勾股定理的实际运用
勾股定理的实际测量案例分析

勾股定理的实际测量案例分析勾股定理是一种重要的三角形定理,常被应用于测量和实际问题的解决中。
本文将通过分析两个实际测量案例,展示勾股定理在实际中的应用,并探讨其优势和局限性。
案例一:建筑工地测量假设在一座建筑工地上,需要确定两个建筑物之间的距离,但由于其中一个建筑物的高度较大,无法直接进行测量。
在此情况下,可以运用勾股定理进行测量。
首先,选择一个参照点A,同时确定A点到两个建筑物的水平距离,记为AB和AC。
然后,测量参照点A到两个建筑物的垂直高度,分别记为AD和AE。
根据勾股定理可知,两个建筑物之间的直线距离BC等于根号下(BD^2+CD^2)。
通过测量和计算,可以得到建筑物之间的实际距离。
案例二:地理测量在地理测量中,人们经常需要测量山脉、河流等自然地物之间的距离和高度差。
勾股定理在此类问题中同样具有广泛应用。
假设需要测量河流两岸之间的距离,但由于河水的阻碍无法直接测量。
可以运用勾股定理进行测量。
首先,在两岸选择一个参照点A,同时确定A点到两岸的水平距离,记为AB和AC。
然后,测量参照点A到水面的垂直高度,记为AD。
根据勾股定理可知,两岸之间的直线距离BC等于根号下(BD^2+CD^2)。
通过测量和计算,可以得到两岸之间的实际距离。
此外,勾股定理还可以应用于计算山脉的高度差等问题。
在实际测量过程中,勾股定理具有一些优势。
首先,勾股定理简单易懂,计算方法相对简便。
其次,通过合理的测量和计算,可以得到较为准确的结果。
此外,勾股定理能够帮助解决一些无法直接测量的距离问题,通过间接测量得到实际距离。
然而,勾股定理在实际测量中也存在一定的局限性。
首先,勾股定理要求测量者具备一定的测量技能和准确的测量设备。
其次,测量过程中的误差会对最终结果产生一定的影响。
因此,在实际应用中,需要仔细选择测量点,并优化测量方法,以尽可能减小误差。
总结起来,勾股定理在实际测量中起到了重要的作用,并帮助解决了一些无法直接测量的距离问题。
《第2课时 勾股定理的实际应用》教案 (公开课)2022年湘教版数学

第2课时勾股定理的实际应用1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,假设小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理在实际生活中的应用【类型一】勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保存根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC =5米,那么AB=BC2-AC2=12米,6秒后,BC×6=10米,那么AB=BC2-AC2=53米,那么船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km 的B处,以107km/h的速度向南偏东60°的BF方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?假设不会,说明理由;假设会,求出A市受沙尘暴影响的时间.解析:过点A作AC⊥BF于C,然后求出∠ABC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=12 AB,从而判断出A市受沙尘暴影响,设从D 点开始受影响,此时AD=200km,利用勾股定理列式求出CD的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A作AC⊥BF于C,由题意得,∠ABC=90°-60°=30°,∴AC =12AB=12×300=150(km),∵150<200,∴A市受沙尘暴影响,设从D点开始受影响,那么AD=200km.由勾股定理得,CD=AD2-AC2=2002-1502=507(km),∴受影响的距离为2CD=1007km,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的一半〞这一性质,知道方向角如何在图上表示,作辅助线构造直角三角形,再利用勾股定理是解这类题的关键.探究点二:勾股定理在几何图形中的应用【类型一】利用勾股定理解决最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点M,需要爬行的最短距离是多少?解:分三种情况比拟最短距离:如图①(将正面与上面展开)所示,AM=102+〔20+5〕2=529,如图②(将正面与右侧面展开)所示,AM=202+〔10+5〕2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm;如图③(将正面与左侧面展开)所示,AM=〔20+10〕2+52=537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比拟取其最小值即可.【类型二】运用勾股定理与方程解决有关计算问题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C =3,那么AM的长是()A.1.5 B.2解析:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x =2,即AM B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型三】勾股定理与数轴如以下图,数轴上点A所表示的数为a,那么a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5,那么点A所表示的数为5C.方法总结:此题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2〞,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点) 3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t以内(包括10t)的用户,每吨收水费a元;月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的局部,按每吨b元(b>a)收费.设某户居民月用水x t,应收水费y元,y与x之间的函数关系如以下图.(1)求a的值,并求出该户居民上月用水8t应收的水费;(2)求b的值,并写出当x>10时,y与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t时,设其函数表达式为y=ax,由上图可知图象经过点(10,15),从而求得a的值;再将x=8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t多还是比10t少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x≤10时,图象过原点,所以设y=ax.把(10,15)代入,解得ayx(0≤x≤10).当x=8时,y×8=12,即该户居民的水费为12元;(2)当x>10时,设y=bx+m(b≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b+m=15,20b+m=35,解得⎩⎪⎨⎪⎧b=2,m=-5,即超过10t的局部按每吨2元收费,此时函数表达式为y=2x-5(x>10);(3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t多.设居民乙上月用水x t,那么居民甲上月用水(x+4)t.y甲=2(x+4)-5,y乙=2x,得[2(x+4)-5]+(2x-5)=46,解得x t,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x +9(140-x)=1000,解得x=65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x 越小,W越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得a=23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B(214,135),C,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D(498,135).设BC 的解析式为y1=k1x+b1,由题意得⎩⎪⎨⎪⎧135=214k1+b1,0k1+b1,∴⎩⎪⎨⎪⎧k1=-60,b1=450,∴y1=-60x+450,设ED的解析式为y2=k2x+b2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
勾股定理解决航海等实际问题的数学工具

勾股定理解决航海等实际问题的数学工具勾股定理,作为数学中的基本定理之一,不仅仅存在于数学课本中,在现实生活中也有广泛的应用。
特别是在航海等实际问题中,勾股定理起到了非常重要的作用。
本文将探讨勾股定理在航海等实际问题中的运用,以及其在解决实际问题中所具有的意义。
1. 勾股定理的原理和应用勾股定理的原理非常简单,即直角三角形的两条直角边的平方和等于斜边的平方。
这个定理的应用非常广泛,不仅仅局限于数学领域,还包括了物理、工程等多个领域。
在航海中,勾股定理可以用来计算船只的航行距离和方向。
假设船只从A点出发,经过B点最终到达目的地C点。
我们可以通过已知的A、B两点的经纬度坐标,利用勾股定理计算出船只从A点到B点的直线距离。
然后,再通过船只的航向角度,即方向角,计算出从B点到C点的距离。
最后,将两段距离相加,就可以得到整个航程的距离。
2. 航海中的勾股定理运用实例为了更好地理解勾股定理在航海中的运用,接下来举几个实际的例子。
例子一:船只寻找遇难船只的位置假设一艘船只收到求救信号,需要尽快找到遇难船只的位置。
船只利用自身的GPS定位和勾股定理,可以通过已知求救船只的经纬度坐标和船只与求救船只的夹角,计算出求救船只与船只的直线距离。
然后,通过已知的航向角度,即航行方向,计算出直线距离对应的实际航程距离。
最终,船只可以迅速准确地抵达求救船只的位置。
例子二:船只规避障碍物在航海过程中,船只可能会遇到各种障碍物,如礁石、浅滩等。
为了避免与这些障碍物碰撞,船只可以利用勾股定理计算出与障碍物的直线距离。
然后,通过直线距离对应的航向角度,调整船只的航行方向,避免与障碍物发生碰撞。
3. 勾股定理在航海中的意义勾股定理在航海中的应用,能够大大提高航海安全性,减少事故的发生。
通过准确计算航行距离和方向,船只可以更好地规划航程,控制航速,从而确保船只的稳定航行和安全到达目的地。
此外,勾股定理的应用也给船只提供了更加高效和精确的导航手段。
人教版八年级数学下册17.1.2勾股定理在实际生活中的应用优秀教学案例

3.利用多媒体技术为学生提供丰富的学习资源,如动态演示勾股定理的证明过程,增强学生的直观感受。
4.创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,培养学生敢于表达自己的观点。
(二)问题导向
1.引导学生发现生活中的数学问题,激发学生解决问题的内在动力。
2.讲解勾股定理在实际生活中的应用,如测量房屋的高度、计算篮球场的面积等,让学生感受数学与生活的紧密联系。
3.通过几何图形的展示和分析,引导学生理解勾股定理的内在逻辑,提高学生的逻辑思维能力。
4.利用多媒体技术展示勾股定理的证明过程,让学生直观地理解勾股定理的应用原理。
(三)学生小组讨论
1.教师提出具有挑战性的小组讨论题目,如设计一个直角三角形,使其两个直角边的平方和等于斜边的平方。
2.设计具有挑战性的小组合作项目,使学生在合作中解决问题,提高学生的实践操作能力。
3.引导学生进行小组内的互评和自我评价,培养学生具有良好的团队精神和竞争意识。
4.教师在小组合作过程中进行适当的指导,关注学生的个体差异,提高小组合作的效果。
(四)反思与评价
1.教师引导学生对学习过程进行反思,总结自己在解决问题中的优点和不足,提高学生的自我认知能力。
2.通过解决实际问题,让学生感受到数学的乐趣,激发学生的学习积极性和主动性。
3.培养学生勇于探索、善于思考的科学精神,使学生在面对困难时能够坚持不懈、勇于挑战。
4.培养学生具有良好的团队协作意识,使学生在合作中共同进步,提高学生的社会适应能力。
三、教学策略
(一)情景创设
1.利用生活实例导入新课,如测量房屋的高度、计算篮球场的面积等,让学生感受到勾股定理在实际生活中的应用,激发学生的学习兴趣。
勾股定理及其应用

勾股定理及其应用勾股定理是中国古代数学的一大发明,也是数学中最基础、最重要的定理之一。
它描述了直角三角形中三边的关系,被广泛应用于几何学、物理学、工程学等领域。
本文将介绍勾股定理的原理以及它在实际问题中的应用。
一、勾股定理的原理勾股定理可以用数学公式表示为:在直角三角形中,直角边的平方等于两条直角边的平方和。
设直角三角形的两条直角边分别为a和b,斜边为c,根据勾股定理可以得出以下公式:a² + b² = c²这个公式是勾股定理的基本表达式,它是通过对直角三角形的三边进行数学推导得出的。
二、勾股定理的应用1. 解决几何问题勾股定理在几何学中有广泛的应用。
例如,可以通过已知直角边的长度来计算斜边的长度,或者通过已知斜边和一个直角边的长度来计算另一个直角边的长度。
通过勾股定理,我们可以解决诸如直角三角形的边长计算、角度计算等几何问题,对于建筑设计、地理测量等领域都有重要意义。
2. 测量地理距离在地理学中,我们often需要计算地球表面上两点之间的直线距离。
由于地球是球状的,所以实际距离不能直接通过直线距离计算得出。
但是在较小的地理范围内(例如一个城市、一个国家等),可以将地球表面近似为平面,这样就可以使用勾股定理来计算两点之间的近似直线距离。
3. 解决物理问题勾股定理也在物理学中得到了广泛的应用。
例如,在力学中,我们可以通过勾股定理计算一个斜面上物体的重力分量和斜面的角度之间的关系;在光学中,勾股定理可以用来计算光的传输路径和折射角度等。
4. 三角函数的应用勾股定理与三角函数之间存在紧密的关系。
通过勾股定理,我们可以定义正弦、余弦和正切等三角函数。
这些三角函数在科学计算、电子工程、信号处理等领域中有广泛的应用,例如在无线通信中,计算机图形学中,音频信号处理中等。
总结:勾股定理作为数学中的重要定理,不仅仅是理论的产物,更是实践中的有力工具。
它的应用广泛涉及到几何学、物理学、工程学等多个领域。
勾股定理在日常生活中的应用

勾股定理在日常生活中的应用1. 引言:从数学公式到生活点滴哎呀,说到勾股定理,很多人脑子里可能会立马浮现出一堆枯燥的公式和数学课本。
其实,这个定理不仅仅是在黑板上发光发热的公式,它在我们日常生活中可是大有用处的。
今天就让我们一起来看看,勾股定理如何从数学课堂走进我们的生活,成为我们解决实际问题的好帮手。
2. 勾股定理简单讲解2.1 勾股定理是什么勾股定理说的是,直角三角形的三个边之间有个非常简单的关系。
简单来说,就是直角三角形中,最长的那条边(我们叫它斜边)平方等于另外两条边的平方和。
这公式就是:a² + b² = c²。
听上去可能有点晦涩,但其实很简单,想象一下一个直角三角形,你就能明白它的意思。
2.2 为什么它有用勾股定理的厉害之处在于,它可以帮助我们快速算出很多问题的答案,比如你要测量的距离、或者物体的大小等。
如果我们能把它用到实际问题中,就能变得聪明很多哦。
3. 勾股定理在生活中的应用实例3.1 家庭装修中的妙用好比说你在家里重新装修,想在墙上挂个大电视机。
可是,墙上挂架的位置有点难找,电视机的尺寸也需要考虑。
假如你不确定电视机的底边在墙上挂的位置的距离,那就可以用勾股定理来解决。
假设你已经知道电视机的高度和宽度,那就可以用勾股定理来计算电视机从地面到顶部的总高度。
这样,你就能准确地找到最合适的位置,把电视挂得又稳又好看。
3.2 旅行中的导航帮助再比如,你出去旅游,遇到个迷路的情况,找不到从一个景点到另一个景点的最佳路线。
如果你能把这些地点画成一个直角三角形,知道了两点之间的距离,就可以用勾股定理来计算直接走直线的最短距离。
这样,你就能省去不少时间,快快乐乐地享受旅行了。
3.3 体育运动中的应用勾股定理在体育运动中也能派上大用场。
比如你在打篮球时,瞄准篮筐,你可以用它来计算投篮的角度和距离。
比如你站在离篮筐一定距离的位置上,可以用勾股定理计算出你需要向上投篮的角度和力度,这样你就能更准确地投中篮筐。
17.1.2勾股定理在实际生活中的应用(教案)
四、教学流程
(一)导入新课(用时5分钟)ห้องสมุดไป่ตู้
同学们,今天我们将要学习的是《勾股定理在实际生活中的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量距离或计算物体体积的情况?”(如测量房间的对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理在实际生活中的奥秘。
4.培养学生的观察能力、解决问题的能力和合作交流的能力。
具体内容包括以下案例:
1.利用勾股定理测量房屋墙壁的长度;
2.计算不规则立体图形的体积,如斜放的长方体、四棱锥等;
3.分析实际生活中存在的勾股定理问题,如道路宽度、桥梁长度等;
4.探讨勾股定理在建筑设计、地理测量等领域的应用。
二、核心素养目标
1.知识与技能:通过勾股定理在实际生活中的应用,使学生在掌握勾股定理的基础上,提高解决实际问题的能力,培养运用数学知识解决实际问题的素养;
2.过程与方法:培养学生观察、分析、解决问题的能力,学会运用勾股定理进行实际测量和计算,提高数学思维和逻辑推理素养;
3.情感态度与价值观:激发学生对数学学习的兴趣,认识到数学知识在实际生活中的重要性,培养他们用数学眼光看待世界的观念,增强对数学学科的价值认同。
具体包括:
1.能够运用勾股定理解决实际问题,形成数学应用意识;
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的应用步骤和计算方法这两个重点。对于难点部分,我会通过实际案例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
勾股定理的实际测量方法
勾股定理的实际测量方法勾股定理是数学中最为基础也最为重要的定理之一,它在几何学和物理学中有着广泛的应用。
本文将介绍勾股定理的实际测量方法。
一、三角形的边长测量在测量三角形的边长时,我们可以运用勾股定理来计算。
假设三角形的三边分别为a、b和c,其中c为斜边(也就是与直角相对的边),而a和b为两条直角边。
根据勾股定理,我们有c^2 = a^2 + b^2。
对于一个已知的直角三角形,我们可以通过测量两条直角边的长度来求得斜边的长度。
这种方法可以应用于实际测量中,例如在建筑工程中测量房屋的斜边长度,或者在地理测量中测量两地之间的直线距离。
二、角度的测量勾股定理也可以用于角度的测量。
在直角三角形中,我们可以利用a、b和c之间的关系来计算任意角度。
具体方法为,我们可以沿着直角边的一侧找到一个固定点,然后测量与直角边相连的两边的长度。
例如,我们可以将一个直角三角形的一条直角边放在水平地面上,并且找到一个固定点作为参考点。
然后,我们可以利用勾股定理来计算与直角边相连的两边的长度,并由此推导出角度。
这种方法常用于测量地震中的地震位移角度,或者测量建筑物的倾斜角度。
三、应用举例勾股定理的实际应用非常广泛,下面将介绍一些具体的例子。
1. 测量直线距离:假设在地图上我们需要测量两地之间的直线距离,我们可以通过勾股定理来计算。
首先,我们可以在地图上标出两地的位置,并且测量出两地之间的水平距离和垂直距离。
然后,利用勾股定理,我们可以求得两地之间的直线距离。
2. 测量高楼倾角:在建筑工程中,我们经常需要测量高楼的倾角。
通过使用勾股定理,我们可以计算出高楼与地面之间的夹角。
具体方法为,在高楼的底部和顶部测量与地面的距离,然后运用勾股定理求得夹角。
3. 导航系统中的应用:现代导航系统中常常利用勾股定理来计算车辆或飞机的位置。
通过测量车辆与一些已知点之间的距离,并利用勾股定理计算出车辆的位置坐标。
总结:勾股定理作为数学中的基础定理,在实际测量中发挥着重要的作用。
人教版八年级数学下册第17章 勾股定理:勾股定理在实际生活中的应用
随堂即练
解:如右下图, AC=36cm,BC=108÷4=27(cm). 在Rt△ABC中,由勾股定理,得 AB2=AC2+BC2=362+272=2025=452, ∴AB=45cm, ∴整个油纸的长为45×4=180(cm).
课堂总结
用勾股定理解 决实际问题
勾股定理 解决“HL”判定方法
的应用
D.18cm
3.已知点(2,5),(-4,-3),则这两点的距离为___1_0___.
随堂即练
4.如图,有两棵树,一棵高8米,另一棵2米,两棵对 相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢, 问小鸟至少飞行多少? B
C
A
解:如图,过点A作AC⊥BC于点C. 由题意,得AC=8米,BC=8-2=6(米),
数学来源于生活,勾股定理的应用在生活中无处不在, 观看下面视频,你们能理解曾小贤和胡一菲的做法吗?
新课讲解
1 勾股定理的简单实际应用
问题 观看下面同一根长竹竿以三种不同的方式进门
的情况,并结合曾小贤和胡一菲的做法,对于长竹竿进 门之类的问题你有什么启发?
新课讲解
2m
例1 一个门框的尺寸如图所示,一块长3m,宽2.2m的 长方形薄木板能否从门框内通过?为什么?
新课讲解
练一练
如图,是一个边长为1的正方体硬纸盒,现在A处有一
只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂
蚁爬行的最短距离是多少.
B
B
1
A
A
2
解:由题意,得AC =2,BC=1.
C
在Rt△ABC中,由勾股定理,得
AB²= AC²+ BC²=2²+1²=5,
∴AB= 5 ,即最短路程为 .5
八年级数学勾股定理的实际应用专题练习(含解析答案)
八年级数学勾股定理的实际应用专题练习一.选择题(共5小题)1.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15 C.5≤a≤12D.5≤a≤133.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是_________.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是_________,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为_________,请说明理由.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?19.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.20.请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:=_________.路线2:=_________.所以选择路线_________(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)参考答案与试题解析一.选择题(共5小题)1.图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m考点:勾股定理的应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE 是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解答:解:连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选A.点评:此题确定点到半圆的最短距离是难点.熟练运用勾股定理.2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,有一定的难度.3.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时考点:勾股定理的应用;方向角.专题:应用题.分析:首先画图,构造直角三角形,利用勾股定理求出船8时到10时航行的距离,再求速度即可解答.解答:解:如图在Rt△ABC中,∠ABC=90°﹣60°=30°,AB=72海里,故AC=36海里,BC==36海里,艘船航行的速度为36÷2=18海里/时.故选B.点评:本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m考点:勾股定理的应用;垂径定理的应用.分析:本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.解答:解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5﹣3=2m.故选B.点评:考查了勾股定理的应用和垂径定理的应用,圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4考点:勾股定理的应用.分析:根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16﹣12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.故选B.点评:本题考查了矩形中勾股定理的运用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?考点:勾股定理的应用.专题:应用题.分析:(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC 之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.解答:解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.点评:此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)考点:勾股定理的应用.分析:作CD⊥AB交AB延长线于D,根据勾股定理分别计算出AB和BC的长度,利用速度、时间、路程之间的关系求出各自的时间比较大小即可.解答:解:作CD⊥AB交AB延长线于D,由已知得:∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=90°﹣60°=30°,∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴AB=BC=100,在Rt△BDC中,BD=BC=50,∴DC==50,∵AD=AB+BD=150,∴在Rt△ACD中,AC==100,∴t1号==≈4.25,t2号==,∵<4.25,∴搜救中心应派2号艘救助轮才能尽早赶到C处救援.点评:本题考查了勾股定理的运用、等腰三角形的判定和性质以及速度、时间、路程之间的关系.8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?考点:勾股定理的应用.分析:根据题意,知还需要求出BC的长,根据勾股定理即可.解答:解:由勾股定理AB2=BC2+AC2,得BC===2,AC+BC=2+2(米).答:所需地毯的长度为(2+2)米.点评:能够运用数学知识解决生活中的实际问题.熟练运用勾股定理.9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.考点:勾股定理的应用;三角形的面积;含30度角的直角三角形;等腰直角三角形.分析:首先过A作AD⊥CB,根据∠C=45°,可以求出AD=DC,再利用勾股定理求出AD的长,再根据直角三角形的性质求出AB的长,利用勾股定理求出BD的长,最后根据三角形的面积公式可求出△ABC的面积.解答:解:过A作AD⊥CB,∵∠C=45°,∴∠DAC=45°,∴AD=DC,设AD=DC=x,则x2+x2=(12)2,解得:x=12,∵∠B=30°,∴AB=2AD=24,∴BD==12,∴CB=12+12,∴△ABC的面积=CB•AD=72+72.点评:此题主要考查了勾股定理的应用,以及直角三角形的性质,关键是熟练利用直角三角形的性质求出BD、AD的长.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?考点:勾股定理的应用.分析:(1)根据题意可知∠C=90°,AB=2.5m,BC=0.7m,根据勾股定理可求出AC的长度,根据梯子顶端B沿墙下滑0.9m,可求出A1C的长度,梯子的长度不变,根据勾股定理可求出B1C的长度,进而求出BB1的长度.(2)可设点B向外移动的距离的一半为2x,则梯子从顶端A处沿墙AC下滑的距离是x,根据勾股定理建立方程,解方程即可.解答:解:(1)∵AB=2.5m,BC=O.7m,∴AC==2.4m∴A1C=AC﹣AA1=2.4﹣0.9=1.5m,∴B1C==2m,∴BB1=B1C﹣BC=0.5m;(2)梯子从顶端A处沿墙AC下滑的距离是x,则点B向外移动的距离的一半为2x,由勾股定理得:(2.4﹣x)2+(0.7+2x)2=2.52,解得:x=,答:梯子沿墙AC下滑的距离是米.点评:本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解.11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.考点:勾股定理的应用.分析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2,BC=a(米),AC=b(米),AD=x(米),根据两只猴子经过的路程一样可得10+a=x+b=15解方程组可以求x的值,即可计算树高=10+x.解答:解:Rt△ABC中,∠B=90°,设BC=a(米),AC=b(米),AD=x(米)则10+a=x+b=15(米).∴a=5(米),b=15﹣x(米)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得,x=2,即AD=2(米)∴AB=AD+DB=2+10=12(米)答:树高AB为12米.点评:本题考查了勾股定理在实际生活中的应用,本题中找到两只猴子行走路程相等的等量关系,并且正确地运用勾股定理求AD的值是解题的关键.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?考点:勾股定理的应用.分析:地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.解答:解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.点评:正确理解地毯的长度的计算是解题的关键.13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?考点:勾股定理的应用.分析:(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解答:解:(1)在Rt△ABD中,根据勾股定理,得BD===240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD﹣DE=240﹣30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.点评:本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.考点:勾股定理的应用.专题:应用题.分析:根据题中的已知条件可将BB′的长求出,和卡车的高进行比较,若门高低于卡车的高则不能通过否则能通过.解答:解:设BB′与矩形的宽的交点为C,∵AB=1米,AC=0.8米,∠ACB=90°,∴BC===0.6米,∵BB′=BC+CB′=2.3+0.6=2.9<3.0,∴不能通过.点评:考查了勾股定理的应用,本题的关键是建立数学模型,善于观察题目的信息是解题以及学好数学的关键.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为S1+S2=S3,请说明理由.考点:勾股定理的应用.专题:探究型.分析:(1)利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理.(2)利用直角△ABC的边长就可以表示出半圆S1、S2、S3的大小,满足勾股定理.解答:解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2(1)S1+S2=S3,证明如下:∵S3=,S1=,S2=∴S1+S2==S3;(2)S1+S2=S3.证明如下:∵S3=,S1=,S2=∴S1+S2=+==S3;(3)过D点作DE∥AB,交BC于E,设梯形的边AB、DC、AD的长分别为a、b、c,可证EC=AD=c,DE=AB=a,∠EDC=180°﹣(∠DEC+∠BCD)=180°﹣(∠ABC+∠BCD)=90°,则c2=a2+b2∵S1=a2、S2=b2、S3=c2,表示,则S1+S2=S3.故答案为:S1+S2=S3;S1+S2=S3;S1+S2=S3.点评:考查了三角形、正方形、圆的面积的计算以及勾股定理的应用.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?考点:勾股定理的应用.专题:计算题.分析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.解答:解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.。