八年级数学上册第2课时 等腰三角形的判定 (2)
2022秋八年级数学上册第13章全等三角形13.3等腰三角形13.3.2等腰三角形的判定习题课件新版

C.5 条
D.6 条
4. 如图,在△ ABC 中,AB=AC,CD 平分∠ACB
交 AB 于点 D,过点 A 作 AE∥CD 交 BC 的延长线于点 E,
若∠BAC=36°,则图中等腰三角形的个数是( D )
A.2 个
B.3 个
C.4 个
D.5 个
第 4 题图
5. 如图,在△ ABC 中,∠B=∠C=40°,D、E 是 BC 上两点,且∠ADE=∠AED=80°,判断并写出图中 所有的等腰三角形 △ ABC、)
A.2 个
B.3 个
C.4 个
D.5 个
第 2 题图
3. (2017·海南)已知△ ABC 的三边长分别为 4,4,6,
在△ ABC 所在平面内画一条直线,将△ ABC 分割成两个
三角形,使其中的一个是等腰三角形,则这样的直线最
多可画( B )
A.3 条
B.4 条
知识点 等腰三角形的判定 1. 下列条件中不能说明三角形是等腰三角形的是 (D) A.有两个内角是 85°与 10°的三角形 B.有一个角为 45°的直角三角形 C.有外角为 130°,与它不相邻的一个内角为 50° 的三角形 D.有两个内角为 65°与 55°的三角形
2. 如图,在△ ABC 中,AB=AC,∠A=36°,BD、
第 5 题图
6. 如图,D 是 AB 边上的中点,将△ ABC 沿过 D 的 直线折叠,使点 A 落在 BC 上 F 处,若∠B=50°,则∠BDF = 80 度.
第 6 题图
7.如图,在△ ABC 中,AB=4,BC=6,∠B=60°, 将△ ABC 沿射线 BC 的方向平移 2 个单位后,得到 △ A′B′C′,连结 A′C,则△ A′B′C 的周长为 12 .
2019人教版八年级数学上册第十三章133《等腰三角形》讲义第11讲(有答案)语文

第11讲等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).1、定义:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
2、性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
(3)常用辅助线:①三线合一;②过中点做平行线考点1、等腰三角形性质例1、一个等腰三角形的一个内角是40°,则它的顶角是()A.40°B.50°C.60°D.40°,100°例2、在钝角三角形ABC中,AB=AC,点D是BC上一点,AD把△ABC分成两个等腰三角形,则∠BAC的度数为().A.150° B.124°C.120° D.108°例3、如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF =DE,则∠E=______度.(例2)(例3)例4、已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为。
例5、在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=______°.例6、已知一个等腰三角形的周长为18cm。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?例7、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.1、对“等角对等边”这句话的理解,正确的是()A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的2、等腰三角形的两内角度数之比是1∶2,则顶角的度数是()A.90°B.45° C.36° D.90°或36°3、△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个 B.2个 C.3个 D.4个4、如图,在△ABC中,∠B=∠C,D在BC上,∠ADE=∠AED,且∠BAD=60°,则∠EDC= 度.5、如图所示,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD折过来,点C落在C′处,如果BC′=5,则BC=______.6、如图,在△ABC中,AB=AC,∠BAC与∠ACB的平分线相交于点D,若∠ADC=130°,则∠BAC=_____度.(4)(5)(6)7、如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.8、如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=1∠A.29、如图.在△ABC中,AB=AC,F为AC上一点,FD⊥BC于D,DE⊥AB于E,∠AFD=145°,求∠A和∠EDF的值.考点2、等腰三角形的判定例1、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为10例2、如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()例3、如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为______.例4、如图,P是∠AOB的角平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA于点C,(例3)(例4)例5、如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件______可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.例6、如图AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,交AB于E.①求∠DBC的度数.②猜想△BDC的形状并证明.例7、如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF。
八年级数学 第15章 轴对称图形与等腰三角形 15.3 等腰三角形 第2课时 等腰三角形的判定作业

12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
12/24/2021
制作人:罗小秀
制作时间2021年12月24日下午14:时14分
等腰三角形的性质2

《等腰三角形的性质》说课稿一、教材分析1、教学内容:《等腰三角形的性质》是人教版《义务教育课程标准实验教科书·数学》八年级上册第十二章第三节《等腰三角形》的内容,遵照大纲要求,本节分4课时:等腰三角形的性质1课时,等腰三角形的判定1课时,等边三角形2课时.今天我就第1课时也就是“等腰三角形的性质”进行说课.2、地位与作用:学生在小学已经接触过等腰三角形,对于等腰三角形并不陌生.本节内容是在学生学习了全等三角形和轴对称的基础上进行的,是对前面所学知识的综合运用和深化,也是第三课时研究等边三角形的基础,是全章的重点之一.它将是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,还是以后学习四边形、多边形、相似三角形的基础,所以本节课具有承上启下的重要作用.等腰三角形的性质在日常生活中应用广泛,使学生感知数学来源于实践,又为实践服务的辨证唯物主义思想,培养学生的应用意识.3、教学重点与难点:重点:等腰三角形的性质和应用.难点:等腰三角形的性质的验证.二、目标分析知识目标:掌握等腰三角形的性质,并能运用性质进行证明和计算.能力目标:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力.提高运用知识和技能解决问题的能力,发展应用意识.情感目标:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.三、学情、学法分析八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识.因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等教学活动中,掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学.《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来.由于学生认知水平,学习能力以及学几何的兴趣等方面存在差异,所以探讨活动的效果也会因人而异.因此在教学中,教师全程参与,及时指导学生的各项活动,让学生通过折、想、议、练等活动,自己“发现”等腰三角形的性质,从而避免了传统教学中的灌输式、注入式,这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”的思想.把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的创造性思维和理性思维.四、教法分析《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题设疑—实验探究—构建模型—证明解决—感悟收获”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心.在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用学具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养,让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励,培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育.采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率.五、教学安排根据以上分析,本节课在教学过程中设计了以下五个环节:六、教学过程设计《等腰三角形的性质》(第1课时)教学设计教学过程设计七、板书设计八、教学反思与感悟现代数学教学观念要求学生从“学会”向“会学”转变.所以本节课在教学方法的设计上,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性开,步步深入,真正实现学生为主体的教学宗旨.在教学设计中还突出了三个注重:1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;2、注重师生间、学生间的互动协作,共同提高;3、注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用.感悟新课程理念下的课堂,应是学生个性发展、合作交流、相互竞争且充满创造性、探索性与激励性的课堂.在这块三尺讲台上,教师已不再是单纯的“传道、授业、解惑”,他更肩负着为祖国培养高素质人才的重任.在这一要求下,新一代的教师,更应加强自身素质,把握好自己的课堂和角色.让课堂成为学生了解、感悟知识,展示收获的天地.。
八年级数学上册 等腰三角形的性质教案 人教新课标版 教案

《等腰三角形的性质》[教学目标]1.使学生通过本节课的学习,初步掌握等腰三角形的性质定理及推论,掌握等腰三角形常用辅助线的作法。
2.运用现代化的教学手段,发展学生的思维能力、动手操作能力和数学语言表达(包括口头和书面)能力。
3.增强学生学数学、用数学的意识,培养学生的探索意识和创新意识。
[点评:数学教学目标主要包括三方面的内容:①“双基”的内容(包括数学思想和方法)及要求;②数学能力的培养;③良好的个性品质和正确的思想观点的培养。
这三方面体现了数学的技术教育功能和文化教育功能。
素质教育的重点是培养学生的创新精神和实践能力,将素质教育的重点落实在教学目标中,是教师对数学教育有深入理解的体现。
][教材简析]本节课是人教版四年制初三几何课的起始课,是在学生学习了三角形基本边、角关系,掌握了全等三角形的性质与判定以及尺规作图基本方法的基础上,进一步学习特殊三角形性质的第一课时。
本节课的主要内容包括:“第三章三角形(二)”的导入,等腰三角形性质定理的两个推论,例题1。
等腰三角形的两底角相等的性质学生在小学学习过,但知其然不难,知其所以然则有一定的困难。
等腰三角形“三线合一”的性质在几何第一册中多处有渗透,本节课关键在于会添加辅助线。
等腰三角形的两底角相等的性质是今后论证两个角相等的依据之一,“三线合一”的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,也是下一步学习线段垂直平分线性质的预备知识。
因此,本节课内容在教材中处于非常重要的地位。
本节课是等腰三角形的性质3课时中的第一课时,课堂练习不能超过大多数学生的接受能力。
[点评:教师能根据教材的前后联系设计教学,灵活地把握教材,从一个侧面反映了教师的数学教学功底。
] [教学过程](一)导入新课1.引言师:我们置身于美丽的海滨城市威海。
威海素以蓝天、碧海、红瓦、白墙的优美景色闻名于全国。
请大家看屏幕(电脑显示一幢建筑物图片)。
图片上是坐落于威海海水浴场的一幢漂亮建筑物,同学们从图片上能观察到哪些几何图形呢?(生讨论,即兴发言)师:非常好。
华师大版数学八年级上册 13 3 2 等腰三角形的判定 教案

13.3.2等腰三角形的判定教学目标:知识与技能:通过动手操作,探索并掌握识别一个三角形是等腰三角形的方法过程与方法:理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的识别方法去解决问题情感、态度与价值观:提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。
重点:理解并掌握识别等腰三角形的方法难点:对边角关系互相转化的理解与运用教学过程:一、巩固旧知:1、等腰三角形是怎样定义的?2. 等腰三角形有哪些性质?(让学生通过复习等腰三角形的性质,为学习新知识作铺垫.)二、导入新课:我们知道,由等腰三角形的性质可知等腰三角形的两个底角相等;反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?三、探索新知:等腰三角形的判定方法依据等腰三角形的定义两边相等---等腰三角形还有没有其它的方法做一做1、在草稿纸上画一条线段BC。
2、分别以B、C为顶点,以BC为一边,在BC的同侧用量角器画两个相等的锐角,两角的另一边交于点A。
此时△ABC中,保证了什么条件成立?量一量,比较AB和AC长度的大小,你发现了什么?如果一个三角形中有两个角相等,那么这个三角形就是等腰三角形.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
已知:如图,在ΔABC中,∠B=∠C。
求证:AB=AC等腰三角形的判定定理2:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
课堂练习在△ABC中,已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么?答: △ABC是等腰三角形。
如图,AC和BD相交于点O,且AB∥DC,OA=OB。
求证:OC=OD。
课堂小结:谈谈你有什么收获?(让学生自己谈本结收获,进一步巩固本节知识点).布置作业:教材P84习题13.3第5、6题。
八年级数学上册第十三章轴对称1等腰三角形13.等腰三角形第2课时等腰三角形的判定作业课件新版新人教版
三、解答题(共36分) 14.(10分)【等线段转换】如图,AD是△ABC的角平分线, BE⊥AD交AD的延长线于点E,EF∥AC并交AB于点F.求证:AF=FB. 证明:∵AD平分∠BAC,∴∠BAE=∠CAE. ∵EF∥AC,∠AEF=∠CAE,∴∠BAE=∠AEF,AF=EF. ∵BE⊥AE,∴∠AEB=90°,∴∠AEF+∠BEF=90°, ∠BAE+∠ABE=90°.又∵∠BAE=∠AEF, ∴∠BEF=∠ABE,∴BF=EF,∴AF=BF
解:(2)当DC=2时,△ABD≌△DCE, 理由:∵∠C=40°,∴∠DEC+∠EDC=140°. 又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC, 又∵AB=DC=2,∠B=∠C,∴△ABD≌△DCE(AAS)
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形, 理由:①当∠BDA=110°时,∠ADC=70°. ∵∠C=40°,∴∠DAC=70°,∠EDC=30°, ∠AED=∠C+∠EDC=30°+40°=70°, ∴∠DAC=∠AED,∴△ADE的形状是等腰三角形; ②当∠BDA的度数为80°时, ∵∠C=40°,∴∠DAC=∠BDA-∠C=80°-40°=40°, ∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形
3.(3分)下列条件中,不能判定△ABC是等腰三角形的是( B)
A.a=3,b=3,c=4
B.a∶b∶c=2∶3∶4
C.∠B=50°,∠C=80° D.∠A∶∠B∶∠C=1∶1∶2
4.(3分)如果一个三角形的一内角的平分线垂直对边,
那么这个三角形一定是( A)
A.等腰三角形 B.锐角三角形
C.直角三角形 D.钝角三角形
7.(3分)如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm, 则CD等于( A) A.3 cm B.4 cm C.1.5 cm D.2 cm
冀教版八年级上册数学《等腰三角形》PPT(第1课时)
【跟踪训练】
根据条件判断下列三角形是否为等边三角形.
不 是
(1) 不 一 定 是
(4)
是 (2)
是 (5)
是 (3)
是 (6)
例题讲解
例 如图,在等边三角形ABC中,DE∥BC,分别交AB,AC
于点D,E .
求证:△ADE是等边三角形.
证明:∵ △ABC是等边三角形,
A
∴ ∠A= ∠B= ∠C.
质
底边上的中线、高和顶角 每一边上的中线、高和这一边
的平分线互相重合
所对的角的平分线互相重合
对称轴(1条)
对称轴(3条)
情景导入
如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测 得∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事 地点(不考虑风浪因素)?
A
B
C
D
(2)指出图中有几个等腰三角形?
△ABC, △ABD, △BCD.
B
C
(3)观察∠BDC与∠A、∠ABD的关系,∠ABC、∠C呢?
∠BDC=∠A+∠ABD=2∠A=2∠ABD, ∠ABC=∠BDC=2∠A, ∠C=∠BDC=2∠A. (4)设∠A=x°,请把△ ABC的内角和用含x的 式子表示出来.
7.如图,在△ABC中,AB=AC,AD是BC边上的中 线,BE⊥AC于点E.求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是BC边上的 中线,BE⊥AC, ∴∠CBE+∠C=∠CAD+∠C=90°, ∴∠CBE=∠CAD. 又∵∠CAD=∠BAD, ∴∠CBE=∠BAD.
课堂小结
等腰三 角形的 性质
A
⌒
x
2x B
人教版 八年级数学讲义 等腰三角形“三线合一”的性质 (含解析)
第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。
我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。
因此,我们有必要把这部分内容学得更扎实。
知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。
《等腰三角形的判定》优质课比赛说课课件沪科版八年级
地位作用
教学目标
重点难点
教学学法
教学程序
教学特色
教学方法:
新课程理念强调我们的课程不仅是文本课程,更是体验课程 ,它不再是知识的载体,而是教师和学生共同探究新知的过程;使 教学成为一种对话、交往,一种沟通,合作与共建。教师不仅要传 授知识,更要与学生一起分享对课程的理解。因此,本节课我主要 采用两种教法: 1、引导探索法: 在数学教学中,作为教师应善于引导学生去观察、去分析、去 归纳、去总结,从而培养学生主动求知的探索精神。 2、情景教学法: 数学课程的特点之一是内容抽象,而多媒体在数学教学中的应 用可以较好的解决这个难题。
地位作用
教学目标
重点难点
教学学法
教学程序
教学特色
学生分析:
学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定 的了解和认识。八年级学生在这个阶段逐渐在各方面开始成熟,思 维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问 题和解决问题的思维方式。
学法指导:
本节课按照质疑、猜想、验证的学习过程,遵循学生的认知 规律,让学生感受由实践到理论再到实践的学习过程,也体现了数 学源于生活,而又服务于生活的基本理念。本节课将着力培养学生 的实践探究能力、合作交流和抽象概括能力。
等腰三角形的判定定理:
如果一个三角形有两个角相等 ,那么这个三角形是等腰三角形。
地位作用
பைடு நூலகம்教学目标
重点难点
教学学法
教学程序
教学特色
创设情境 定理教学 范例讲解 反馈练习 总结作业 等腰三角形的性质定理 等边对等角
区 别 与 联 系
等腰三角形的判定定理 等角对等边
等腰三角形性质定理 条件 结论 简称 推理形 式 在一个三角形中,如果有两条边相 等 这两条边所对的两个角相等 在同一个三角形中等边对等角 ∵AB=AC, ∴∠B=∠C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号: 57684289337954225654444158
学校: 杭处市净水镇坝上平小学*
教师: 务讯理*
班级: 翔翔参班*
13.3.1等腰三角形
第2课时 等腰三角形的判定
一、新课导入
1.导入课题:
我们知道如果一个三角形有两条边相等,那么它们所对的角相
等,反过来如果一个三角形有两个角相等,那么它们所对的边是否也
相等呢?这节课我们带着这个问题研究等腰三角形的判定方法.
2.学习目标:
(1)会阐述、推证等腰三角形的判定定理.
(2)会运用判定定理解决证明线段相等的问题.
3.学习重、难点:
重点:等腰三角形判定定理的灵活运用.
难点:探求等腰三角形的判定定理的证明.
二、分层学习
1.自学指导:
(1)自学内容:探究等腰三角形的判定方法.
(2)自学时间:5分钟.
(3)自学方法:经历“操作——猜想——归纳——结论”过程,分清
等腰三角形的判定定理的题设与结论.
(4)探究提纲:
①按等腰三角形的定义,有两边相等的三角形是等腰三角形.
②如图,在△ABC中,∠B=∠C,那么AB与AC相等吗?若相
等,又该如何证明呢?
a.猜想:AB=AC.
b.要证明两条线段相等,按以往的经验是采用什么方法?
证三角形全等.
c.要采用这些方法,图中具备采用这种方法的条件吗?若不具
备,应怎么办?
不具备,作辅助线构造全等三角形.
d.根据思路,并写出你的证明.
证明:作AD⊥BC于点D,则∠ADB=∠ADC=90°.
在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,
AD=AD,∴△ABD≌△ACD(AAS).∴AB=AC.
e.将你上述探究的结论用文字表述出来:
等角对等边.
2.自学:学生结合探究提纲进行自主探究.
3.助学:
(1)师助生:
①明了学情:了解学生对自己的猜想是否正确,证明线段相等的
思路是否合理,结论表述是否清晰、准确.
②差异指导:引导学生回忆证明等量的常用方法是证明三角形全
等,如何构造全等三角形进行点拨引导.
(2)生助生:学生间相互交流帮助,寻求解决问题的思路.
4.强化:
(1)交流学习成果:由学生代表回答自己是如何找出解决问题的
探究方法的.
(2)总结:等腰三角形的判定方法:“等角对等边”.
1.自学指导:
(1)自学内容:教材第78页例2、例3.
(2)自学时间:10分钟.
(3)自学方法:边看边思考例2中命题证明的步骤及例3中每一
步作图的依据,并动手尝试.
(4)自学参考提纲:
①例2中的题设和结论是用文字表述的,它是一个命题,从证明
的全过程来看,证明命题的步骤有a.已知;b.求证;c.证明.
②填上例2证明中每步后面的理由.
两直线平行,同位角相等;两直线平行,内错角相等;等角对等
边.
③阅读例3,思考作法(2)为什么要作AB的垂直平分线?它依据
了线段垂直平分线的什么性质?
可以在上面截取DC=h,依据线段垂直平分线上的点到这条线段
两个端点的距离相等.
2.自学:学生可结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:例2、例3是等腰三角形判定的直接应用,例2的
求证步骤学生难于把握,但学生对例3这种类型的题目,一般的学生
不知道怎样找腰,并不能很好地写出完整的作法.
②差异指导:引导学生学会命题证明题的步骤,引导学生思考例
3中如何找到这个等腰三角形的腰(确定相等的两条边).
(2)生助生:学生间相互交流帮助.
4.强化:
练习:教材第79页3、4题
练习3:已知:△ABC,D为AC的中点,BD=12AC.
求证:∠ABC=90°.
证明:∵D为AC的中点,BD=12AC.∴AD=BD=DC,∴∠A=
∠ABD,∠C=∠DBC.又∵∠A+∠ABC+∠C=∠A+∠ABD+∠C+∠
DBC=2(∠ABD+∠DBC)=2∠ABC=180.∴∠ABC=90°,∴△ABC是
直角三角形.
练习4:∵OA=OB,∴∠A=∠B,又∵AB∥DC,∴∠C=∠A=
∠D=∠B,∴OC=OD.
三、评价
1.学生的自我评价(围绕三维目标):学生交谈自己的学习收获
和学习中的困惑之处.
2.教师对学生的评价:
(1)表现性评价:对学生的学习态度、学习方法、成果和不足进
行点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰
三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂
直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识
时会反复用到这种方法.
一、基础巩固(每题10分,共50分)
1.如图,∠A=36°,∠C=72°,∠DBC=36°,则图中等腰三角形有
(A)个
A.3 B.2 C.1 D.0
2.如图所示,已知OC平分∠AOB,CD∥OB.若OD=3,则CD
等于(A)
A.3cm B.4cm C.1.5cm D.2cm
3.一个三角形不同顶点的三个外角的度数比是3∶3∶2,则这个
三角形是等腰三角形.
4.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过
O的平行线交AB于M,交AC于N.若AB=5,AC=7,BC=8,则△AMN
的周长为12.
第4题图 第5题图
5.如图所示,在△ABC中,已知AB=AC,要使AD=AE,需要添
加的一个条件是BE=CD.(答案不唯一)
二、综合应用(20分)
6.已知:CE、CF分别平分∠ACB和它的外角∠ACM,EF∥BC,
EF交AC于点D,E是CE与AB的交点.求证:DE=DF.
证明:∵CF平分∠ACM,∴∠ACF=∠MCF.
∵CE平分∠ACB,∴∠ACE=∠BCE.
∵EF∥BC,∴∠F=∠MCF=∠ACF,∠FEC=∠BCE=∠ACE,
∴DF=DC,DE=DC,∴DE=DF.
三、拓展延伸(30分)
7.(1)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线
相交于点F,过F作DE∥BC,交AB于点D,交AC于E.问图中
哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图中还有等
腰三角形吗?
解:(1)△ABC,△ADE,△BDF,△CEF,△BCF都是等腰三角形.
(2)有△BDF和△CEF是等腰三角形.
∵BF平分∠ABC,CF平分∠ACB,
∴∠ABF=∠CBF,∠ACF=∠BCF.
又DE∥BC,∴∠DFB=∠CBF=∠ABF,∠EFC=∠BCF=∠ACF,
∴DF=DB,EF=EC.
∴△BDF和△CEF是等腰三角形.