中考数学重难点专题讲座 第八讲 动态几何与函数问题(含答案)
专题08 动态几何类压轴题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题08 动态几何类压轴题一、单选题1.如图,在ABC 中,90ACB ∠=︒,4AC =,3BC =.线段PE 的两个端点都在AB 上,且1PE =,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,空白部分面积DPEC S 四边形的大小变化的情况是( )A .一直减小B .一直增大C .先增大后减小D .先减小后增大【答案】C【分析】 设PD=x ,AB 边上的高为h ,求出h ,并运用相似三角形的性质求出AD ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,5AB ∴===,设PD x =,则1205x ≤≤,AB 边上的高为h ,125AC BC h AB ==, //PD BC , ADP ACB ∆∆∽∴, ∴PD AD BC AC=, 43AD x ∴=,53PA x = 221415122242333(4)2()23235353210△△APD CBE S S x x x x x x ∴+=+-=-+=-+, ()22233323()()32103210276△△△四边形ABC APD CBE DPEC S x S x S S ∴+-----+=-==, ∵203-<,∴32x≤<时,DPECS四边形随x的增大而增大,31225x<≤时,DPECS四边形随x的增大而减小,故选:C.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.2.如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=6,点D为直线AB上一动点,将线段CD绕点C 逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.5.5B.6C.7.5D.8【答案】C【分析】以BC为边作等边△BCF,连接DF,可证△BCE≌△FCD,可得BE=DF,则DF⊥AB时,DF的长最小,即BE的长最小,即可求解.【详解】如图,以BC为边作等边△BCF,连接DF,∵∠ACB=90°,∠BAC=30°,AB=6,∴∠ABC=60°,BC=3,∵将线段CD绕点C逆时针旋转60°得到线段CE,∴CD=CE,∠DCE=60°,∵△BCF是等边三角形,∴CF=BC=BF=3,∠BCF=∠DCE =60°,∴∠BCE=∠DCF,且BC=CF,DC=CE,∴△BCE≌△FCD(SAS),∴ BE= DF,∴DF ⊥AB 时,DF 的长最小,即BE 的长最小,如图,此时作FD AB '⊥,∵FBD '∠=180°-60°-60°=60°,D F AB '⊥,∴ 1 1.52BD BF '==, ∴7.5AD AB BD '=+=',故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,直角三角形的性质,添加恰当的辅助线构造全等三角形是解题关键.二、解答题3.如图,在等腰直角三角形△ABC ,∠ABC=90°,AB=6,P 是射线AB 上一个动点,连接CP ,以CP 为斜边构造等腰直角△CDP (C 、D 、P 按逆时针方向),M 为CP 的中点,连接AD ,MB .(1)当点P 在线段AB 上运动时,求证:△CDA ∽CMB ;(2)设AP x =,△ADP 的面积为y .①当012x <<时,求y 关于x 的函数表达式;②记D 关于直线AC 的对称点为D ,若D 在△APC 的内部,求y 的取值范围.【答案】(1)见解析;(2)①2134y x x =-+;②189y << 【分析】 (1)根据等腰直角三角形的性质得BCM ACD ∠=∠,CB CM CA CD =,即可证明结论; (2)①分类讨论,当06x <≤时,或当612x <<时,过点D 作DE AB ⊥于点E ,根据(1)的相似三角形,得到AD=AP ,并且用x 表示出长度,即可求出函数表达式;②当点D 在APC △内部时,06x <<,过点P 作PN AC ⊥于点N ,利用面积法表示出PN 的长,得到x 的范围,即可求出y 的范围.【详解】解:(1)∵ABC 和CDP 是等腰直角三角形,∴45ACB DCP ∠=∠=︒,∴ACB ACP DCP ACP ∠-∠=∠-∠,即BCM ACD ∠=∠,∵ABC 和CDP 是等腰直角三角形,∴CB CA ==,CP CD = ∵M 是CP 的中点, ∴12CM CP =,∴21CM CD ==, ∴CB CM CA CD =, ∴CDA CMB ;(2)①∵M 是CP 中点, ∴12BM MC PC ==,若06x <≤,如图,过点D 作DE AB ⊥于点E ,∵AP x =,∴6PB x =-,∴PC = ∵DC DA MC MB=,∴2DC DA DP PC ==== ∵DE AB ⊥,∴12AE EP x ==,∴162DE x ===-, ∴21111632224ADP S AP DE x x x x ⎛⎫=⋅=⋅-=-+ ⎪⎝⎭; 若612x <<,如图,过点D 作DE AB ⊥于点E ,6BP x =-,PC =DC DA DP ====12AE EP x ==,162DE x ===-, ∴21111632224ADP S AP DE x x x x ⎛⎫=⋅=⋅-=-+ ⎪⎝⎭, 综上:2134y x x =-+; ②当点D 在APC △内部时,06x <<,点P 越往右,点D 离AC 越近,当点D 在PC 上时,过点P 作PN AC ⊥于点N ,∴DCA ACP PCB ∠=∠=∠,∴CP 为ACB ∠的角平分线,∴PN PB =,∵1131822ABC APC BPC S S S AC PN BC PB PN =+=⋅+⋅=+=,∴6PN PB ==,∴12AP AB PB =-=-,当126x -<<时,点D 在APC △内部,则根据2134y x x =-+,求出189y <<. 【点睛】本题考查相似三角形的综合题,解题的关键是掌握相似三角形的性质和判定,二次函数的几何运用,利用分类讨论的思想进行求解.4.如图,在平面直角坐标系中,直线3y x =-+与抛物线2y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 在y 轴上,点P 是抛物线上任意一点,过点P 作PQ ⊥y 轴,交直线AB 于点Q ,连接BP ,设点P 的横坐标为m ,△PQB 的边PQ 与PQ 边上的高之差为d .(1)求此抛物线解析式.(2)求点Q 的横坐标(用含m 的代数式表示);(3)∠BQP 为锐角.①求d 关于m 的函数关系式;②当△AOB 的顶点到PQ 的最短距离等于d 时,直接写出m 的值.【答案】(1)2y x 2x 3=-++;(2)22m m -;(3)①d m =-;②m =【分析】 (1)由直线解析式求解出A 、B 的坐标,再代入抛物线解析式求解即可;(2)由于PQ 垂直于y 轴,则P 、Q 的纵坐标相等,因此求出P 的纵坐标,再代入直线解析式求解Q 的横坐标即可;(3)①根据题中对d 的定义,分别求出PQ ,以及PQ 边上的高,再作差即可;②根据△AOB 的顶点到PQ 的最短距离等于d 时建立关于m 的一元二次方程求解,并注意运用条件判断合适的值即可.【详解】(1)由直线3y x =-+可知,A(3,0),B(0,3),将A(3,0),B(0,3)代入2y x bx c =-++得: 9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++;(2)由题可知,P 、Q 的纵坐标相等,∵P 的横坐标为m ,且P 是抛物线上任意一点,∴P 的纵坐标为223y m m =-++,∴Q 的纵坐标为223y m m =-++,又∵Q 在直线上,∴将223y m m =-++代入3y x =-+得: 2233m m x -++=-+,解得:22x m m =-,∴Q 的横坐标为22m m -;(3)①由题意,()B P d PQ y y =--,由(2)可知: 2232Q P m P m m m m Q x x =-==---,()222332B P y m m m y m -+=+--=- ∴()B P d PQ y y m =--=-,∴d m =-;②由题可知:△AOB 为等腰直角三角形,其顶点为O ,则O 到PQ 的距离为223m m -++,当△AOB 的顶点到PQ 的最短距离等于d 时, 223m m m -++=-,解得:32m =, ∵∠BQP 为锐角,∴32m -=. 【点睛】本题考查二次函数与一次函数的综合运用,理解二次函数的性质,仔细分析题中表达的数量关系是解题关键.5.已知一次函数4y x =+的图象与二次函数()2y ax x =-的图象相交于()1,A b -和B ,点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC x ⊥轴,与二次函数()2y ax x =-的图象交于点C .(1)求a 、b 的值;(2)如图1,M 为APC ∠内一点,且1PM =,E ,F 分别为边PA 和PC 上两个动点,求MEF 周长的最小值;(3)若PAC △是直角三角形,求点C 的坐标.【答案】(1)3b =,1a =;(2(3)()2,0C 或()3,3.【分析】∠1∠∠A∠∠∠∠∠∠b∠∠∠∠∠A∠∠∠∠∠∠∠a∠∠∠(2)∠∠∠M∠∠∠∠AB∠PC ∠∠∠∠,M M '''∠∠∠∠ ,,M M PM PM ''''''∠∠∠MEF∠∠∠∠∠∠∠∠ M M '''∠∠∠∠∠∠∠290M PM APC ∠=∠'=''︒∠∠∠ M M ==''='∠3∠∠∠PAC=90°∠∠ACP=90°∠∠∠∠∠∠∠【详解】解:∠1∠∠A 在直线y=x+4∠∠∠b=-1+4=3∠∠A∠∠∠∠∠-1∠3∠∠∠A∠∠∠∠∠y=ax(x -2)∠∠∠3=-a(-1-2)∠∠3=3a∠∠a=1∠∠3b =∠ 1a =∠∠2∠∠∠∠∠∠∠M ∠∠∠∠AB ∠PC ∠∠∠∠'M ∠''M ∠∠∠∠'''M M ∠'PM ∠''PM ∠∠MEF ∠∠∠∠∠∠∠'''M M ∠∠∠∠∠∠∠∠∠∠∠PM PM PM M PA APM MPC CPM ==∠=∠∠=∠'''''',,∠∠290M PM APC ∠=∠'=''︒,∠'''M M ===∠∠3∠∠(),4P m m +∠∠()2,2C m m m -∠ ∠∠∠PAC=90°∠∠222AP AC PC +=∠()()()()2222222112334m m m m m m ++++--=--∠ ∠∠1m =-∠∠∠∠∠2m =∠∠()2,0C ∠∠∠ACP=90°∠∠222AC PC AP +=∠()()()()2222221233421m m m m m m ++--+--=+∠ ∠∠1m =-∠∠∠∠∠3m =∠4m =∠∠∠∠∠∠()3,3C ∠∠∠()2,0C ∠()3,3∠【点睛】 本题考查二次函数与一次函数的综合运用,熟练掌握二次函数的图象与性质、一次函数的图象与性质、轴对称的性质、勾股定理的应用是解题关键.6.如图所示,直线AB 交x 轴于点(),0A a ,交y 轴于点()0,B b ,且a 、b ()240a -=. (1)如图1,若C 的坐标为()1,0-,且AH BC ⊥于点H ,AH 交OB 于点P ,试求点Р的坐标; (2)如图2,连接OH ,求证45OHP ∠=︒;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN DM ⊥交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -△△的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)P 的坐标为()0,1-;(2)见解析;(3)S △BDM -S △ADN 的值不发生改变,等于4【分析】(1)先依据非负数的性质求得a 、b 的值,从而可得到OA=OB ,然后再∠COB=∠POA=90°,∠OAP=∠OBC ,最后,依据ASA 可证明∠OAP ≌△OBC ,得出OP=OC ,从而得出点P 的坐标;(2)过O 分别作OM ⊥CB 于M 点,作ON ⊥HA 于N 点,利用AAS 证明∠COM ≌△PON ,得出OM=ON ,再根据角平分线得到判定即可得出HO 平分∠CHA ,从而求出∠OHP ;(3)连接OD ,易证∠ODM ≌△ADN ,从而有S △ODM =S △ADN ,由此可得S △BDM -S △ADN =S △BDM -S △ODM =S △BOD =12S △AOB . 【详解】解:(1()240a -=∴a+b=0,a -4=0,∴a=4,b=-4,则OA=OB=4.∵AH ⊥BC ,则∠AHC=90°,∠COB=90°,∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC .在∠OAP 和∠OBC 中, 90COB POA OA OB OAP OBC ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△OAP ≌△OBC (AAS );∴OP=OC∵C 的坐标为()1,0-,∴OC=1∴OP=1∴P 的坐标为()0,1-(2)过O 分别作OM ⊥CB 于M 点,作ON ⊥HA 于N 点.在四边形OMHN 中,∠MON=360°-3×90°=90°,∴∠COM=∠PON=90°-∠MOP .在∠COM 和∠PON 中,90COM PON OMC ONP OC OP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△COM ≌△PON (AAS ),∴OM=ON .∵OM ⊥CB ,ON ⊥HA ,∴HO 平分∠CHA ,1452︒∴∠=∠=OHP CHA (2)S △BDM -S △ADN 的值不发生改变,等于4.理由如下:如图:连接OD .∵∠AOB=90°,OA=OB ,D 为AB 的中点,∴OD ⊥AB ,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD .∵MD ⊥ND 即∠MDN=90°,∴∠MDO=∠NDA=90°-∠MDA .在∠ODM 和∠ADN 中,,MDO NDA DOM DAN OD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ODM ≌△ADN (ASA ),∴S △ODM =S △ADN , ∴12S ∆∆∆∆∆∆-=-==BDM ADN BDM ODM BOD AOB S S S S S ∴111144422S 22∆∆-=⨯⋅=⨯⨯⨯=BDM ADN S AO BO 【点睛】本题考查了全等三角形的判定与性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(2)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.7.如图,已知等边ABC 的边长为16,点P 是AB 边上的一个动点(与点A 、B 不重合).直线l 是经过点P 的一条直线,把ABC 沿直线l 折叠,点B 的对应点是点B '.(1)如图1,当8PB =时,若点B '恰好在AC 边上,则AB '的长度为_________;(2)如图2,当10PB =时,若直线//l AC ,则BB '的长度为_______;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,ACB '△的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当12PB =时,在直线l 变化过程中,求ACB '△面积的最大值.【答案】(1)8或0;(2)(3)面积不变,(4)最大为96+【分析】(1)证明△APB′是等边三角形即可解决问题.(2)如图2中,设直线l 交BC 于点E .连接BB′交PE 于O .证明△PEB 是等边三角形,求出OB 即可解决问题.(3)如图3中,结论:面积不变.证明BB′∥AC 即可.(4)如图4中,当B′P ⊥AC 时,△ACB′的面积最大,设直线PB′交AC 于E ,求出B′E 即可解决问题.【详解】解:(1)如图1中,∵ABC 是等边三角形,∴60A ∠=︒,16AB BC CA ===,∵8PB =,∵8PB PB PA ===',∵60A ∠=︒,∴APB '是等边三角形,∴8AB AP '==.当直线l 经过C 时,点B '与A 重合,此时0AB '=,故答案为8或0.(2)如图2中,设直线l 交BC 于点E .连接BB '交PE 于O .∵//PE AC ,∴60BPE A ∠=∠=︒,60BEP C ∠=∠=︒,∴PEB △是等边三角形,∵10PB =,且由于折叠,∴B ,B '关于PE 对称,∴BB PE '⊥,2BB OB '=,∴OP=12PB=5,∴OB =,∴BB '=故答案为(3)如图3中,结论:面积不变.连接BB ′,过点A 作AF ⊥BC ,垂足为F ,∵B ,B '关于直线l 对称,∴BB '⊥直线l ,∵直线l AC ⊥,∴//AC BB ',∴ACB ACB S S '=△△,∵BC=AB=AC=16,∴BF=8,∴=,∴1162ACB ACB S S '==⨯⨯= (4)如图4中,∵点B 和B′关于经过点P 的直线对称,∴B′到点P 的距离与点B 到点P 的距离相等,当B P AC '⊥时,ACB '△的面积最大,设直线PB '交AC 于E ,在Rt APE 中,∵4PA =,60PAE ∠=︒,∴AE=2,∴PE ==∵BP=B′P=12,∴12EB EP B P '=++'=∴(11612962ACB S '=⨯⨯+=+△ 【点睛】本题属于几何变换综合题,考查了等边三角形的性质和判定,轴对称变换,平行线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.8.已知抛物线2122y x x =-与x 轴交于点O 、A 两点,顶点为B .(1)直接写出:A 点坐标________ ,B 点坐标_______ ,△ABO 的形状是_______;(2)如图,直线y x m =+(m<0)交抛物线于E 、F(E 在F 右边),交对称轴于M ,交y 轴于N .若EM -FN=MN ,求m 的值;(3)在(2)的条件下,y 轴上有一动点P ,当∠EPF 最大时,请直接写出此时P 点坐标___________【答案】(1)(4,0),(2,-2),等腰直角三角形;(2)52m =-;(3)(052-) 【分析】(1)令2122y x x =-中y=0,求出A 的坐标,由22112(2)242y x x x =--+=,求出顶点B 坐标,利用勾股定理的逆定理判定△ABO 是等腰直角三角形;(2)过点E 作EG ⊥y 轴于G ,过点F 作FH ⊥y 轴于H ,过点M 作MC ⊥y 轴于C ,设y x m =+(m <0)交x 轴于D ,先求出∠OND=45°,利用锐角三角函数可得FN=sin 45HF ︒,MN=sin 45CM ︒,EN=sin 45EG ︒,联立解析式求出点E 、F 的横坐标,最后根据已知等式即可列出方程,求出m ; (3)作以EF 为弦且与y 轴相切的圆D ,切点为P ,连接EP 、FP ,利用圆周角定理和三角形外角的性质先证此时∠EPF 最大,然后确定点P 的坐标,设点P 的坐标为(0,p ),用含p 的式子表示出DP 和DF ,列出方程即可求出结论.【详解】解:(1)令2122y x x =-中y=0,得21202x x -=, 解得x=0或x=4,∴A (4,0); ∵22112(2)222y x x x =-=--, ∴顶点B 坐标为(2,-2);连接AB 、OB ,∴22416OA ==,()()22224820AB =-+-=-,()()22220820OB =-+-=-,∴222OA AB OB =+,AB=OB ,∴△ABO 是等腰直角三角形,故答案为:(4,0),(2,-2),等腰直角三角形;(2)过点E 作EG ⊥y 轴于G ,过点F 作FH ⊥y 轴于H ,过点M 作MC ⊥y 轴于C ,设y x m =+(m <0)交x 轴于D将x=0代入y x m =+中,解得y=m ;将y=0代入y x m =+中,解得x=-m∴点N 的坐标为(0,m ),点D 的坐标为(-m ,0)∴ON=OD∴△OND 为等腰直角三角形∴∠OND=45°∴FN=sin 45HF ︒,MN=sin 45CM ︒,EN=sin 45EG ︒, ∴EM=EN -)EG CM - ∵抛物线2122y x x =-的对称轴为直线x=2 ∴CM=2 联立2122y x x y x m⎧=-⎪⎨⎪=+⎩消去y ,解得:x 1=3x 2=3+∴点F的横坐标为3-E的横坐标为3+∴HF=3-EG=3+∴3,MN=)321+=∵EM -FN=MN ,1+3-=解得:52m =-, 经检验,52m =-是原方程的解; (3)如下图所示,作以EF 为弦且与y 轴相切的圆D ,切点为P ,连接EP 、FP ,先证此时∠EPF 最大,在y 轴上任取一点P ',连接EP FP ''、,FP '与圆D 交于点C∴∠EPF=∠ECF∵∠ECF是△EP C'的外角∠∴∠ECF>EP C'∴∠EPF>EP F'∠即此时∠EPF最大,然后确定点P的坐标,设点P的坐标为(0,p),如下图所示,连接DP、DF,作EF的中垂线ST,交EF于S,交y轴于T,过点S作SK⊥y轴于K由(2)知52m =- ∴点E 的坐标为(5,52),点F 的坐标为(1,32-) ∴点S 的坐标为(3,12), ∴OK=12,SK=3 由(2)知:∠SNO=45°,∵∠TSN=90°∴∠STK=45°∴△TSK 、△TDP 为等腰直角三角形∴TK=SK=3,TP=DP∴TP=TK +OK -OP=72p - ∴DP=72p -, ∴点D 的坐标为(72p -,p )∴∵DP=DF∴72p -解得:52-或p=52∵∴ES=12EF=SK ∴以EF 为直径的圆与y 轴相离∴点P 必在以EF 为直径的圆的外边∴△EPF 为锐角三角形∴点D 在△EPF 内部,也必在S 的左上方∴点D 的纵坐标大于0,即p >0∴52∴点P 的坐标为(052). 【点睛】此题考查的是二次函数、一次函数和圆的综合大题,掌握二次函数图象及性质、求一次函数解析式、等腰直角三角形的判定及性质、圆周角定理、锐角三角函数是解题关键.9.如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB SDB AC ∴=⋅= 12ADB S AB DH =⋅DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒∴ACD EHD . ∴AC EH CD DH = 即44EH x x EH=--. ∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==∴)44x EB x -==+,AB =∴)44x AE x -=+ ∵EF AD ⊥,90C ∠=︒∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+. 整理得,()2402y x x =-+<≤;(3)在Rt △MDB 中,DB=4-x,所以MD=MB=(4).2x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+ 按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似:①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或--4 (舍去), 如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x -4如图如果∠FDC=∠DAB,由44y x x x-=+结合y=2x -4,整理,得23160.x -=解得或3-(舍去) 如果∠CFD=∠DAB,44x x y x -=+与y=2x -4 整理,得238160.x x -+=此方程无解.综上,CD 的值为-4、8-. 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.10.如图,直线443y x =-+和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是()2,0-.(1)试说明ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,MON △的面积为S . ①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在4S =的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当MON △为直角三角形时,求t 的值.【答案】(1)证明见解析;(2)①22455S t t =-+(02t <<),22455S t t =-(25t <≤);②存在,(t s =;③5s 或25.8s 【分析】 (1)先求解,B C 的坐标,再求解,BC AB 的长度,从而可证明结论;(2)①过点N 作⊥ND x 轴于D ,则4sin 5ND BN OBC t =⋅∠=,分两种情况讨论,当02t <<时,当25t <≤时,分别画出符合题意的图形,再利用三角形的面积公式得到函数解析式即可;②分两种情况讨论,把4S =分别代入②中的两个函数解析式,再解方程即可得到答案;③分三种情况讨论;90∠=︒NMO 或90NOM ∠=︒或90MNO ∠=︒,再利用图形的性质与锐角三角函数可得答案.【详解】解:(1)将0y =代入443y x =-+,得3x =,∴点B 的坐标为3,0;将0x =代入443y x =-+,得4y =, ∴点C 的坐标为()0,4.在Rt OBC 中,∵4OC =,3OB =,∴5BC ==.又()2,0A -,∴5AB =,∴AB BC =,∴ABC 是等腰三角形.(2)∵5AB BC ==,故点M 、N 同时开始运动,同时停止运动.过点N 作⊥ND x 轴于D , 则4sin 5ND BN OBC t =⋅∠=, ①当02t <<时(如图),2OM t =-,∴12S OM ND =⋅ ()14225t t =-⋅ 22455t t =-+. 当25t <≤时(如图),2OM t =-,∴12S OM ND =⋅ ()14225t t =-⋅ 22455t t =-. ②存在4S =的情形.当02t <<时∴ 224455t t -+=, 22100,t t ∴-+=()22411044036∴=--⨯⨯=-=-<0,所以方程无解;当25t <≤时, ∴ 224455t t -=.解得11t =21t =(不合题意,舍去).15t =+<,故当4S =时,(t =秒.③当MN x ⊥轴时,MON △为直角三角形.3cos 5MB BN MBN t =⋅∠=, 又5MB t =-. ∴355t t =-, ∴258t =. 当点M 、N 分别运动到点B 、C 时,MON △为直角三角形,5t =.当90MNO ∠=︒时,不合题意,舍去,故MON △为直角三角形时,258t =秒或5t =秒. 【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,一元二次方程的解法,锐角三角函数的定义,等腰三角形的性质,直角三角形的性质,三角形的面积,分类讨论的思想,掌握分类讨论思想解决问题是解题的关键.11.如图,点O 在线段AB 上,OA =1,OB =3,以点O 为圆心、OA 为半径作∠O ,点M 在上运动.连接MB ,以MB 为腰作等腰Rt∠MBC ,使∠MBC =90°,M ,B ,C 三点按逆时针顺序排列.(1)当点M 在AB 上时,sin∠ACB =________________;(2)当BM 与∠O 相切时,求AM 的长;(3)连接AC ,求AC 长的取值范围.【答案】(1或2;(2)3;(3)46AC ≤≤. 【分析】(1)分当M 在AB 上和点M 和A 重合两种情况解答即可;(2)先证明△BMD ∽△BAM,然后根据相似三角形的性质列式解答即可;(3)如图:以B 为顶点、OB 为边向上方作等腰Rt △OBP ,连接CP ,OM ,有△BOM ≌△BPC (SAS ),PC=OM=1,则点C 在以点P 为圆心、1为半径的圆上,转化为“圆外一点到圆上的最值问题”,作射线AP ,交OP 于C 1、C 2两点,然后求得AC 1和AC 2的长即可解答.【详解】(1)①如图:当M 在AB 上时∵OA=OM=1∴AB=AO+OB=4,BM=OB -OM=2∵MB 为腰作等腰Rt∠MBC∴BC=BM=2=∠sin∠ACB =AB AC ==; ②如图:当M 和点A 重合时,AB=BC=4∴==∠sin∠ACB =AB AC ==综上,sin∠ACB 或2; (2)如图:∵BM 与∠O 相切∴∠BMO=90°==∠AB 是直径∠∠AMD=90°∠∠BMD+∠DMO=90°,∠AMO+∠DMO=90°,∴∠BMD=∠AMO∠OA=OM∠∠OAM=∠AMO∠∠OAM=∠BMD∠∠MBA=∠MBD∠△BMD ∽△BAM∴DM MB AM AB ===设AM=x ,则DM=2x2= ,解得x=3或x=-3(舍);(3)以B 为顶点、OB 为边向上方作等腰Rt △OBP ,连接CP ,OM ,∴△BOM ≌△BPC (SAS )∴PC=OM=1则点C 在以P 为圆心的M 上、1为半径的圆上,即求转化为“圆外一点到圆上的最值问题”,∴5=作射线AP ,交OP 于C 1、C 2两点,则A C 1=AP -P C 1=4, A C 2=AP+P C 2=6,∴46AC ≤≤.【点睛】本题属于几何综合题,考查了圆的性质、全等三角形的判定与性质、相似三角形的判定与性质以及锐角的三角函数,灵活应用所学知识成为解答本题的关键.12.如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与点C 和点A 重合),连接PB ,过点P作PF ⊥PB 交射线DA 于点F ,连接BF .已知AD =CD=3,设CP 的长为x .(1)线段BP 的最小值为________,当1x =时,AF =____________.(2)当动点P 运动到AC 的中点时,AP 与BF 的交点为G ,FP 的中点为H ,求线段GH 的长度. (3)若点P 在射线CA 上运动,点P 在运动的过程中,①试探究∠FBP 是否会发生变化?若不改变,请求出∠FBP 的大小;若改变,请说明理由.②若△AFP 是等腰三角形,直接写出x 的值.【答案】(1)2;(2;(3)①不发生变化,30; ②3或 【分析】(1)当BP 最小时,即BP AC ⊥,根据相似三角形的性质,可求得BP 的值,当x=1时,可得到BPN PMF ,由此可得出tan FBP ∠的值,继而得到AF 的值;(2)先证明BP 垂直平分AP ,得到PF =GH 是Rt FGP △的中线,即可得到GH 的长; (3)①过点P 作PN BC ⊥交AD 于点M ,可证明FMP PNB ,设,2x PC x PN ==,可求得NC 、MP 、BN 的长,tan =3FP MP FBP BP BN ∠==,即可求得∠FBP 的大小; ②分三种情况讨论即:当FA=FP ,AP=AF ,PA=PB 时,分别根据等腰三角形的性质解题.【详解】(1)当BP 最小时,A 与F 重合,即BP AC ⊥, 33AD CD ==6,30AC DAC ACB ∴=∠=∠=︒,在Rt ABC 与Rt APB △中,BAC PAB ∠=∠ABCAPB ∴ AB BP AC BC∴=36∴=2BP ∴= 作PM BC ⊥于N ,交AD 于M ,当x=1时,1522PN MP CN BN ====,, 90BNP PMF BPF ∠=∠=∠=︒,90,90FPM PFM FPM BPN ∴∠+∠=︒∠+∠=︒,PFM BPN ∴∠=∠,BPNPFM ∴,3MP FM BP BN NP FP ∴===,MF ∴=2663AF AM MF BN MF ∴=-=-=-==,故答案为:2,3; (2)P 为AC 的中点,3AP PC AB ∴===60ABP APB BAP ∴∠=∠=∠=︒在t R ABF 和t R PBF 中,AB=BP ,BF=BFt R ABF ∴≅t R PBF90AG PG AGB PGB ∴=∠=∠=︒,BF ∴垂直平分AP ,在t R BFP 中,303PBF BP ∠=︒=,PF ∴=取PF 的中点H ,连接GH , H 为PF 中点,GH ∴为Rt PGF △的中线,12GH PF ∴==; (3)①不发生变化,30FBP ∠=︒,理由如下,作PM BC ⊥于点N ,交AD 于M ,,PBN FPM BPN PFM ∠=∠∠=∠,FMP PNB ∴,设,,,3,22x x CP x PN NC x MP BN x =∴===-=,3FP MP BP BN ∴== 30FBP ∴∠=︒;②当FA FP =时,BA BP =,ABP ∴为等边三角形,3AP AB ∴==,3x CP ∴==;当PA PF =时,12090APF ∠=︒>︒不符合题意;当AP=AD 时,75AFP APF ∠=∠=︒,75CBP CPB ∴∠=∠=︒,CP CB ∴==,即x =;综上所述,当3x =或AFP 是等腰三角形. 【点睛】本题考查矩形的性质、相似三角形的判定与性质、解直角三角形的应用、等腰三角形的判定与性质等知识,是重要考点,灵活运用分类讨论思想是解题关键.13.如图所示,在平面直角坐标系中,抛物线()230y ax bx a =++≠与x 轴交于点()1,0A -、()3,0B ,与y 轴交于点C ,点P 是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,求当PD OD的值最大时点P 的坐标; (3)点F 与点C 关于抛物线的对称轴成轴对称,当点P 的纵坐标为2时,过点P 作直线//PQ x 轴,点M 为直线PQ 上的一个动点,过点M 作MN x ⊥轴于点N ,在线段ON 上任取一点K ,当有且只有一个点K 满足135FKM ∠=︒时,请直接写出此时线段ON 的长.【答案】(1)2y x 2x 3=-++;(2)315,24⎛⎫⎪⎝⎭;(3)7+3+【分析】(1)直接利用待定系数法求解即可; (2)过P 作PG ∥y 轴,交BC 于点G ,则可构造出相似三角形,将PD OD 转换为PG OC求解即可; (3)分两种情况讨论,连接FM ,以FM 为斜边,作等腰直角△FHM ,当以H 为圆心FH 为半径作圆H ,与x 轴相切于K ,此时有且只有一个点K 满足∠FKM=135°,设点H (x ,y ),由“AAS”可证△FHE ≌△HMQ ,可得HE=QM=y -3,HQ=EF=x -2,由勾股定理可求y 的值,可求点M 坐标,即可求解.【详解】(1)将()1,0A -、()3,0B 代入抛物线解析式得:030933a b a b =-+⎧⎨=++⎩,解得:12a b =-⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++;(2)如图所示,作PG ∥y 轴,交BC 于点G ,则△DPG ∽△DOC , ∴PD PG OD OC=, 由题可知:()0,3C ,设直线BC 的解析式为:y kx b =+,将()3,0B ,()0,3C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为:3BC y x =-+,3OC =,设P 的坐标为()223m,m m -++,则G 的坐标为()3m,m -+, ∴23PG m m =-+, ∴223932433m PD PG m m OD OC ⎛⎫--+ ⎪-+⎝⎭===, ∴当32m =时,PD OD 有最大值,将32m =代入抛物线解析式得:154y =, ∴点P 的坐标为31524⎛⎫⎪⎝⎭,;(3)①当M 在F 右侧时,如图所示,连接FM ,以FM 为斜边构造等腰直角△FHM ,当以H 为圆心,FH 为半径作圆H ,与x 轴相切于K 时,此时有且只有一个K 点满足∠FKM=135°,此时,连接HK ,交PM 于点Q ,延长CF 交于HK 于E ,则HK ⊥x 轴,设H (x ,y ),由题可知,抛物线的对称轴为直线x=1,∵点F 与点C 关于抛物线的对称轴对称,∴点F 的坐标为(2,3),CF ∥x 轴,∴CF ∥PM ,∴HK ⊥CF ,HK ⊥PM ,∴∠FEH=∠HQM=90°,∵∠FHE+∠MHE=90°,∠FHE+∠HFE=90°,∴∠HFE=∠MHQ ,又∵HF=HM ,∴△HFE ≌△MHQ (AAS ),∴HE=QM=y -3,HQ=FE=x -2,而HQ=HK -QK=y -2,∴y -2=x -2,即:x=y ,∴FE=y -2,∵222FH FE HE =+,FH=HK=y ,∴()()22223y y y =-+-,解得:5y =,5y =-(舍去)∴532QM =-=,523FE =-=,∴点M 的坐标为()72,,∴7ON =+;②当M 在F 左侧时,如图所示,同①的过程,可证得△HFE ≌△MHQ ,此时设H 的坐标为(x ,y ),显然有,HE=QM=y -3,HQ=FE=2-x ,而HQ=HK -QK=y -2,∴y -2=2-x ,即:4-y=x ,∴FE=y -2,∵222FH FE HE =+,FH=HK=y ,∴()()22223y y y =-+-,同理解得:5y =,∴532QM =-=,523FE =-=,∴点M 的坐标为()32,-,∴3ON =+综上,线段ON 的长为7+3+【点睛】本题考查二次函数综合问题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,圆的相关性质,以及相似三角形的判定与性质等,添加恰当的辅助线构造全等三角形是解题关键. 14.如图,在矩形ABCD 中,AB =6,BC =8,点O 为对角线AC 的中点,动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,点P 运动速度为每秒2个单位长度,点Q 运动速度为每秒1个单位长度,当点P 到达点C 时停止运动,点Q 也同时停止运动,连结PQ ,设点P 运动时间为t (t >0)秒.(1)cos∠BAC= .(2)当PQ⊥AC时,求t的值.(3)求△QOP的面积S关于t的函数表达式,并写出t的取值范围.(4)当线段PQ的垂直平分线经过△ABC的某个顶点时,请直接写出t的值.【答案】(1)35;(2)1813t=秒;(3)22434512(0)552434512(5)552S t t tS t t t⎧=-+<<⎪⎪⎨⎪=-+-<≤⎪⎩;(4)当2t=或t=秒时,线段PQ的垂直平分线经过△ABC的某个顶点.【分析】(1)利用勾股定理先求得AC的长,即可求解;(2)在Rt△ABC中,利用余弦函数构建方程即可求解;(3)过P作PE⊥AQ于点E,过O作OF⊥AQ于点F,分52t<<,52t=和552t<≤三种情况讨论,利用三角形面积公式即可求解;(4)分线段PQ的垂直平分线经过点C时,经过点A时,经过点B时,三种情况讨论,求得结论即可.【详解】(1)在Rt△ABC中,AB=6,BC=8,10=,∴63 cos105ABBACAC∠===;故答案为:35;(2)当PQ⊥AC时,∵AP=2t,AQ=6t-,∴在Rt△ABC中,∴23cos 65AP t PAQ AQ t ∠===-, 解得:1813t =秒, 经检验,1813t =是方程的解, ∴1813t =(秒); (3)过P 作PE ⊥AQ 于点E ,过O 作OF ⊥AQ 于点F ,在Rt △ABC 中,AB =6,BC =8,AC 10=, ∴4sin 5BC BAC AC ∠==,4sin 25PE PE PAE AP t ∠===,4sin 55OF OF OAF AO ∠===, ∴PE=85t ,OF=4, ①当502t <<时, ()()2POQ AOQ APQ 1184346461222555t S S S t t t t =-=-⨯--⨯=-+, 即24341255S t t =-+(502t <<); ②当52t =时,POQ 不存在; ③当552t <≤时,()()2POQ APQ AOQ 1814346641225255t S S S t t t t =-=-⨯--⨯=-+-, 即24341255S t t =-+-(552t <≤);综上,△QOP 的面积S 关于t 的函数表达式是22434512(0)552434512(5)552S t t t S t t t ⎧=-+<<⎪⎪⎨⎪=-+-<≤⎪⎩; (4)①当线段PQ 的垂直平分线经过点C 时,PC=QC=102t -,在Rt △QBC 中,222QB BC QC +=,∴()2228102t t +=-,解得:203t -=(负值已舍); ②当线段PQ 的垂直平分线经过点A 时,AQ=AP ,即62t t -=,解得:2t =;③当线段PQ 的垂直平分线经过点B 时,过P 作PG ⊥BC 于点G ,3sin 5AB PG ACB AC PC ∠===,4cos 5BC PG ACB AC GC ∠===, ∴PG=()36102655t t -=-,CG=()48102855t t -=-, BG= BC -CG=888855t t ⎛⎫--= ⎪⎝⎭, 在Rt △BPG 中,222BG PG BP +=, 即22286655t t t ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 整理得:215721800t t -+=, ()2247241518056160b ac =-=--⨯⨯=-<,方程无解,∴线段PQ 的垂直平分线不会经过点B ,综上,当2t =或203t -=秒时,线段PQ 的垂直平分线经过△ABC 的某个顶点. 【点睛】本题考查了矩形性质,解直角三角形,线段垂直平分线性质等知识,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.15.问题探究:如图,在Rt △ABC 和Rt △DEC 中,∠ACB =∠DCE =90°,∠CAB =∠CDE =60°,点D 为线段AB 上一动点,连接BE .(1)求证:△ADC ∽△BEC .(2)求证:∠DBE =90°.拓展延伸:把问题探究中的“点D 为线段AB 上一动点”改为“点D 为直线AB 上一动点”,其他条件不变,若点M 为DE 的中点,连接BM ,且有AD =1,AB =4,请直接写出BM 的长度.【答案】(1)见解析;(2)见解析;拓展延伸:BM .【分析】(1)先证得∠ACD =∠BCE ,再利用tan 60BC CE AC CD ︒===AC BC CD CE=,即可证明结论; (2)由(1)的结论得∠CAD =∠CBE ,即可证明;拓展延伸:分D 在线段AB 上和D 在BA 延长线上两种情况讨论,利用△ADC ∽△BEC 的 性质求得BE 的长,再利用直角三角形的性质即可求解.【详解】(1)∵∠ACB =∠DCE =90°,∴∠ACD+∠BCD =∠BCE+∠BCD =90°,∴∠ACD =∠BCE ,∵∠CAB =∠CDE =60°,∴tan 60BC CE AC CD ︒===AC BC CD CE=, ∴△ADC ∽△BEC ;(2)由(1)得:∠CAD =∠CBE ,∴∠CBE +∠CBA =∠CAD +∠CBA =90°,∴∠DBE =90°;拓展延伸:在Rt △ABC 中,∠ACB =90°,∠CAB =60°,AB =4,∴AC=2,BC =由(1)得:△ADC ∽△BEC , ∴AC AD BC BE=, ∵AD =1,∴由(2)得:∠DBE =90°,∵点M 为DE 的中点,∴BM=12DE ; ①当D 在线段AB 上时,如图:在Rt △BDE 中,BD=AB -AD=4-1=3,,∴DE ==∴BM=12 ②当D 在BA 延长线上时,如图:在Rt △BDE 中,BD=AB+AD=4+1=5,,∴DE ==∴BM=12综上,BM【点睛】本题考查了相似三角形的判定和性质,特殊角的三角函数值,勾股定理,等腰三角形的性质,直角三角形的性质,证明△ADC ∽△BEC 是本题的关键.16.如图,在△ABC 中,AB =BC =AC =12cm ,点D 为AB 上的点,且BD =34AB ,如果点P 在线段BC 上以3cm /s 的速度由B 点向终点C 运动,同时,点Q 在线段CA 上由C 点向终点A 运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由.(2)如(图二)若点Q 的运动速度与点P 的运动速度相等(点P 不与点B 和点C 重合),连接点A 与点P ,连接点B 与点Q ,并且线段AP ,BQ 相交于点F ,求∠AFQ 的度数.(3)若点Q 的运动速度为6cm /s ,当点Q 运动几秒后,可得到等边△CQP ?【答案】(1)BPD CQP ≌,证明见解析;(2)60︒(3)43【分析】 (1)根据时间和速度求得BP 、CQ 的长,根据SAS 判定两个三角形全等.(2)利用第(1)小题的方法可证得ABP BCQ ≌,BAP CBQ ∠=∠,根据三角形外角性质可得APB PAC C ∠=∠+∠,根据等边三角形性质和三角形内角和定理可得18060BFP CBQ APB ∠=︒-∠-∠=︒,根据对顶角性质可得AFQ ∠的度数.(3)设点Q 运动时间是x 秒,根据CP CQ =列一元一次方程,根据任意一角为60︒的等腰三角形是等边三角形,即可求出答案.【详解】(1)BPD CQP ≌.证明:点P 在线段BC 上以3cm /s 的速度由B 点向终点C 运动,经过1s 后,∠133BP =⨯=,∠点Q 的运动速度与点P 的运动速度相等,∠3CQ BP ==,∠AB =BC =AC =12cm ,BD =34AB , ∠ABC 是等边三角形,60B C ∠=∠=︒,31294BD =⨯=, ∠1239PC BC BP =-=-=,在BDP △和CPQ 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∠BPD CQP ≌(SAS ).(2)解:∠点Q 的运动速度与点P 的运动速度相等,∠BP CQ =,∠AB =BC =AC ,∠ABC 是等边三角形,60BAC ABC C ∠=∠=∠=︒,∠在ABP △和BCQ △中,AB BC ABC C BP CQ =⎧⎪∠=∠⎨⎪=⎩∠ABP BCQ ≌,∠BAP CBQ ∠=∠;在BPF △中,180()BFP CBQ APB ∠=︒-∠+∠,∵=CBQ APB CBQ CAP C ∠+∠∠+∠+∠,∵=60CBQ CAP BAP CAP ∠+∠∠+∠=︒,60C ∠=°,∴=6060=120CBQ APB ∠+∠︒+︒︒,∴180()=180120=60BFP CBQ APB ∠=︒-∠+∠︒-︒︒,∴=60AFQ BFP ∠∠=︒(对顶角相等).(3)解:设点Q 运动时间是x 秒,若CP CQ =,可列方程:1236x x -=, 解得:43x =. ∵在CQP 中,CP CQ =,=60C ∠︒, ∴当43x =秒时,CQP 是等边三角形(任意角是60︒的等腰三角形是等边三角形). ∴当点Q 运动43秒后,可得到等边CQP . 【点睛】。
中考数学专题8-动态几何和函数问题

中考数学专题8 动态几何与函数问题1 、如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E . (1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.2、已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.3、如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
2024年广东中考数学专题复习课件:动态问题与函数图象

一、单动点 1 . 如 图 , 正 方 形 ABCD 的 边 长 为 4 , E 是 AB 的 中 点 , 点 P 从 点 E 出 发 , 沿
E→A→D→C移动至终点C.设点P经过的路径长为x,△CPE的面积为y,则下
列图象能大致反映y与x的函数关系的是( )
【解析】∵正方形ABCD的边长为4,E为AB的中点,∴AE=2.
∴S=12BE·GM=12(8-x)× 34-12x.
∴S= 43(x-8)2. 综上所述,A选项图象符合题意. 故选:A.
答图4
四、通过函数图象求性质 5.(2023遂宁)如图,在△ABC中,AB=10,BC=6,AC=8,点P为线段AB上的动 点,以每秒1个单位长度的速度从点A向点B移动,到达点B时停止.过点P作PM⊥AC 于点M,作PN⊥BC于点N,连结MN,线段MN的长度y与点P的运动时间t(秒)的函数关 系如图所示,则函数图象最低点E的坐标为( )
列图象能大致反映y与x的函数关系的是( )
②当点P在AD上时,2<x≤6,此时AP=x-2,DP=6-x. ∴12 y×=2S×△(CxP-E=2)S-正方12形×A4B×CD-(6-S△xB)E=C-16S-△4AP-E-x+S△2-PDC1=2+4×2x4=-x+12×22,×4- 故图象为向上倾斜的线段;
【解析】连接BD,过B作BE⊥AD于点E. 如答图1,当0≤x<2时,点M在AB上, 在菱形ABCD中,∠A=60°,AB=4,∴AB=AD=4. ∴△ABD是等边三角形.
答图1
二、双动点 2.(2023绥化)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出 发,点M以每秒2个单位长度沿折线A→B→C向终点C运动;点N以每秒1个单位长度沿 线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间 为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是( )
中考数学专题动态几何与函数问题

龙文教育个性化辅导教案提纲学生: 日期: 年 月 日 星期: 时段:中考数学专题8 动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
第一部分 真题精讲【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【例3】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。
中考数学动态几何与函数问的题目

.中考数学 动态几何与函数问题[例1]如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .〔1〕将直线l 向右平移,设平移距离CD 为t 〔t ≥0〕,直角梯形OABC 被直线l 扫过的面积〔图影部份〕为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一局部,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长与直角梯形OABC 的面积.〔2〕当24t <<时,求S 关于t 的函数解析式.[例2]:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如以下图的平面直角坐标系.F 是边BC 上的一个动点〔不与B C ,重合〕,过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . 〔1〕求证:AOE △与BOF △的面积相等;〔2〕记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?〔3〕请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?假如存在,求出点F 的坐标;假如不存在,请说明理由.[例3]如图,在直角梯形ABCD 中,AD ∥BC,∠C =90°,BC =16,DC =12,AD =21.动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P,Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t 〔秒〕. 〔1〕设△BPQ 的面积为S,求S 与t 之间的函数关系式;〔2〕当t 为何值时,以B,P,Q 三点为顶点的三角形是等腰三角形?〔3〕是否存在时刻t,使得PQ ⊥BD ?假如存在,求出t 的值;假如不存在,请说明理由.[例4]在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒〔t >0〕.〔1〕当t = 2时,AP =,点Q 到AC 的距离是;〔2〕在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;〔不必写出t 的取值X 围〕 〔3〕在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?假如能,求t 的值.假如不能,请说明理由; 〔4〕当DE 经过点C 时,请直接..写出t 的值. ACBPQED[例5]如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.〔1〕求点D 到BC 的距离DH 的长;〔2〕求y 关于x 的函数关系式〔不要求写出自变量的取值X 围〕;〔3〕是否存在点P ,使PQR △为等腰三角形?假如存在,请求出所有满足要求的x 的值;假如不存在,请说明理由. 度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠局部....的面积为y 平方厘米〔这里规定:点和线段是面积为O 的三角形〕,解答如下问题: 〔1〕点P 、Q 从出发到相遇所用时间是秒;〔2〕点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是秒; 〔3〕求y 与x 之间的函数关系式.<2>探究如下问题:①假如点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以与S 的最大值;②假如点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.H Q A M N.ABDP图1例1[解]〔1〕由图〔2〕知,M 点的坐标是〔2,8〕∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线,∴4CO =∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯= 〔2〕当24t <<时,阴影局部的面积=直角梯形OABC 的面积-ODE ∆的面积 ∴1122S OD OE =-⋅ ∵142OD OD t OE ==-,∴()24OE t =-∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-. 例2[解析]〔1〕证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22ky x =.1111122S x y k ∴==,2221122S x y k ==.12S S ∴=,即AOE △与FOB △的面积相等. 〔2〕由题意知:E F ,两点坐标分别为33k E ⎛⎫⎪⎝⎭,44k F ⎛⎫⎪⎝⎭,, 1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△,2112S k k ∴=-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值〔3〕解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作ENOB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k==-,134MF CF k==-,90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭,94MB ∴=.222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例3[解析]解: 〔1〕如图1,过点P 作PM ⊥BC,垂足为M,如此四边形PDCM 为矩形. ∴PM =DC =12 ∵QB =16-t,∴S =12×12×<16-t>=96-t 〔2〕由图可知:CM =PD =2t,CQ =t.热以B 、P 、Q 三点为顶点的三角形是等腰三角形,可以分三种情况. ①假如PQ =BQ.在Rt △PMQ 中,22212PQt =+,由PQ 2=BQ 2得 22212(16)t t +=-,解得t =72; ②假如BP =BQ.在Rt △PMB 中,222(162)12BP t =-+.由BP 2=BQ 2 得:222(162)12(16)t t -+=- 即23321440t t -+=.由于Δ=-704<0∴23321440t t -+=无解,∴PB ≠B Q …③假如PB =PQ.由PB 2=PQ 2,得222212(162)12tt +=-+整理,得23642560t t -+=.解得1216163t t ==,〔舍〕综合上.面的讨论可知:当t =71623t =秒或秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形. 〔3〕设存在时刻t,使得PQ ⊥BD.如图2,过点Q 作QE ⊥ADS,垂足为E.由Rt △BDC ∽Rt △QPE, 得DC PE BC EQ =,即121612t=.解得t =9 所以,当t =9秒时,PQ ⊥BD. 例4解:〔1〕1,85; 〔2〕作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.〔3〕能. ①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.例5解:〔1〕Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,32BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. 〔2〕QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.〔3〕存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,如此QM RM=.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,4QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=. ③当PR QR =时,如此R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.PPFA BCD ER PH QM2 1 HABCDE RPHQ.tan QR BA C CR CA ==,366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.[思考1解析]解:〔1〕6. 〔2〕8. 〔3〕①当03x <≤时,2111sin 60222APQ y S AP AQ x x ==︒=13△1····.②当3x <≤6时,1222222121sin 6021(12-2)2APQy S AP P Q AP CQ x x ==︒=△=?···=2.+ ③当69x ≤≤时,设33P Q 与AC 交于点O .<解法一>过3Q 作3,Q E CB ∥如此3CQ E △为等边三角形.33333212..Q E CE CQ x Q E CB COP EOQ ∴===-∴∥△∽△3361,212211(212),33CP OC x OE EQ x OC CE x -∴===-∴==-3333311sin 60sin 6022AQP ACP COPy S S CP AC OC CP ===-△△△-S ··°··°111(6)(212)(6)223x x x =-⨯--·62=-〔解法二〕如右图,过点O作3OF CP ⊥于点F ,3OG CQ ⊥,于点,G 过点3P 作3P HDC⊥交DC延长线于点H .,.ACB ACD OF OG ∠=∠∴=又33,6,2122(6),CP x CQ x x =-=-=-3312CQP COQ S S ∴=△△3333321,3113211(212)(6).COP CP Q S S CQ P H x x x ∴==⨯=⨯---△△··又331sin 602ACP S CP AC =△··°1(6)66).x x =-⨯-3AOP y S =△3326)6)ACP OCP S S x x =-=--△△2=- [思考2解析]解:〔1〕5 , 24,524〔2〕①由题意,得AP =t ,AQ =10-2t.如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE ,∴BA QA BE QG =,∴QG =2548548t -,∴tt QG AP S 5242524212+-=⋅=<25≤t ≤5>.∵6)25(25242+--=t S <25≤t ≤5>.∴当t =25时,S 最大值为6.②要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需△APQ为等腰三角形即可.当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4.以下分两种情况讨论:第一种情况:当点Q 在CB 上时,∵PQ ≥BE >P A ,∴只存在点Q 1,使Q 1A =Q 1P .如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点F ,如此AM =122AP =.由△AMF ∽△AOD ∽△CQ 1F ,得4311===AO OD CQ F Q AM FM , ∴23=FM ,∴103311=-=FM MQ F Q . ∴CQ 1=QF 34=225.如此11CQ AP t k t =⋅⨯,∴11110CQ k AP ==. Q 1ABCDQ 2P 3 Q 3 EP 2 P 1 OP 3OABC DQ 3G H F.第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3,分别使A P = AQ 2,P A =PQ 3. ①假如AP =A Q 2,如图3,CB +BQ 2=10-4=6.如此21BQ CB AP t k t +=⋅⨯,∴232CB BQ k AP +==.②假如P A =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N ,由△ANP ∽△AEB ,得AB AP AE AN =. ∵AE =5722=-BE AB , ∴AN =2825.∴AQ 3=2AN=5625, ∴BC+BQ 3=10-251942556=如此31BQ CB AP t k t +=⋅⨯.∴50973=+=AP BQ CB k .综上所述,当t = 4秒,以所得的等腰三角形APQ 沿底边翻折,翻折后得到菱形的k 值为1011或23或5097. [思考3解析]〔1〕过点C 作CD AB ⊥,垂足为D .如此2AD =,当MN 运动到被CD 垂直平分时,四边形MNQP 是矩形,即32AM =时,四边形MNQP 是矩形,32t ∴=秒时,四边形MNQP 是矩形.tan 60PM AM =°=,MNQP S ∴=四边形〔2〕1°当01t<<时,1()2MNQP S PM QN MN =+四边形·11)2t ⎤=+⎦2=+ 2°当12t ≤≤时3°当23t <<时,1()2MNQP S PM QN MN =+四边形·C PQBA M NCPQBA M NCPQAMN。
2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。
中考数学专题 动态几何与函数10题-含答案
动态几何与函数10题(1)请直接写出1y ,2y 与t 之间的函数关系式以及对应的t 的取值范围;
(2)请在平面直角坐标系中画出1y ,2y 的图象,并写出1y 的一条性质;
(3)求当12y y >时,t 的取值范围.
(1)求出12,y y与x的函数关系式,并注明
(2)先补全表格中1y的值,再画出
x123456
y12632
1
(3)在直角坐标系内直接画出2y的函数图像,结合1y和2y的函数图像,x的取值范围.(结果取精确值)
(1)请求出1y 和2y 关于x 的函数解析式,并说明x 的取值范围;
(2)在图2中画出1y 关于x 的函数图象,并写出一条这一函数的性质:(3)若12103
y y -≥,请结合函数图像直接写出x 的取值范围(近似值保留一位小数,误差不超过0.2)
4.
(2023春·重庆江津·九年级校联考期中)如图,在矩形ABCD 中,3AB =,4BC =,点P 从点A 出发,以每秒2个单位的速度沿折线A B C D →→→运动,当它到达D 点时停止运动;同时,点Q 从点A 出发,以每秒1个单位的速度沿射线AD 运动,过Q 点做直线l 平行于AB ,点M 为直线l 上的一点,满足AMQ △的面积为2,设点P 点Q 的运动时间为t (0t >),ADP △的面积为1y ,QM 的长度为2y .
(1)分别求出1y ,2y 与t 的函数关系,并注明t 的取值范围;
(2)在坐标系中画出1y ,2y 的函数图象;
(3)结合函数图象,请直接写出当12y y <时t 的取值范围.。
中考几何-动态试题解法(解析版)
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
2020年中考数学热点冲刺8 动态几何问题(含解析)
热点专题8动点几何问题考向1图形的运动与最值1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.【解析】如图,过点P作PE⊙BD交AB的延长线于E,⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB,⊙,⊙AB=4,⊙AE=AB+BE=4+BE,⊙,⊙BE最大时,最大,⊙四边形ABCD是矩形,⊙BC=AD=3,CD=AB=4,过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线,⊙⊙GME=90°,在Rt⊙BCD中,BD==5,⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC,⊙⊙BHC⊙⊙BCD,⊙,⊙,⊙BH=,CH=,⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA,⊙⊙BHG⊙⊙BAD,⊙=,⊙,⊙HG=,BG=,在Rt⊙GME中,GM=EG•sin⊙AEP=EG×=EG,而BE=GE﹣BG=GE﹣,⊙GE最大时,BE最大,⊙GM最大时,BE最大,⊙GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=,过点P'作P'F⊙BD交AB的延长线于F,⊙BE最大时,点E落在点F处,即:BE 最大=BF ,在Rt⊙GP 'F 中,FG ====,⊙BF =FG ﹣BG =8, ⊙最大值为1+=3,故答案为:3.2. (2019 江苏省无锡市)如图,在ABC ∆中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .易证⊙EHD ⊙⊙DGC ,可设DG =HE =x ,⊙AB =AC =5,BC =AN ⊙BC ,⊙BN =12BC =,AN ⊙G ⊙BC ,AN ⊙BC , ⊙DG ⊙AN , ⊙2BG BNDG AN==,⊙BG =2x ,CG =HD =- 2x ;易证⊙HED ⊙⊙GMD ,于是HE HDGM GD =,x GM =MG 2= ,所以S ⊙BDE= 12BM ×HD =12×(2x 2)×(4- 2x )=252x -+=2582x ⎛-+ ⎝⎭,当x 时,S ⊙BDE 的最大值为8. 因此本题答案为8. 3. (2019 江苏省宿迁市)如图,⊙MAN =60°,若⊙ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当⊙ABC 是锐角三角形时,BC 的取值范围是 .【解析】如图,过点B作BC1⊙AN,垂足为C1,BC2⊙AM,交AN于点C2在Rt⊙ABC1中,AB=2,⊙A=60°⊙⊙ABC1=30°⊙AC1=AB=1,由勾股定理得:BC1=,在Rt⊙ABC2中,AB=2,⊙A=60°⊙⊙AC2B=30°⊙AC2=4,由勾股定理得:BC2=2,当⊙ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.4. (2019 江苏省宿迁市)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边⊙EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将⊙EFB绕点E旋转60°,使EF与EG重合,得到⊙EFB⊙⊙EHG从而可知⊙EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊙HN,则CM即为CG的最小值作EP⊙CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.5.(2019 江苏省扬州市)如图,已知等边⊙ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把⊙ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1⊙AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,⊙ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求⊙ACB′面积的最大值.【解析】(1)如图1中,⊙⊙ABC是等边三角形,⊙⊙A=60°,AB=BC=AC=8,⊙PB=4,⊙PB′=PB=P A=4,⊙⊙A=60°,⊙⊙APB′是等边三角形,⊙AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.⊙PE⊙AC,⊙⊙BPE=⊙A=60°,⊙BEP=⊙C=60°,⊙⊙PEB是等边三角形,⊙PB=5,⊙⊙B,B′关于PE对称,⊙BB′⊙PE,BB′=2OB⊙OB=PB•sin60°=,⊙BB′=5.故答案为5.(3)如图3中,结论:面积不变.⊙B,B′关于直线l对称,⊙BB′⊙直线l,⊙直线l ⊙AC , ⊙AC ⊙BB ′, ⊙S ⊙ACB ′=S ⊙ACB =•82=16.(4)如图4中,当B ′P ⊙AC 时,⊙ACB ′的面积最大,设直线PB ′交AC 于E ,在Rt⊙APE 中,⊙P A =2,⊙P AE =60°, ⊙PE =P A •sin60°=,⊙B ′E =6+,⊙S ⊙ACB ′的最大值=×8×(6+)=4+24.6. (2019 江苏省苏州市) 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图⊙,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图⊙所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图⊙,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ⊙求动点N 运动速度()/v cm s 的取值范围;⊙试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【解析】(1)2/cm s ;10cm(2)⊙解:⊙在边BC 上相遇,且不包含C 点 ⊙57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点⊙2/6/3cm s v cm s ≤<⊙如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊙AC,则12MH CM ==①(图)PBCDAS (cm²)t (s )②图O2.57.515-2x2x-5(N )⊙ ⊙22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.7. (2019 江苏省扬州市)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角⊙GDC ,⊙G =90°.点M 在线段AB 上,且AM =a ,点P 沿折线AD ﹣DG 运动,点Q 沿折线BC ﹣CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ⊙A B .设PQ 与AB 之间的距离为x . (1)若a =12.⊙如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为 ; ⊙在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.【解析】 ⊙P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,112152S MH AP x =⋅=-+四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;⊙当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,⊙0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊙AB于M,交CD于N,作GE⊙CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,⊙⊙GDC是等腰直角三角形,⊙DE=CE,GE=CD=10,⊙GF=GE+EF=20,⊙GH=20﹣x,由题意得:PQ⊙CD,⊙⊙GPQ⊙⊙GDC,⊙=,即=,解得:PQ=40﹣2x,⊙梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,⊙当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,⊙0≤x≤20,⊙10≤10+≤15,对称轴在10和15之间,⊙10≤x≤20,二次函数图象开口向下,⊙当x=20时,S最小,⊙﹣202+×20≥50,⊙a≥5;综上所述,a的取值范围为5≤a≤20.考向2动点与函数的结合问题1.(2019 江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分⊙PCR.若OQ⊙PR,求出点Q的坐标.【解析】(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,⊙抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,⊙当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);⊙当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分⊙PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊙TR于点H,则有⊙PSC=⊙RTC=90°,由CA平分⊙PCR,得⊙PCA=⊙RCA,则⊙PCS=⊙RCT,⊙⊙PSC⊙⊙RTC,⊙,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt⊙PRH中,tan⊙PRH==过点Q作QK⊙x轴于点K,设点Q坐标为(m,),若OQ⊙PR,则需⊙QOK=⊙PRH,所以tan⊙QOK=tan⊙PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣7+)或(,﹣7﹣).2.(2019 江苏省常州市)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:⊙半径为1的圆:;⊙如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.⊙若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);⊙若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【解析】(1)⊙半径为1的圆的宽距离为1,故答案为1.⊙如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt⊙ODC中,OC===⊙OP+OC≥PC,⊙PC≤1+,⊙这个“窗户形“的宽距为1+.故答案为1+.(2)⊙如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.⊙如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊙x轴于T.⊙AC≤AM+CM,又⊙5≤d≤8,⊙当d=5时.AM=4,⊙AT==2,此时M(2﹣1,2),当d=8时.AM=7,⊙AT==2,此时M(2﹣1,2),⊙满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.考向3运动过程中的定值问题1.(2019 江苏省宿迁市)如图⊙,在钝角⊙ABC中,⊙ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将⊙BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图⊙,当0<α<180时,连接AD、CE.求证:⊙BDA⊙⊙BEC;(2)如图⊙,直线CE、AD交于点G.在旋转过程中,⊙AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将⊙BDE从图⊙位置绕点B逆时针方向旋转180°,求点G的运动路程.【解析】(1)如图⊙中,由图⊙,⊙点D为边AB中点,点E为边BC中点,⊙DE⊙AC,⊙=,⊙=,⊙⊙DBE=⊙ABC,⊙⊙DBA=⊙EBC,⊙⊙DBA⊙⊙EBC.(2)⊙AGC的大小不发生变化,⊙AGC=30°.理由:如图⊙中,设AB交CG于点O.⊙⊙DBA⊙⊙EBC,⊙⊙DAB=⊙ECB,⊙⊙DAB+⊙AOG+⊙G=180°,⊙ECB+⊙COB+⊙ABC=180°,⊙AOG=⊙COB,⊙⊙G=⊙ABC=30°.(3)如图⊙﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边⊙ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,⊙⊙AGC=30°,⊙AOC=60°,⊙⊙AGC=⊙AOC,⊙点G在⊙O上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊙AD , ⊙⊙ADB =90°, ⊙BK =AK , ⊙DK =BK =AK , ⊙BD =BK , ⊙BD =DK =BK , ⊙⊙BDK 是等边三角形, ⊙⊙DBK =60°, ⊙⊙DAB =30°,⊙⊙DOG =2⊙DAB =60°, ⊙的长==,观察图象可知,点G 的运动路程是的长的两倍=.2.(2019 江苏省无锡市)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s .(1)若AB =⊙如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值;⊙是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.【解析】(1)⊙勾股求的易证CB P CBA'V:V,故''43B P=解得⊙1°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=6B'CB'CBA A BDPD33°当⊙CPB’=90 °时,易证四边形ABP’为正方形,解得(2)如图,⊙⊙PAM=45°⊙⊙2+⊙3=45°,⊙1+⊙4=45°又⊙翻折⊙⊙1=⊙2,⊙3=⊙4又⊙⊙ADM=⊙AB’M(AAS)⊙AD=AB’=AB即四边形ABCD是正方形如图,设⊙APB=xB'CA BDA⊙⊙PAB=90°-x ⊙⊙DAP=x易证⊙MDA⊙⊙B’AM (HL ) ⊙⊙BAM=⊙DAM ⊙翻折⊙⊙PAB=⊙PAB’=90°-x⊙⊙DAB’=⊙PAB’-⊙DAP=90°-2x ⊙⊙DAM=21⊙DAB’=45°-x ⊙⊙MAP=⊙DAM+⊙PAD=45°4321MB'BCB'A D PP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学重难点专题讲座第八讲 动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。
很多考生看到图二的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。
其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。
脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。
第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。
动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。
【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。
所以直接设点即可轻松证出结果。
第二问有些同学可能依然纠结这个△EOF 的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT △面积都是异常好求的。
于是利用矩形面积减去三个小RT △面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。
第三问的思路就是假设这个点存在,看看能不能证明出来。
因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就OK.【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S , 由题意得11ky x =,22k y x =.1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, (想不到这样设点也可以直接用X 去代入,麻烦一点而已)1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECFAOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠= ,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠= ,ENM MBF ∴△∽△.(将已知和所求的量放在这一对有关联的三角形当中)EN EM MB MF∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭, 94MB ∴=. 222MB BF MF += ,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.ABM CDPQ 图1【例3】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(3)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
【思路分析】 本题是一道和一元二次方程结合较为紧密的代几综合题,大量时间都在计算上。
第三讲的时候我们已经探讨过解决动点问题的思路就是看运动过程中哪些量发生了变化,哪些量没有变化。
对于该题来说,当P,Q 运动时,△BPQ 的高的长度始终不变,即为CD 长,所以只需关注变化的底边BQ 即可,于是列出函数式。
第二问则要分类讨论,牢牢把握住高不变这个条件,通过勾股定理建立方程去求解。
第三问很多同学画出图形以后就不知如何下手,此时不要忘记这个题目中贯穿始终的不动量—高,过Q 做出垂线以后就发现利用角度互余关系就可以证明△PEQ 和△BCD 是相似的,于是建立两个直角三角形直角边的比例关系,而这之中只有PE 是未知的,于是得解。
这道题放在这里是想让各位体会一下那个不动量高的作用,每一小问都和它休戚相关,利用这个不变的高区建立函数,建立方程组乃至比例关系才能拿到全分。
【解析】解: (1)如图1,过点P 作PM ⊥BC ,垂足为M ,则四边形PDCM 为矩形。
∴PM =DC =12∵QB =16-t ,∴S =12×12×(16-t)=96-t(2)由图可知:CM =PD =2t ,CQ =t 。
热以B 、P 、Q 三点为顶点的三角形是等腰三角形,可以分三种情况。
①若PQ =BQ 。
在Rt △PMQ 中,22212PQ t =+,由PQ2=BQ2 得 22212(16)t t +=-,解得t =72; ②若BP =BQ 。
在Rt △PMB 中,222(162)12BP t =-+。
由BP2=BQ2 得:222(162)12(16)t t -+=- 即23321440t t -+=。
由于Δ=-704<0∴23321440t t -+=无解,∴PB ≠BQ …③若PB =PQ 。
由PB2=PQ2,得222212(162)12t t +=-+ 整理,得23642560t t -+=。
解得1216163t t ==,(舍)(想想看为什么要舍?函数自变量的取值范围是多少?)综合上面的讨论可知:当t =71623t =秒或秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形。
(3)设存在时刻t ,使得PQ ⊥BD 。
如图2,过点Q 作QE ⊥ADS ,垂足为E 。
由Rt △BDC ∽Rt △QPE ,得DC PE BC EQ =,即121612t =。
解得t =9 所以,当t =9秒时,PQ ⊥BD 。
【例4】在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;P A E DCQBO 图2ACBPQ ED(4)当DE 经过点C 时,请直接写出t 的值.【思路分析】依然是一道放在几何图形当中的函数题。