1.1聚氨酯简介1.1.1聚氨酯的定义聚氨酯,中文名称聚氨基甲酸酯。
英文名:polyurethane,是主链上含有重复氨基甲酸酯基团(NHCOO)的大分子化合物的统称。
它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。
聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲,脲基甲酸酯等基团。
用途:根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。
可用于制造塑料、橡胶、纤维、硬质和软质泡沫塑料、胶粘剂和涂料等。
制备来源:由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分子化合物。
聚氨基甲酸酯,是分子结构中含有—NHCOO—单元的高分子化合物,该单元由异氰酸基和羟基反应而成,反应式如下:—N=C=O + HOˉ→—NH-COOˉ聚氨酯的发现:20世纪30年代,德国Otto Bayer 首先合成了TPU。
在1950年前后,TPU作为纺织整理剂在欧洲出现,但大多为溶剂型产品用于干式涂层整理。
20世纪60年代,由于人们环保意识的增强和政府环保法规的出台,水系TPU涂层应运而生。
70年代以后,水系PU涂层迅速发展,PU涂层织物已广泛应用。
80年代以来,TPU的研究和应用技术出现了突破性进展。
与国外相比,国内关于PU纺织品整理剂的研究较晚。
1.2 水性聚氨酯的概念水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。
水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点。
聚氨酯树脂的水性化已逐步取代溶剂型,成为聚氨酯工业发展的重要方向。
水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理剂。
1.3 水性聚氨酯的发展历程聚氨酯乳液的开发几乎是同聚氨酯树脂工业化发展同步的。
但早期的研究进程大大地落后于聚氨酯工业的发展。
1943年德国一位化学家斯克拉克(P.Schlack)在乳化剂及保护胶体的存在下,将异氰酸酯在水中乳化,成功地制备出聚氨酯乳液。
!无溶剂法合成高固含量水性聚氨酯

中山大学硕士学位论文无溶剂法合成高固含量水性聚氨酯姓名:周海锋申请学位级别:硕士专业:高分子化学与物理指导教师:卢江20090611第一章前言1.1聚氨酯简述聚氨酯(polyurethane,简称PU)是指主链中含有许多重复的氨基甲酸酯链节(即氨酯键一NH—C0-o_)的高聚物,全称是聚氨基甲酸酯。
一般由多异氰酸酯与多元醇(包括含羟基的低聚物)加聚反应生成,如图1-1。
按多元醇的主链结构分为聚醚型和聚酯型两类。
OCN—Rl-NCO+Ho_R2—oH—P~舻R2_0-co.NH—RI_NH-co_OR_o~图I-I合成聚氨酯的基本反应聚氨酯除含有大量的氨基甲酸酯基外,还可能有酯基、醚基、缩二脲基、脲基甲酸酯基、异氰脲酸酯基,以及油脂的不饱和基团等;既有柔性的链段,又有刚性的链段,在大分子链之间还存在氢键,使它具有优异的性能,如较强的耐磨性,良好的附着力,优良的耐低温、耐油、耐水、耐酸碱及耐化学品性。
由于原材料和配比的变化,其性能可在很宽的范围内改变,可以制得硬、半硬及软的泡沫塑料、塑料、弹性体、弹性纤维、合成皮革、涂料、胶黏剂及防水灌浆材料等产品,在国防、基建、化工防腐、车辆、飞机、木器、电气绝缘等各方面都得到了广泛的应用。
聚氨酯制品的独特性能和广泛应用,促使其消费量直线上升。
据英国IAL咨询公司AngelarAustin报道,2005年世界聚氨酯制品总产量约为1375万t,2000一--2005年年均增长率为6.7%。
预计2010年产量将达1691万t,2005--一2010年年均增长率为4.2%。
[1]聚氨酯按分散介质分为溶剂型聚氨酯和水性聚氨酯两大类。
传统的溶剂型聚氨酯在合成过程中需要使用大量的有机溶剂,致使产品中挥发性有机化合物(voc)含量高,易造成环境污染,危害人体康健[2]。
水性聚氨酯是以水代替变小,但当亲水性基团的含量增加到一定程度后,粒径的变化较小。
另一方面,粒径随着亲水性基团含量的增多而减小势必将增加总的双电层数和粒子的流体体积,增加了微粒之间的总体作用力,从而导致黏度的增大。
水性聚氨酯的制备及改性方法

水性聚氨酯的制备及改性方法1.原料准备:制备水性聚氨酯的主要原料包括聚醚、聚酯、异氰酸酯、链延长剂、分散剂和稳定剂等。
聚醚和聚酯可以通过聚合反应得到,异氰酸酯则可以通过对二异氰酸酯与胺类化合物的反应制备得到。
2.排列反应:将原料按照一定的配方比例加入反应釜中,首先进行排列反应。
排列反应是将异氰酸酯与聚醚或聚酯进行反应,生成预聚体。
在反应过程中,需要添加催化剂来促进反应的进行。
3.中和反应:排列反应后,需要进行中和反应。
在中和反应中,将异氰酸酯和胺类化合物进行反应,生成水性聚氨酯。
中和反应是将异氰酸酯中的异氰基与胺类化合物中的氨基进行化学反应,生成封链所需的尿素键。
中和反应需要在适当的温度下进行,并添加催化剂来加速反应的进行。
4.分散:在中和反应完成后,需要将生成的聚氨酯溶液分散到水中。
可以通过机械剪切、超声波分散等方法将聚氨酯溶液细分散于水中,形成稳定的水性聚氨酯分散体系。
在分散过程中,可以添加适量的分散剂和稳定剂,以提高分散体系的稳定性。
5.改性:(1)添加改性剂:可以向水性聚氨酯中添加改性剂,如增塑剂、助剂等,以调节聚合物的性能。
(2)添加交联剂:可以向水性聚氨酯中添加交联剂,如异氰酸酯交联剂、聚醚二异氰酸酯交联剂等,以提高聚合物的耐磨性和耐化学性。
(3)添加填充剂:可以向水性聚氨酯中添加填充剂,如无机填料、有机填料等,以改善聚合物的机械性能和耐热性能。
(4)进行交联反应:可以通过热固化或紫外固化等方法对水性聚氨酯进行交联反应,以提高聚合物的耐磨性和耐化学性。
6.应用:改性后的水性聚氨酯可用于涂料、胶黏剂、纺织品、皮革等领域。
在涂料领域,水性聚氨酯因其环保性能和优良的耐化学性能,逐渐取代传统的有机溶剂型聚氨酯涂料。
在胶黏剂领域,水性聚氨酯因其良好的粘接性能和耐候性,被广泛应用于胶水、胶带等产品中。
总之,水性聚氨酯的制备和改性方法主要包括原料准备、排列反应、中和反应、分散和改性等步骤。
通过选择合适的原料和改性方法,可以获得具有良好性能的水性聚氨酯产品,满足不同领域的应用需求。
实验二十一 水性聚氨酯的制备

〈Байду номын сангаас〉实验仪器
恒温水浴锅;搅拌器;冷凝管;电热套;玻 璃 塞 及 橡 皮 管 ; FA1004 电 子 天 平 ; PHS-25 型酸度计;NDJ-1型布氏粘度计;电热干燥 箱;物理天平;三口圆底烧瓶250ml;烧杯 50m1;10ml、100ml量筒;玻璃棒。
〈三〉实验原理
水性聚氨酯的合成一般是先让二异氰酸酯与低 聚物二醇或聚酯二醇在加热的情况下本体聚合,形 成预聚体后加扩链剂(二元醇或二元胺)扩链,当 粘度增大到一定程度,搅拌困难时,加入适当的溶剂, 降低粘度,继续反应。可以得到较高分子量的聚氨 酯。最后加水,在机械强制搅拌下乳化。
〈五〉实验步骤
聚酯多元醇升温至120℃,脱水30min,倒入装有温度计、 回流冷凝管和搅拌桨的三口烧瓶中,50℃保温,然后向其 中加入MDI的丙酮溶液反应10~20min,之后加入DMPA的 N-甲基吡咯烷酮溶液扩链,匀速搅拌5~10min,再加入与 前面相同量的MDI的丙酮溶液,匀速搅拌5~10min后加有 机锡催化剂,继续反应50~90min,待达到理论NCO含量时, 加入乙二醇扩链。为保证反应充分进行,反应过程中观察 粘度,发现粘度过大时加入丙酮予以降低。待体系中异氰 酸酯含量少于0.2wt%时,将反应体系降至室温。后加丙酮 溶剂调节体系粘度,再加入三乙胺中和,并强力搅拌半小 时,然后缓慢将一定量的水加入体系中搅拌乳化分散。最 后,减压蒸馏脱去低沸点溶剂(丙酮)即得水性聚氨酯成品。
其制备原理如图所示: (此为预聚体,再经中和、乳化得到最终产品) 阴离子水性聚氨酯的反应原理
〈四〉实验试剂
聚酯多元醇(工业级,烟台华大化学工业有限公 司);MDI(工业级,烟台万华聚氨酯股份有限 公司);乙二醇(分析纯,无锡市苏强化工有限 公司);DMPA(工业级,深圳市金腾龙实业有 限公司);丙酮(分析纯,无锡市苏强化工有限 公司);N-甲基吡咯烷酮(工业级,上海志诚化 工公司);二丁基二月硅酸锡(分析纯,上海试 剂一厂);三乙胺(分析纯,天津市化学试剂三 厂)。
水性聚氨酯合成、改性及应用前景

水性聚氨酯合成、改性及应用前景摘要:随着水性聚氨酯合成与改性工艺的不断进步,水性聚氨酯的应用也得到了极大地提升,反过来由于水性聚氨酯涂料的优异性能以及其极好的应用前景近些年来有关于水性聚氨酯的合成与改性研究也是如火如荼。
本文主要介绍了水性聚氨酯涂料的合成方法,综述了水性聚氨酯的改性方法,包括丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性,并对水性聚氨酯涂料的发展进行了展望。
关键字:水性聚氨酯;合成;改性;丙烯酸酯;有机硅。
水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。
水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点。
水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理剂。
水性聚氨酯虽然具有很多优良的性能,但是仍然有许多不足之处。
如耐水性差、耐溶剂性不良、硬度低、表面光泽差等缺点,由于水性聚氨酯的这些缺点,我们需要对其进行改性,目前常见的改性方法有丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性等,本文将对水性聚氨酯的合成与改性进行阐述。
一、水性聚氨酯的合成水性聚氨酯的制备可采用外乳化法和自乳化法。
目前水性聚氨酯的制备和研究主要以自乳化法为主。
自乳化型水性聚氨酯的常规合成工艺包括溶剂法(丙酮法)、预聚体法、熔融分散法、酮亚胺等。
丙酮法是先制得含端基的高粘度预聚体,加入丙酮、丁酮或四氢呋喃等低沸点、与水互溶、易于回收的溶剂,以降低粘度,增加分散性,同时充当油性基和水性基的媒介。
反应过程可根据情况来确定加入溶剂的量,然后用亲水单体进行扩链,在高速搅拌下加入水中,通过强力剪切作用使之分散于水中,乳化后减压蒸馏回收溶剂,即可制得PU 水分散体系。
反应的整个过程中,关键的是加入丙酮等溶剂以达到降低体系粘度的目的。
由于丙酮对PU 的合成反应表现为惰性,与水可混溶且沸点低,因此在此法中多用丙酮作溶剂,故名“丙酮法”。
水性聚氨酯导电涂层的制备及其性能

第49卷第9期2021年5月广州化工Guangzhou Chemical IndustryVol.49No.9May.2021水性聚氨酯导电涂层的制备及其性能陈剑华雷德华1,叶祖山2,杨妍彳,崔艳艳2(1广州集泰化工股份有限公司,广东广州510000;2广东工业大学材料与能源学院,广东广州510000)摘要:以异佛尔酮二异氤酸酯(IPDI)与聚四氢咲喃二醇(PTMG-1000)为主要原料合成水性聚氨酯乳液并通过红外光谱表征了产物结构。
探究了不同二轻甲基丙酸(DMPA)、无水乙二胺(EDA)和三乙胺(TEA)用量对乳液粒径的影响。
以制得的水性聚氨酯乳液为基质,炭黑为导电填料,制备得到导电性能优异的水性导电涂层。
探究了炭黑的用量对导电涂层方阻的影响,当炭黑用量为10wt%时,导电涂层方阻约为9480,并且在撕拉以及弯曲过程中,涂层的电导率基本不变。
关键词:导电涂层;水性聚氨酯;导电填料中图分类号:0631.5文献标志码:B文章编号:1001-9677(2021)09-0060-05 Preparation and Properties of Waterborne Polyurethane Conductive CoatingsCHEN Jian-hua1,LEI De-hua l,YE Zu-Shan',YANG Yan',CUI Yan—yan^(1Guangzhou Jointas Chemical Co.,Ltd.,Guangdong Guangzhou510000;2School of Material and Energy Engineering,Guangdong University of Technology,Guangdong Guangzhou510000,China)Abstract:The water-based polyurethane emulsion was synthesized by isophorone diisocyanate(IPDI)and polytetrahydrofuran glycol(PTMG-1000),and the structure of the product was characterized by infrared spectroscopy. The influence of different amounts of dimethylolpropionic acid(DMPA),anhydrous ethylenediamine(EDA)and triethylamine(TEA)on the particle size of the emulsion was ing the prepared water-based polyurethane emulsion as a matrix and carbon black as a conductive filler,a water-based conductive coating with excellent electrical conductivity was prepared.The influence of the amount of carbon black on the square resistance of the conductive coating was explored.When the amount of carbon black was10wt%,the square resistance of the conductive coating was about 948Q,and the conductivity of the coating during the tearing and bending process Basically unchanged.Key words:conductive coating;waterborne polyurethane;conductive filler随着科技日益发展,电子化的产品越来越多的出现在大众的视野里,而聚合物材料的广泛使用,推动着它拥有更多的性能,比如导电性。
有机硅改性水性聚氨酯的研究

有机硅改性水性聚氨酯的研究一、本文概述随着环保理念的深入人心和科学技术的不断进步,水性聚氨酯作为一种环境友好型高分子材料,在涂料、胶粘剂、皮革涂饰剂、纸张处理剂、纤维处理剂以及高分子膜等多个领域得到了广泛应用。
然而,传统的水性聚氨酯在某些性能上仍存在一定不足,如耐水性、耐溶剂性、耐候性等方面的性能有待提升。
因此,通过改性提高水性聚氨酯的性能成为了研究的热点。
有机硅材料以其独特的结构和性能,如良好的耐水性、耐候性、耐化学腐蚀性等,成为了改性水性聚氨酯的理想选择。
有机硅改性水性聚氨酯不仅继承了水性聚氨酯的环保性,还大幅提升了其耐水、耐候等性能,拓宽了其应用领域。
本文旨在深入研究有机硅改性水性聚氨酯的制备工艺、性能表征及应用性能,探讨有机硅改性对水性聚氨酯性能的影响机理。
通过系统的实验研究和理论分析,为有机硅改性水性聚氨酯的工业化生产和应用提供理论支持和技术指导。
本文也期望通过这一研究,为推动水性聚氨酯材料的发展和应用做出一定的贡献。
二、有机硅改性水性聚氨酯的制备方法有机硅改性水性聚氨酯的制备主要涉及到有机硅化合物的引入和水性聚氨酯的合成两个主要步骤。
以下将详细介绍这一制备过程。
需要选择适合的有机硅化合物进行改性。
常见的有机硅化合物包括硅烷偶联剂、聚硅氧烷等。
这些化合物具有良好的耐水、耐候和耐化学腐蚀性能,能够有效提高水性聚氨酯的性能。
在选择有机硅化合物后,需要进行适当的处理,如水解、醇解等,以使其能够更好地与水性聚氨酯反应。
水性聚氨酯的合成通常采用预聚体法。
将异氰酸酯与多元醇进行预聚反应,生成预聚体。
然后,在预聚体中加入扩链剂、催化剂、水等,进行链扩展和乳化,最终得到水性聚氨酯乳液。
在合成水性聚氨酯的过程中,将处理后的有机硅化合物引入反应体系。
有机硅化合物可以与预聚体中的异氰酸酯基团发生反应,形成硅氧键,从而将有机硅链段引入水性聚氨酯分子链中。
通过控制有机硅化合物的加入量和反应条件,可以实现对水性聚氨酯性能的调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD版本 . 水性聚氨酯的制备方法及应用毕业论文
目录 摘要 ·········································································· I Abstract ····································································· II
第一章 绪论 ··································································· 1 1.1 概述 ·································································· 1 1.2 国外概况 ······························································ 1 1.3 水性聚氨酯的分类 ······················································ 2 1.4 水性聚氨酯的制备方法 ·················································· 2 1.4.1 外乳化法 ························································· 2 1.4.2 自乳化法 ························································· 2 1.4.2.1 丙酮法 ····················································· 3 1.4.2.2 预聚体分散法 ··············································· 3 1.4.2.3 熔体分散缩合法 ············································· 3 1.4.2.4 酮亚胺—酮连氮法 ··········································· 3 1.4.2.5 封端-NCO基团法 ············································· 4 1.5 水性聚氨酯的改性 ······················································ 4 1.5.1 物理共混 ························································· 4 1.5.2 化学接枝共聚 ····················································· 4 1.5.2.1 环氧树脂改性 ··············································· 5 1.5.2.2 丙烯酸酯(PA)改性 ········································· 5 1.5.2.3 聚硅氧烷改性 ··············································· 6 1.5.2.4 蓖麻油改性 ················································· 6 1.5.2.5 其他改性方法 ··············································· 7 1.6 制备环氧树脂—丙烯酸酯改性水性聚氨酯乳液的物料 ························ 7 1.6.1 多异氰酸酯 ······················································· 7 1.6.2 多元醇 ··························································· 7 WORD版本 .
1.6.3 催化剂 ··························································· 7 1.6.4 亲水性扩链剂 ····················································· 7 1.6.5 交联剂 ··························································· 8 1.6.6 成盐剂 ··························································· 8 1.6.7 扩链剂 ··························································· 8 1.6.8 溶剂 ····························································· 8 1.6.9 水 ······························································· 8 1.6.10 改性剂 ·························································· 9 1.6.10.1 环氧树脂 ·················································· 9 1.6.10.2 乙烯基单体 ················································ 9 1.6.11 引发剂 ·························································· 9 1.7 水性聚氨酯涂料的应用 ·················································· 9 1.8 本课题的研究意义 ····················································· 10 第二章 实验部分 ······························································ 11 2.1 实验原料 ····························································· 11 2.2 实验设备、仪器及其他材料 ············································· 12 2.3 实验装置图 ··························································· 14 2.4 环氧树脂—丙烯酸酯改性水性聚氨酯乳液的制备 ··························· 14 2.5 反应原理 ····························································· 14 2.5.1 水性聚氨酯的合成原理 ············································ 14 2.5.2 环氧树脂改性原理 ················································ 16 2.5.3 丙烯酸酯改性原理 ················································ 16 2.5.3.1 链引发 ···················································· 16 2.5.3.2 链增长 ···················································· 16 2.5.3.3 链终止 ···················································· 16 2.5.3.4 链转移 ···················································· 17 2.6 分析测试 ····························································· 17 2.6.1 异氰酸根基团的测定 ·············································· 17 2.6.1.1 2 mol/L 二正丁胺溶液的配制 ······························· 17 2.6.1.2 0.5 mol/L 盐酸标准溶液的配制 ····························· 17 2.6.1.3 测定步骤 ·················································· 17 2.6.1.4 测定原理 ·················································· 17 2.6.1.5 计算公式 ·················································· 17 2.6.2 酸值的测定 ······················································ 18 2.6.2.1 测定试剂的配制 ············································ 18 2.6.2.2 测定步骤 ·················································· 18