CH4 转炉炼钢
焦炉煤气、高炉煤气、转炉煤气

焦炉煤气的安全控制2010-3-13 11:05:35 来源:西安斯沃工业自动化科技有限公司一、冶金煤气的来源煤气是冶金生产的副产品和重要能源,生产和使用量大。
冶金煤气主要有焦炉煤气、高炉煤气、转炉煤气。
炼焦炭时产生的煤气叫焦炉煤气;将焦炭送到高炉去炼铁,它是作为还原剂使用的,把铁矿石中的铁还原出来,焦炭就生成了煤气----高炉煤气;还原过程中有多的炭浸入,铁含炭高,需要脱炭,脱炭即为炼钢,脱炭产生煤气----转炉煤气。
炼焦、炼铁、炼钢过程中煤气的发生量很大:焦炉煤气:500m3-600m3/t高炉煤气:1000m3-1400m3/t回收转炉煤气:50m3-100m3/t冶金煤气是冶金能耗的大头,占能耗的53%,冶金煤气是冶金企业的副产品,有效利用冶金煤气也是企业节能降耗的重要途径。
如转炉回收得好,可以实现负能炼钢。
二、冶金煤气的危险性煤气是混合物,由于成份不一样,煤气体现的危险性不一样。
从安全的角度,最关心的是一氧化炭、氢气、甲烷三种成份,他们既是危险成份,也是有用成份,具有较高的热值。
体现煤气的毒性上,实际主要是一氧化炭,煤气中毒,主要是一氧化炭中毒。
煤气中的氢气和甲烷具有爆炸性,爆炸极限越低,煤气爆炸性越强。
见下表:成分煤气种类COH2CH4爆炸范围焦炉煤气6-958-6022-254.5-35.8高炉煤气26-292.0-3.00.1-0.435.0-72.0转炉煤气63-662.0-3.012.5-74.0铁合金炉煤气60-6313-150.5-0.87.8-75.07发生炉煤气27-317-1016-1821.5-67.5通过这个表格看出来,焦炉煤气中CO含量比较底,毒性最小,但爆炸性下限最低,爆炸性很强;转炉煤气CO最高,含量占60-70%,毒性相当厉害。
高炉煤气既有毒性,又有爆炸性,但有所区别。
所有的煤气都具有毒性和火灾爆炸危险性。
n 焦炉煤气容易爆炸(毒性相对较低)焦炉煤气爆炸下限5.5%左右,接近甲烷、氢气。
钢铁生产工艺流程简介

选矿工艺流程
原 矿
αβγθ
• 2.3.2 选矿的工艺指标 • (1)精矿品位。即产品中改金属的重量 与产品中两笔,用百分数表示。如铁精矿 品位为65%,就是一精矿中含0.65吨金属铁。 • (2)精矿产率。 是指精矿与入选原矿 重量之比,用百分数表示。通过选矿前后 金属平衡来计算: • 100×α/100= γ×β/100+(100-γ)×θ/100
• (3)杂质元素。有害元素如:S、P、K、F、Na、 Zn等。有益元素如:Mn、Cr、Ni、V、Ti、Nb等 。 • (4)矿石的还原性。矿石中与铁结合的氧被 还原剂夺取的难易程度,称为还愿性。冶炼易还 原的矿石,可降低碳素燃料的消耗量。它与矿物 组成、致密程度、气孔率等有关。 • (5)矿石的高温性能。要求矿石具有较高的 荷重软化温度和熔融滴下温度,且两者的温差 要 小。 • (6)矿石的强度与粒度组成。 • (7)矿石成分的稳定性。
• 2.1.2 铁矿石分类及对其评价 • 目前铁矿石主要有磁铁矿石、赤铁矿石、褐铁 矿石和菱铁矿石等 。各种矿石的组成见表2-1 (课本22页)。 • 对铁矿石的评价: • (1)铁矿石品位(含铁量)。他决定着冶炼 的经济性,是衡量铁矿石质量的重要指标。矿石 品位越高,脉石含量越少,冶炼时所需熔剂量和 形成渣两就少,因而能耗相应降低,产量增加。 • (2)脉石成分。 •
• 主要冶金过程
• 干燥:除去水份,干燥温度400~600°C。 • 焙烧:将矿山置于适当的气氛下,加热至低于它 的熔点温度,发生氧化、还原或其它化学变化的 过程。 • 煅烧: • 烧结和球团:将粉矿经加热焙烧,固结成多孔块 状或球状的物料。 • 熔炼:在高温下通过氧化还原反应使矿山中金属 和杂质分离为两个液相,即金属液和熔渣的过程, 也叫冶炼。 • 精练:进一步处理所得到含有少量杂质的粗金属, 以提高其纯度。
钢的冶炼浇注成型工艺及钢材的质量控制精品PPT课件

上一页
返回
1. 2 钢的浇注
钢液经脱氧后,除少数用来浇铸成铸钢件外,其余都浇铸成钢锭或连铸 坯。钢的浇注方法有模铸法和连铸法两种,连铸法具有生产效率高、钢 坯质量好、节约能源及生产成本低等优点,因此,得到广泛应用。钢锭 浇注示意图如图1-1所示。
1.2.1模铸法
模铸法是指把钢液经过浇注系统从下部或者直接从上部注入金属锭模内 ,待其冷凝后脱模,得到金属铸锭。这种方法的适应性较强,但锭模准 备工作复杂,劳动条件很差,钢锭的组织不够致密均匀,轧材时切头、 切尾多,成材率低,浇注系统的废品弃品损失大。在现代化炼钢车间中 已逐渐被连铸法所代替。
钢铁材料的生产过程由炼铁、炼钢和轧钢等三个主要环节组成。首先, 由铁矿石等原料经高炉冶炼获得生铁,高炉生铁除了获得铸铁件外,大 部分用来炼钢。钢是由生铁经高温熔炼降低其含碳量和清除杂质后而得 到的。钢液除少数浇成铸钢件以外,绝大多数都浇铸成钢锭或连铸坯, 经过轧制或锻压制成各种钢材(板材、型材、管材、线材等)或锻件,供 加工使用。图 1-1为钢铁材料的生产过程示意图。
返回
1.1 钢的冶炼
地壳中铁的储藏量比较丰富,大约占 4.2%(元素总量计),仅次于氧、硅 及铝,居第四位,但是由于自然界中铁总是以化合物(氧化物、硫化物或 碳酸盐等)存在,不同的岩石中含铁品位差别较大,因此凡是可以利用目 前的加工技术条件,从中经济地提取出金属铁的矿石,我们就称为铁矿 石,如表1-1所示,矿石的品位决定其价格,即冶炼的经济性,一般将 矿石中铁的质量分数高于 65%,且含硫、磷等杂质少的矿石,供直接还 原法和熔融还原法适用,而矿石中铁的质量分数低于65%~50%,则供高 炉使用,我国目前富矿储量已较少,绝大部分都是铁的质量分数为30% 左右的贫矿,需要经过选矿处理才能使用。
6-非高炉炼铁

6非高炉炼铁6.l概述非高炉炼铁法是高炉炼铁法之外,不用焦炭炼铁的各种工艺方法的总称。
按工艺特征,产品类型和用途,主要分为直接还原法和熔融还原法两大类。
6.1.1直接还原法与熔融还原法直接还原(DirectReduction)法是指不用高炉而将铁矿石炼制成海绵铁的生产过程。
直接还原铁是一种低温下固态还原的金属铁。
它未经熔化而仍保持矿石外形,但由于还原失氧形成大量气孔,在显微镜下观察形似海绵,因此也称海绵铁。
直接还原铁的含碳量低(〈2%),不含硅锰等元素,还保存了矿石中的脉石。
因此不能大规模用于转炉炼钢,只适于代替废钢作为电炉炼钢的原料。
熔融还原(SmeltingReduction)法指在熔融状态下把铁矿石还原成融态铁水的非高炉炼铁法。
它以非焦煤为能源,得到的产品是一种与高炉铁水相似的高碳生铁。
适合于作氧气转炉炼钢的原料。
近年来,非高炉炼铁法发展比较快,其原因是:(1)不用焦炭炼铁。
高炉冶炼需要高质量冶金焦,而从世界矿物燃料的总储量来看,煤炭占92%左右,而焦煤只占煤炭总储量的5%,且日渐短缺,价格越来越高。
非高炉炼铁可以使用非炼焦煤和天然气作燃料与还原剂,对缺少焦煤资源的国家和地区提供了发展钢铁工业的巨大空间。
(2)高炉炼铁要求强度好的焦炭和块状铁料。
必须有炼焦和铁矿粉造块等工艺配套,工艺环节多,经济规模大,需要大的原料基地和巨额投资。
非高炉炼铁法使用非焦煤或天然气,可使用矿块或直接使用粉矿,市场适应性强。
(3)科学技术的进步,对钢材质量和品种提出了更高的要求。
现代电炉炼钢技术为优质钢的生产提供了有效手段,但由于废钢的循环使用,杂质逐渐富集,而一些杂质元素在炼钢过程又很难去除,无法保证钢的质量,并限制了电炉法冶炼优质钢种的优势。
非高炉炼铁法能为炼钢提供成分稳定、质量纯净的优质原料,为炼钢设备潜能的发挥,提高企业的经济效益,提供了有力的支持。
(4)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好替代品。
高炉与转炉煤气

高炉煤气 (1)1高炉煤气 (1)2高炉煤气特性 (1)转炉煤气 (3)高炉煤气1高炉煤气高压鼓风机鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是二氧化碳和一氧化碳,二氧化碳又和炙热的焦炭产生一氧化碳,一氧化碳在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学过程。
这时候在高炉的炉气中,还有大量的过剩的一氧化碳,这种混和气体,就是“高炉煤气”。
高炉煤气为炼铁过程中产生的副产品,主要成分为:CO、CO2、N2、H2、CH4等,其中可燃成分CO含量约占25%左右。
高炉煤气中的CO2, N2既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。
高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的稳定性。
高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。
同时,大量的C02、N2的存在,减少了分子间发生有效碰撞的几率,宏观上表现为燃烧速度慢,燃烧不稳定。
高炉煤气中存在大量的CO2、N2,燃烧过程中基本不参与化学反应,几乎等量转移到燃烧产生的烟气中,燃高炉煤气产生的烟气量远多于燃煤。
2高炉煤气特性(1)高炉煤气中不燃成分多,可燃成分较少(约30%左右),发热值低;(2)高炉煤气是无色无味、无臭的气体,因CO含量很高、所以毒性极大;(3)燃烧速度慢、火焰较长、焦饼上下温差较小;(4)用高炉煤气加热焦炉时,煤气中含尘量大,容易堵塞蓄垫室格子砖;(5)安全规格规定在1m3空气CO含量不能超过30mg;(6)着火温度大于700OC。
(7) 高炉煤气含有H2(1.5-3.0%),CH4(0.2-0.5%),CO(25-30%),CO2(9-12%),N2(55-60%),O2(0.2-0.4%);密度为1.29-1.30Kg/m3。
1高炉冶炼工艺讲义

第一章概述课时:2学时授课内容:一、钢铁工业发展简史二、高炉冶炼产品三、高炉生产主要技术经济指标目的要求:1.了解炼铁、炼钢工业的发展简史;2.掌握炼铁产品及炼铁技术经济指标。
重、难点:1.炼铁产品及炼铁技术经济指标。
教学方法:利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。
讲授重点内容提要一、钢铁工业发展简史1、我国炼铁工业的发展简史◆早在2500年前的春秋、战国时期,就已生产和使用铁器,逐步由青铜时代过渡到铁器时代。
◆公元前513年,赵国铸的“刑鼎”。
◆1891年,清末洋务派首领张之洞首次在汉阳建造了两座日产lOOt生铁的高炉,迈出了我国近代炼铁的第一步。
◆之后,先后在鞍山、本溪、石景山、太原、马鞍山、唐山等地修建了高炉。
◆l943年是我国解放前钢铁产量最高的一年(包括东三省在内),生铁产量180万t,钢产量90万t,居世界第十六位。
◆1949年,生铁年产量仅为25万t,钢年产量l5.8万t。
◆新中国成立后,我国于l953年生铁产量就达到了190万t,当时超过了历史最高水平。
◆1957年生铁产量达到了597万t,高炉利用系数达到了l.321,我国在这一指标上跨入世界先进行列(美国当时高炉利用系数为1.0)。
◆1958年生铁产量为l364万t。
◆1978年生铁产量突破了3000万t。
◆1988年生铁产量达到了6000万t。
◆1993年生铁产量为8000万t,跃居世界第二位。
◆1995年生铁产量为1亿t,居世界第一位。
◆1998年生铁产量为l.2亿t。
2、现代炼钢方法及其发展趋势◆1855年英国冶金学家亨利²贝塞麦发明酸性空气底吹转炉炼钢方法。
◆平炉炼钢法由于用重油、成本高、冶炼周期长、热效率低等致命弱点,已基本上被淘汰。
◆氧气转炉炼钢法以氧气顶吹转炉炼钢法为主,同时还有底吹氧气转炉炼钢法、顶底复合吹炼氧气转炉炼钢法。
◆l996年我国钢产量已达到一亿多吨,其中氧气转炉炼钢法所炼钢约占70%。
煤气安全知识
煤气安全知识本资料主要向大家介绍煤气基本知识、煤气事故及预防措施、煤气设施操作与检修注意事项。
第一章煤气基本知识一、煤气的产生:焦炉煤气:是指用炼焦精煤,在炼焦炉中经高温干馏后,在产出焦炭、焦油的同时所得到的可燃气体。
高炉煤气:在高炉冶炼过程中,从炉顶产生出来的气体经过除尘过滤净化而得到的可燃性气体。
转炉煤气:在转炉炼钢过程中,铁水中的碳在高温下和吹入的氧生成一氧化碳和少量二氧化碳的混合气体。
△二、各种煤气的主要成分、含量及主要特性序号特性值焦炉煤气高炉煤气转炉煤气1 H2(%)58-602 1.52 CO(%)5-8 27-30 50-703 CH4(%)23-27 / /4 CmHn(%) 2-4 / /5 O2(%)0.3-0.8 0.2 0.5-0.86 N2(%)3-7 55-57 10-257 CO2(%)2-3 8-12 15-258 密度(Kg/Nm3)0.4686 1.295 1.2539 发热值(kmol/标m3)4000-4300 800-1000 1700-200010 着火温度(℃)550-650 700-800 650-70011 爆炸极限5-30 30.84-89.49 18-8312 气比重0.45 0.9-1.1 1.36313 主要性质无色、有臭味、有毒、易燃易爆无色、无臭味、剧毒、易燃易爆无色、无臭味、剧毒、易燃易爆三、煤气对人体的危害:△1、在煤气区域(设备内)工作时间的要求,进入煤气区域工作时,应采空气样作分析。
⑴、CO含量≤30mg/m3(24PPm)时,可较长时间工作。
⑵、CO含量≤50mg/m3(40PPm)时,进内连续工作时间≤1小时。
⑶、CO含量≤100mg/m3(80PPm)时,进内连续工作时间≤0.5小时。
⑷、CO含量≤200mg/m3(160PPm)时,进内连续工作时间≤15-20分钟。
工作人员进入设备内工作的时间间隔至少为2小时。
2、空气中不同的CO含量对人体的危害序号空气中CO含量(PPm)经过时间产生后果1 100 8小时以内没有明显后果2 500 1小时以上头痛恶心3 1000 1小时以内头痛恶心周身不适4 5000 20-30分钟晕迷、中毒致死亡5 10000 1-2分钟中毒致死亡第二章煤气的事故及预防△一、煤气事故种类煤气三大事故:中毒、着火、爆炸。
焦炉煤气、高炉煤气、转炉煤气
焦炉煤气的安全控制2010-3-13 11:05:35 来源:西安斯沃工业自动化科技有限公司一、冶金煤气的来源煤气是冶金生产的副产品和重要能源,生产和使用量大。
冶金煤气主要有焦炉煤气、高炉煤气、转炉煤气。
炼焦炭时产生的煤气叫焦炉煤气;将焦炭送到高炉去炼铁,它是作为还原剂使用的,把铁矿石中的铁还原出来,焦炭就生成了煤气----高炉煤气;还原过程中有多的炭浸入,铁含炭高,需要脱炭,脱炭即为炼钢,脱炭产生煤气----转炉煤气。
炼焦、炼铁、炼钢过程中煤气的发生量很大:焦炉煤气:500m3-600m3/t高炉煤气:1000m3-1400m3/t回收转炉煤气:50m3-100m3/t冶金煤气是冶金能耗的大头,占能耗的53%,冶金煤气是冶金企业的副产品,有效利用冶金煤气也是企业节能降耗的重要途径。
如转炉回收得好,可以实现负能炼钢。
二、冶金煤气的危险性煤气是混合物,由于成份不一样,煤气体现的危险性不一样。
从安全的角度,最关心的是一氧化炭、氢气、甲烷三种成份,他们既是危险成份,也是有用成份,具有较高的热值。
体现煤气的毒性上,实际主要是一氧化炭,煤气中毒,主要是一氧化炭中毒。
煤气中的氢气和甲烷具有爆炸性,爆炸极限越低,煤气爆炸性越强。
见下表:成分煤气种类COH2CH4爆炸范围焦炉煤气6-958-6022-254.5-35.8高炉煤气26-292.0-3.00.1-0.435.0-72.0转炉煤气63-662.0-3.012.5-74.0铁合金炉煤气60-6313-150.5-0.87.8-75.07发生炉煤气27-317-1016-1821.5-67.5通过这个表格看出来,焦炉煤气中CO含量比较底,毒性最小,但爆炸性下限最低,爆炸性很强;转炉煤气CO最高,含量占60-70%,毒性相当厉害。
高炉煤气既有毒性,又有爆炸性,但有所区别。
所有的煤气都具有毒性和火灾爆炸危险性。
n 焦炉煤气容易爆炸(毒性相对较低)焦炉煤气爆炸下限5.5%左右,接近甲烷、氢气。
材料工程基础答案
一、金属材料的制备1.简要说明高炉的结构及高炉内主要区域分布。
高炉本体是冶炼生铁的主体设备。
由耐火材料砌筑成竖式圆筒形,外有钢板炉壳加固密封,内嵌冷却设备保护;高炉内部工作空间的形状称为高炉内型。
高炉内型从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五个局部,该容积总和为它的有效容积,反映高炉所具备的生产能力。
根据物料存在形态的不同,可将高炉划分为五个区域:块状带、软熔带、滴落带、风口前盘旋区、渣体聚集区。
2高炉炼铁的主要原料和产品分别是什么?原料:铁矿石:含铁矿物+脉石=机械混合物天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种产品:〔1〕生铁-----不是纯铁!!含Fe、C、Si、Mn、P、S等元素组成的合金。
w(C)在2%左右,实际上可达3.5%-4.5%铸造生铁:即灰口生铁,碳以游离石墨形式存在,断面呈灰色炼钢生铁:即白口生铁,碳以Fe3C形式存在,断面呈银白色特种生铁:高锰、高硅生铁〔2〕高炉煤气:含CO、CO2、CH4、H2等〔3〕炉渣3高炉炼铁的主要理化过程有哪些?主要的反响有哪些?1〕燃烧过程:C+O2——CO2↑CO2在上升过程中:CO2+C——CO↑2〕溶剂分解:CaCO3——CaO+CO2↑3〕铁的复原:FeO+CO——CO2+Fe(间接复原)FeO+C——Fe+CO 〔直接复原〕4〕增碳:铁水在与焦碳的接触中会增碳-扩散过程,使铁水被C所饱和。
5〕其他元素的复原:Mn,Si 局部被复原,被复原后进入铁水中Al不被复原,只能和熔剂形成渣6〕去S: FeS+CaO——CaS+FeO7〕P复原:Ca3(PO4)2+5C -3CaO+2P+5CO8〕造渣:SiO2、Al2O3、CaO等铁水中:C饱和,溶有局部Mn,Si,S以及全部的P。
4炼钢有哪些主要方法?炼钢过程的主要反响是什么?主要方法:转炉炼钢:氧气转炉炼钢法电炉炼钢:电弧炉炼钢法平炉炼钢炼钢过程的主要反响:脱CSi、Mn的氧化脱P脱S脱O5说明连铸机的组成及作用。
朱荣:电弧炉炼钢绿色及智能化技术进展!收藏学习!
朱荣:电弧炉炼钢绿色及智能化技术进展!收藏学习!1 引言电弧炉炼钢是世界主要炼钢方法之一,以废钢为主要原料,具有流程短、能耗低等特点。
近年来,随着废钢资源的逐步释放及节能环保的需要,电弧炉炼钢迅速发展。
我国“十三五”《钢铁工业调整升级规划(2016-2020 年)》指出:加快发展循环经济,按照绿色可循环理念,注重以废钢为原料的短流程电炉炼钢的发展。
纵观电弧炉炼钢技术的发展历程,围绕“高效、低耗、绿色化和智能化”的生产目标,电弧炉炼钢领域开发出一系列新技术、新工艺、新装备,电弧炉炼钢技术及装备水平不断提高。
近年来,电弧炉炼钢在原有高效节能冶炼技术的基础上,在绿色清洁生产、智能检测与控制等方面取得了长足进步,大大提高了电弧炉炼钢过程的绿色化和智能化水平,推动了钢铁工业技术的进步。
本文从电弧炉炼钢绿色化和智能化关键冶炼技术出发,介绍并分析了近年来电弧炉炼钢绿色及智能化技术的发展情况及本团队的最新研究成果。
2 电弧炉炼钢绿色化技术进展与转炉长流程炼钢相比,电弧炉短流程炼钢在节能环保方面具有显著技术优势。
尽管如此,随着人们对环境问题的日益关切以及国家节能环保政策的相继实施,未来电弧炉炼钢必然朝着绿色化生产方向发展。
2.1 废钢破碎分选技术废钢是钢铁循环利用的优势再生资源。
废钢的资源化利用在钢铁工业节能减排、转型升级方面扮演重要角色。
随着汽车、机电、家电等报废数量的不断增加,社会回收的废旧金属成分更加混杂,包含黑色金属、有色金属、非金属等。
废钢的高效破碎与分选是保证电弧炉炼钢原料质量的前提与关键,对电弧炉炼钢实现洁净化冶炼至关重要。
废钢铁破碎分选研究始于20 世纪60 年代,最具代表性的是美国的纽维尔公司和德国的林德曼公司、亨息尔公司和贝克公司,他们率先推行破碎钢片(Shred)入炉,在改善回收钢品质、提高经济效益方面都具有显著效果。
德国在80 年代末推出的废钢破碎机(Shredder)在某些方面已超过了美国。