高空数学专题—立体几何(空间向量)

合集下载

高考数学(理)专题八:立体几何(6)空间向量及其运算

高考数学(理)专题八:立体几何(6)空间向量及其运算

立体几何(6)空间向量及其运算1、在平行六面体1111ABCD A B C D -中,,,,,,E F G H P Q 分别是111111,,,,,A A AB BC CC C D D A 的中点,则( )A.0EF GH PQ ++=B.0EF GH PQ --=C.0EF GH PQ +-=D.0EF GH PQ -+=2、空间中任意四个点,,,A B C D ,则BA CB CD +-等于( ) A.DBB.ADC.DAD.AC3、已知正方体1111ABCD A B C D -的棱长为1,设,,AB a BC b AC c ===,则a b c ++=( )A.0B.3C.2+D.4、在四面体OABC 中,点M 在OA 上,且2,OM MA N =为BC 的中点.若1344x xOG OA OB OC =++,则使,,G M N 三点共线的x 的值为( )A.1B.2C.23D.435、已知空间任意一点O 和不共线的三点,,A B C .若(,,R)OP xOA yOB zOC x y z =++∈,则“2,3,2x y z ==-=”是“,,,P A B C 四点共面”的( ) A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件6、有下列命题:①若向量p xa yb =+,则p 与,a b 共面;②若p 与,a b 共面,则p xa yb =+;③若MP xMA yMB =+,则,,,P M A B 四点共面;④若,,,P M A B 四个点共面,则MP xMA yMB =+.其中真命题的个数是( ) A.1B.2C.3D.47、已知12,e e 是夹角为60︒的两个单位向量,则12a e e =+与12b e e =+的夹角是( ) A.60︒B.120︒C.30︒D.90︒8、若空间向量a 与b 不共线,0a b ⋅≠,且a a c a b a b ⎛⎫⋅=- ⎪⋅⎝⎭,则向量a 与c 的夹角为( ) A.0B.6π C.3π D.2π 9、设,,a b c 是任意的非零空间向量,且它们相互不共线,则①()()0a b c c a b ⋅-⋅=;②a b a b -<-;③()()b a c c a b ⋅-⋅不与c 垂直;④22(32)(32)94a b a b a b +⋅-=-.其中正确的是( ) A.①②B.②③C.③④D.②④10、对于空间向量,,a b c 和实数λ,下列命题中真命题是( ) A.若0a b ⋅=,则0a =或0b = B.若0a λ=,则0λ=或0a = C.若22a b =,则a b =或a b =-D.若a b a c ⋅=⋅,则b c =11、对于空间中的非零向量,,AB BC AC ,有下列各式:①AB BC AC +=;②AB AC BC -=;③AB BC AC +=;④AB AC BC -=. 其中一定不成立的是___________.12、已知5,2OA OB ==,,60,2,2OA OB OC OA OB OD OA OB =︒=+=-,则以,OC OD 为邻边的平行四边形OCED 的对角线OE 的长为____________.13、已知空间向量,,a b c 中每两个的夹角都是3π,且4,6,2a b c ===,则a b c ++=___________.14、已知空间向量,m n ,设1,2,2m n m n ==+与3m n -垂直,4,72a m n b m n =-=+,则,a b =__________.15、如图,在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=︒.1.求线段1AC 的长;2.求异面直线1AC 与1A D 所成角的余弦值.答案以及解析1答案及解析: 答案:A解析:观察平面六面体1111ABCD A B C D -可知,向量,,EF GH PQ 平移后可以首尾相连,于是0EF GH PQ ++=.2答案及解析: 答案:C解析:如图,利用平面向量运算法则即可得出BA CB CD BA DB BA BD DA +-=+=-=.3答案及解析: 答案:D解析:利用向量加法的平行四边形法则结合正方形性质求解,222a b c AC ++==4答案及解析: 答案:A 解析:12(),23ON OB OC OM OA =+=,假设,,G M N 三点共线,则存在实数λ使得2(1)(1)()23OG ON OM OB OC OA λλλλ-=+-=++2(1)322OA OB OC λλλ-=++,与原式比较后可得2(1)1332424xx λλλ-⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩解得11,2x λ==,故选A5答案及解析: 答案:B解析:当2,3,2x y z ==-=时,232OP OA OB OC =-+,则23()2()AP AO OA AB AO AC AO -=--+-,即32AP AB AC =-+,根据共面向量定理知,,,,P A B C 四点共面.反之,当,,,P A B C 四点共面时,根据共面向量定理,设(,R)AP mAB nAC m n =+∈,即()()OP OA m OB OA n OC OA -=-+-,即(1)OP m n OA mOB nOC =--++,即1,,x m n y m z n =--==,这组数显然不止2,3,2-.故“2,3,2x y z ==-=”是“,,,P A B C 四点共面”的充分不必要条件,故选B6答案及解析: 答案:B解析:其中①③为真命题.②中需满足,a b 不共线,④中需满足,,M A B 三点不共线.7答案及解析: 答案:B解析:∵221212112213()(2)2111222a b e e e e e e e e ⋅=+⋅-=-⋅-=-⨯⨯-=-,2222()2a a e e e e e e ==+=+⋅+==2222(2)44b b e e e e e e ==-=-⋅+==312cos ,32a b a b a b-⋅===-,∴,120a b =︒.8答案及解析: 答案:D解析:∵0a a a a a c a a b a a a b a b a b ⎡⎤⎛⎫⎛⎫⋅⋅⋅=⋅-=⋅-⋅=⎢⎥ ⎪ ⎪⋅⋅⎢⎥⎝⎭⎝⎭⎣⎦,∴a c ⊥,故选D9答案及解析: 答案:D解析:根据空间向量数量积的定义及性质,可知a b ⋅和c a ⋅是实数,而c 与b 不共线,故()a b c ⋅与()c a b ⋅一定不相等,故①错误;因为2()()()()()b a c c a b c b a c c a b c ⎡⎤⋅-⋅⋅=⋅-⋅⋅⎣⎦,所以当a b ⊥,且a c ⊥或b c ⊥时,()()0b a c c a b c ⎡⎤⋅-⋅⋅=⎣⎦,即()()b a c c a b ⋅-⋅与c 垂直,故③错误;易知②④正确.故选 D.10答案及解析: 答案:B解析:对于选项A ,还包括a b ⊥的情形;对于选项C,结论应是a b =;对于选向D ,也包括垂直的情形.11答案及解析: 答案:②解析:根据空间向量的加减运算法则可知,对于①:AB BC AC +=恒成立;对于③:当,,AB BC AC 方向相同时,有AB BC AC +=;对于④:当,AB AC 方向相同且BC 与,AB AC 方向相反时,有AB AC BC -=.只有②一定不成立.12答案及解析:解析:∵OE OC OD =+,∴222()(22)OE OC OD OA OB OA OB =+=++-2(3)OA OB =-2296OA OB OA OB =+-⋅9254652cos60199=⨯+-⨯⨯⨯︒=,∴199OE =,即OE =.13答案及解析: 答案:10解析:∵4,6,2a b c ===,且,,,3a b a c b c π===,∴2()()a b c a b c a b c ++=++⋅++222222a b c a b a c b c=+++⋅+⋅+⋅2222cos ,2cos ,2cos ,a b c a b a b a c a c b c b c=+++⋅⋅+⋅⋅+⋅⋅222462464262100=+++⨯+⨯+⨯=,∴10a b c ++=.14答案及解析: 答案:0︒解析:∵(2)(3)m n m n +⊥-,∴(2)(3)0m n m n +⋅-=,化简得2m n ⋅=-.又∵22(4)166a a m n ==-=+=,22(72)493b b m n ==+=+=,22(4)(72)28218a b m n m n m n m n ⋅=-⋅+=-+⋅=,∴18cos ,163a b a b a b⋅===⨯,∴,0a b =︒.15答案及解析:答案:1.设1,,AB a AD b AA c ===,则1,2,0,21cos1201a b c a b c a c b ===⋅=⋅=⋅=⨯⨯︒=-. ∵111AC AC CC AB AD AA a b c =+=++=++, ∴21()AC a b c a b c =++=++2222()a b c a b b c c a =+++⋅+⋅+⋅==∴线段1AC .2.设异面直线1AC 与1A D 所成的角为θ, 则111111cos cos ,AC A D AC A D AC A Dθ⋅==.∵11,AC a b c A D b c =++=-,∴222211()()01122AC A D a b c b c a b a c b c ⋅=++⋅-=⋅-⋅+-=++-=-,22221()21A D b cb bc c =-=-⋅+==∴1111cos 2AC A D AC A Dθ⋅===. 故异面直线1AC 与1A D . 解析:。

高考数学一轮复习专题八立体几何5空间向量及其在立体几何中的应用应用篇课件新人教A版

高考数学一轮复习专题八立体几何5空间向量及其在立体几何中的应用应用篇课件新人教A版


设直线MN与平面PAB所成角为θ, DN =λ DC(λ∈[0,1]),




则 MN
= MA
+ AD
+ DN
=(λ+1,2λ-1,-1),
又平面PAB的一个法向量为n=(1,0,0),
| λ 1|

则sin θ=|cos< MN ,n>|=
( λ 1)2 (2 λ 1) 2 1
( λ 1) 2
=
,
2
5λ 2 λ 3
1
( λ 1)2
t2
5
令λ+1=t(t∈[1,2]),则 2
= 2
=
≤ ,
2
7
5 λ 2 λ 3 5t 12t 10 10 1 12 1 5
5
∴sin θ≤ 35 ,当t= ,即λ= 2 时,等号成立,
7
3

系有关的存在性问题;(2)与空间角有关的存在性问题.解决方案有两种:①
根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后
加以证明,得出结论;②假设所求的点或线存在,并设定参数表达已知条
件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在
这样的点或线,否则不存在.向量法是解决此类问题的常用方法,它可以将
(2)因为DE⊥平面ABCD,
所以∠EBD就是BE与平面ABCD所成的角,
即∠EBD=60°,所以 ED = 3 .
BD
由AD=3,四边形ABCD是正方形,得BD=3 2 ,
则DE=3 6 ,所以AF= 6 .
如图,分别以DA,DC,DE所在直线为x轴,y轴,z轴建立空间直角坐标系,

新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件

新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件

2
解析:|E→F|2=
→ EF
2=(E→C+C→D+D→F)2
=E→C2
+C→D2+D→F2+
→→ 2(EC·CD
+E→C·D→F+C→D·D→F
)=12+22+12+2(1×2×cos
120°+0+
2×1×cos 120°)=2,所以|E→F|= 2,所以 EF 的长为 2.
02
关键能力·研析考点强“四翼”
B 解析:M→N=O→N-O→M=12(O→B+O→C)-23O→A=-23a+12b+12c.
2.在正方体 ABCD-A1B1C1D1 中,点 E 为上底面 A1C1 的中心.若 A→E=A→A1+xA→B+yA→D,则 x,y 的值分别为( )
A.1,1
B.1,12
向量的数量积运算有两条途径,一是根据数量积的定义,利 用模与夹角直接计算;二是利用坐标运算.
考向 2 空间数量积的应用 如图,已知平行六面体 ABCD-A1B1C1D1 中,底面 ABCD
是边长为 1 的正方形,AA1=2,∠A1AB=∠A1AD=120°. (1)求线段 AC1 的长; (2)求异面直线 AC1 与 A1D 所成角的余弦值; (3)求证:AA1⊥BD.
空间向量基本定理 空间向量 p,存在唯一的有序实数组(x,y,z),
使得 p=xa+yb+zc
设 O,A,B,C 是不共面的四点,则对平面 ABC
推论
内任一点 P,都存在唯一的三个有序实数 x,y, z,使O→P=xO→A+yO→B+zO→C,且 x+y+z=1
空间向量基本定理的 3 点注意 (1)空间任意三个不共面的向量都可构成空间的一个基底. (2)由于零与任意一个非零向量共线,与任意两个非零向量共面, 故零不能作为基向量. (3)基底选定后,空间的所有向量均可由基底唯一表示.

高中数学_3.2 空间向量在立体几何中的应用教学设计学情分析教材分析课后反思

高中数学_3.2 空间向量在立体几何中的应用教学设计学情分析教材分析课后反思

专题七 立体几何第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级行政班级 姓名 学号 面批时间课前自学案【考情分析】立体几何是高考的重点内容之一,从近几年高考试题来看,主要是考查线面位置关系的判断与证明;三是考查空间向量的应用,尤其空间向量法求空间角(特别是二面角)是考查的热点之一.主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围; (2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角. 【要点梳理】1.平行关系及垂直关系的转化2.空间角的求解(1)异面直线所成的角:若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ(0<θ≤π2),则cos θ=|cos 〈v 1,v 2〉|.(2)线面角:设直线l 与平面α所成的角为θ(0≤θ≤π2),直线l 的方向向量为a ,平面α的法向量为μ,则sin θ=|cos 〈a ,μ〉|=|a ·μ||a ||μ|. (3)二面角:设二面角大小为θ(0≤θ≤π),两个面的法向量分别为μ和v ,则|cos θ|=|cos 〈μ,v 〉|=|μ·v ||μ||v |.易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,是线面角的正弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.编号012【课前自测】1.(2013年高考卷理 4)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )(A ) 512π (B )3π (C ) 4π (D ) 6π2.(2009年高考卷理5)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件课内探究案【考点突破】考点一:空间位置关系的判定例1.(1)(2013年高考广东卷理科6)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α变式训练:(1) (2014年高考广东卷理 7)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是( )A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定(2)设m 、n 是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m ∥α,则m ⊥β ②若m ⊥α,n ⊥α,则m ∥n ③若m ⊥α,m ⊥n ,则n ∥α ④若n ⊥α,n ⊥β,则β∥α 其中真命题的序号为( )A .①③B .②③C .①④D .②④ 考点二:空间位置关系的证明例2.(2013广东卷文)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三图 4GEF ABCD图 5DGBFCAE棱锥A BCF -,其中22BC =.(1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.考点三:空间角的求解例3.(12理18)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF. (Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F -BD -C 的余弦值.【当堂检测】1. 【2014全国2高考理第11题】直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.3010D.22 2. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为_____________.3. 【2014高考全国1第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.专题七 立体几何编号第2课时 空间关系与空间角命题人: 审核人: 时间:教学班级 行政班级 姓名 学号 面批时间课后拓展案A 组1. 【2014高考卷第17题】如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点. (Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD 且13CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.2.【2014高考天津第17题】如图,在四棱锥PABCD 中,PA 底面ABCD ,AD AB ,//AB DC ,2AD DC AP ,1AB ,点E 为棱PC 的中点.(Ⅰ)证明:BE DC;(Ⅰ)求直线BE与平面PBD所成角的正弦值;(Ⅰ)若F为棱PC上一点,满足BF AC,求二面角F AB P的余弦值.B组3.(2013年高考北京卷理科17)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面AB C⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求1BDBC的值.4.【2014高考全国2第18题】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,3求三棱锥E-ACD的体积.反思:这节课不满意的几点:(1) 题量的安排。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

二轮复习通用版专题3第3讲立体几何与空间向量课件(72张)

二轮复习通用版专题3第3讲立体几何与空间向量课件(72张)

返回导航
专题三 立体几何
高考二轮总复习 • 数学
设平面 ABD 的一个法向量为 n=(x,y,z),
则nn··AA→→BD==--xx++z=3y0=,0, 取 y= 3,
则 n=(3, 3,3),
又因为
C(-1,0,0),F0,
43,34,
所以C→F=1,
43,34,
返回导航
专题三 立体几何
4 .(2022·全国乙卷 ) 如图,四面体ABCD 中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.
(1)证明:平面BED⊥平面ACD; (2)设AB=BD=2,∠ACB=60°,点F在 BD 上 , 当 △AFC 的 面 积 最 小 时 , 求 CF 与 平 面 ABD所成的角的正弦值.
专题三 立体几何
高考二轮总复习 • 数学
所以BC,BA,BB1两两垂直,以B为原 点,建立空间直角坐标系,如图,
由(1)得 AE= 2,所以 AA1=AB=2,A1B =2 2,
所以 BC=2, 则 A(0,2,0),A1(0,2,2),B(0,0,0), C(2,0,0), 所以 A1C 的中点 D(1,1,1),
(1)证明:FN⊥AD; (2)求直线BM与平面ADE所成角的正弦值.
专题三 立体几何
高考二轮总复习 • 数学
返回导航
【解析】 (1)过点E、D分别做直线DC、AB的垂线EG、DH并分别 交于点G、H.
∵四边形ABCD和EFCD都是直角梯形,AB∥DC,CD∥EF,AB= 5,DC=3,EF=1,∠BAD=∠CDE=60°,由平面几何知识易知,

VA

A1BC

1 3
S△A1BC·h

高考数学讲义空间向量与立体几何.知识框架

高考数学讲义空间向量与立体几何.知识框架

空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B (1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间两点间的距离公式 B空间向量的应用空间向量的概念 B空间向量基本定理 A空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直C空间向量在立体几何中的应用要求层次重难点空间直角坐标系空间直角坐标系 B(1)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.空间两点间的距离公式 B空间向空间向量的概念 B高考要求模块框架空间向量与立体几何.知识框架量的应用空间向量基本定理 A ②会推导空间两点间的距离公式.(2)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.空间向量的正交分解及其坐标表示B空间向量的线性运算及其坐标表示C空间向量的数量积及其坐标表示C运用向量的数量积判断向量的共线与垂直 C知识内容1.在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示. 用同向且等长的有向线段表示同一向量或相等的向量.2.起点与终点重合的向量叫做零向量,记为0或0r.在手写向量时,在字母上方加上箭头,如a r ,AB u u u r.3.表示向量a r的有向线段的长度叫做向量的长度或模,记作||a r ,有向线段的方向表示向量的方向.有向线段所在的直线叫做向量的基线.4.如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a r 平行于b r 记为a b r r ∥.5.向量的加法、减法与数乘向量运算:与平面向量类似; 6.空间向量的基本定理:共线向量定理:对空间两个向量a r ,b r (0b ≠r ),a b r r ∥的充要条件是存在实数x ,使a xb =r r.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.共面向量定理:如果两个向量a r ,b r 不共线,则向量c r 与向量a r ,b r共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+r r r.空间向量分解定理:如果三个向量a r ,b r ,c r不共面,那么对空间任一向量p u r ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++u r r r r.表达式xa yb zc ++r r r ,叫做向量a r ,b r ,c r的线性表示式或线性组合.上述定理中,a r ,b r ,c r叫做空间的一个基底,记作{}a b c r r r ,,,其中a b c r r r ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.7.两个向量的夹角:已知两个非零向量a b r r ,,在空间任取一点O ,作OA a =u u u r r ,OB b =u u u r r,则AOB ∠叫做向量a r 与b r的夹角,记作a b 〈〉r r ,.通常规定0πa b 〈〉r r ≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉r r r r ,,. 如果90a b 〈〉=r r ,°,则称a r 与b r 互相垂直,记作a b ⊥r r . 8.两个向量的数量积:已知空间两个向量a r ,b r,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉r r r r r r ,空间两个向量的数量积具有如下性质:⑴||cos a e a a e ⋅=〈〉r r r r r ,;⑵0a b a b ⇔⋅=r r r r^;⑶2||a a a =⋅r r r ;⑷a b a b ⋅r r r r ||≤||||. 空间两个向量的数量积满足如下运算律:⑴()()a b a b λλ⋅=⋅r r r r ;⑵a b b a ⋅=⋅r r r r;⑶()a b c a c b c +⋅=⋅+⋅r r r r r r r . 9.空间向量的直角坐标运算:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k r r r,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k r r r,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k r r r ;,,. 10.坐标:在空间直角坐标系中,已知任一向量a r,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++r r r r ,1a i r ,2a j r ,3a k r 分别叫做向量a r在i j k r r r ,,方向上的分量,有序实数组123()a a a ,,叫做向量a r在此直角坐标系中的坐标.上式可以简记作123()a a a a =r,,. 若123()a a a a =r ,,,123()b b b b =r,,, 则:112233()a b a b a b a b +=+++r r ,,;112233()a b a b a b a b -=---r r,,; 123()a a a a λλλλ=r ,,;112233a b a b a b a b ⋅=++r r .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.11.空间向量的平行和垂直的条件:设111()a a b c =r ,,,123()b b b b =r ,,, a b r r ∥(0b ≠r r )a b λ⇔=r r 112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300a b a b a b a b a b ⇔⋅=⇔++=r r r r^.两个向量的夹角与向量的长度的坐标计算公式: 222123||a a a a a a ⋅++r r r 222123||b b b b b b =⋅++r r r112233222222123123cos ||||a ba b a b a a a b b b ⋅〈〉==++++r rr r r r ,. 12.位置向量:已知向量a r ,在空间固定一个基点O ,再作向量OA a =u u u r r,则点A 在空间的位置就被向量a r所唯一确定了.这时,我们称这个向量为位置向量.由此,我们可以用向量及其运算来研究空间图形的性质.13.给定一个定点A 和一个向量a r,O 为空间中任一确定的点,B 为直线l 上的点,则P 在为过点A 且平行于向量a r的直线l 上⇔ AP ta =u u u r r①⇔ OP OA ta =+u u u r u u u r r②⇔ (1)OP t OA tOB =-+u u u r u u u r u u u r③这三个式子都称为直线l 的向量参数方程.向量a r称为该直线的方向向量.14.设直线1l 和2l 的方向向量分别为1v u r 和2v u u r,12l l ∥(或1l 与2l 重合)12v v ⇔u r u u r ∥;12l l ^12v v ⇔u r u u r^.若向量1v u r 和2v u u r是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v r,则l α∥或l 在α内 ⇔ 存在两个实数x y ,,使12v xv yv =+r u r u u r.15.如果向量n r 的基线与平面α垂直,则向量n r就称为平面α的法向量.设A 是空间任一点,n r 为空间内任一非零向量,则满足0AM n ⋅=u u u u r r的点M 表示过点A 且与向量n r 垂直的平面,0AM n ⋅=u u u u r r称为该平面的向量表示式.16.设12n n u u r u u r,分别是平面αβ,的法向量,则αβ∥或α与β重合⇔12n n u u r u u r ∥;12120n n n n αβ⇔⇔⋅=u u r u u r u u r u u r^^17.线面角:斜线和它在平面内的正射影的夹角叫做斜线和平面所成的角,是斜线与这个平面内所有直线所成角中最小的角.18.二面角:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.每个半平面叫做二面角的面.棱为l ,两个面分别为αβ,的二面角,记作l αβ--.在二面角l αβ--的棱上任取一点O ,在两半平面内分别作射线OA l ^,OB l ^,则AOB Ð叫做二面角l αβ--的平面角.二面角的平面角的大小就称为二面角的大小.我们约定二面角的范围为[0180]°,°. 设12m m αβu u r u u r ,^^,则角12m m 〈〉u u r u u r,与二面角l αβ--相等或互补.。

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。

②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。

且把叫做空间的一个基底,都叫基向量。

ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。

ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。

③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。

ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。

④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。

ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。

平行于同一平面的向量,也是共面向量。

ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。

ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。

ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。

⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。

⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题—立体几何(空间向量) 基础知识: 一、线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角) 例1、已知二面角α-l-β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为( )

A.14 B.√24 C.√34 D.12 【答案】B 【解析】如图,在平面α内过C作CE∥AB, 则∠ECD为异面直线AB与CD所成的角或其补角,不妨取CE=1,过E作EO⊥β于O. 在平面β内过O作OH⊥CD于H, 连EH,则EH⊥CD. 因为AB∥CE,AB⊥l,所以CE⊥l. 又因为EO⊥平面β,所以CO⊥l. 故∠ECO为二面角α-l-β的平面角,所以∠ECO=60°. 而∠ACD=135°,CO⊥l,所以∠OCH=45°. 在Rt△ECO中,CO=CE·cos∠ECO=1·cos 60°=12.在Rt△COH中,CH=CO·cos∠OCH=12·sin 45°=√24. 在Rt△ECH中,cos∠ECH=𝐶𝐻𝐶𝐸=√241=√24.所以异面直线AB与CD所成角的余弦值为√24.故选B. 例2、已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( )

A.16 B.√36 C.13 D.√33 【答案】B 【解析】如图所示,取AD的中点F,连EF,CF,则EF∥BD,∴异面直线CE与BD所成的角即为CE与EF所成的角∠CEF. 由题知,△ABC,△ADC为正三角形,设AB=2,则 CE=CF=√3,EF=12BD=1. ∴在△CEF中,由余弦定理, 得cos∠CEF=𝐶𝐸2+𝐸𝐹2-𝐶𝐹22𝐶𝐸·𝐸𝐹 =(√3)2+12-(√3)22×√3×1=√36.

故选B. 二、线面角:正常考你正弦值,因为算出来的是角的余角的余弦值

非正常考你余弦值,需要再算一步。 例3、如图所示,四棱锥中,底面,,,,,,为的中点.

(1)求证:平面; (2)求直线与平面所成角的正弦值. 【答案】(1)见解析; (2). 例4、如图,四边形与均为菱形,,且.

(1)求证:平面; (2)求直线与平面所成角的正弦值.

【答案】(1)证明见解析. (2) . 例5、如图,已知多面体ABCA1B1C1,A1A, B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2. (Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.

【答案】(Ⅰ)见解析;(Ⅱ). 【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得, 所以是与平面所成的角. 由得, 所以,故. 因此,直线与平面所成的角的正弦值是. 方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出, 三、二面角:同进同出为补角;一进一出为原角。 注意:考试的时候不用分情况,从图中观察,若为钝角就取负值,若为锐角就取正值。 设直线,lm的方向向量分别为,lm,平面,的法向量分别为12,nn. (1)直线,lm所成的角为,则π02,计算方法:coslmlm;

(2)直线l与平面所成的角为,则π02,计算方法:11sinlnln; (3)平面,所成的二面角为,则0π, 如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=,〈〉ABCD.

如图②③,12,nn分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=1212nnnn,二面角的平面角大小是向量n1与n2的夹角(或其补角). 例6、如图1,矩形ABCD中,23666BCABDEFC,将ABE沿BE折起,得到如图2所示的四棱锥ABCDE,其中7AC. (1)证明:平面ABE平面BCD; (2)求平面AEF与平面ACD所成锐二面角的余弦值. 【答案】(1)见解析;(2)223 试题解析: (1)在图2中取BE的中点G,连接AG,CG.由条件可知图1中四边形ABFE为正方

形,则有AGBE,且可求得2AG. 在GBC中,2BG,3BC,45GBC,由余弦定理得 2222cos2965CGBGBCBGBCGBC.

在AGC中,22225AGCGAC,所以90AGC,即AGCG. 由于BE,CG平面BCD,AGBE且AGCG,BECGG,所以AG平面BCD.

又AG平面ABE,故平面ABE平面BCD.

由(1)得AG平面BCD,可求得A点坐标为112,,, 所以112AF,,,200EF,,,设平面AEF的法向量为111uabc,,,由

0uAF及0uEF得111120{ 20abca令12b,由此可得021u,,. 由于122AC,,,200DC,,,设平面ACD的法向量为222vabc,,,由0vAC及0vDC得222220{ 20abca令22b,由此可得022v,,

所以422cos336uvuvuv, 则平面AEF与平面ACD所成锐二面角的余弦值为223.

例7、如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD, E是PD的中点。

(1)证明:直线平面PAB; (2)点M在棱PC 上,且直线BM与底面ABCD所成角为,求二面角的余弦值。

20.【答案】(1)证明略;(2) 。 【解析】(1)取的中点,连结,。

//CE o45 MABD

PA F EF BF因为是的中点,所以∥, ,由得∥,又,所以。四边形为平行四边形,∥。 又平面,平面,故平面。 (2)由已知得,以A为坐标原点,的方向为x轴正方向,为单位长, 建立如图所示的空间直角坐标系,

则,,,,,, 设则, 因为BM与底面ABCD所成的角为45°,而是底面ABCD的法向量,

所以,, 即。 ① 又M在棱PC上,设,则 。 ②

E PD EF AD 90BADABC

BC

AD EFBC∥ BCEF CE BF BF PAB CE PAB CE∥ PAB

BAAD AB

Axyz

0,0,0A 1,0,0B 1,1,0C (103)PC,, (100)AB,,

PMPC ,1,33xyz 例8、如图,在四棱锥P-ABCD中,AB//CD,且. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

21.(1)证明见解析;(2). 【解析】(1)由已知,得AB⊥AP,CD⊥PD. 由于AB∥CD ,故AB⊥PD ,从而AB⊥平面PAD. 又AB平面PAB,所以平面PAB⊥平面PAD.

90BAPCDP 90APD 90BAPCDP  由(1)及已知可得,,,. 所以,,,. 设是平面的法向量,则

,即, 可取. 设是平面的法向量,则

,即, 可取. 则, 所以二面角的余弦值为.

(2,0,0)CB (0,1,0)AB (,,)xyzn PCB

(0,1,2)n (,,)xyzm PAB

(1,0,1)m APBC 基本方法 空间向量求余弦值或正弦值四步法 (1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系; 锥体顶点在轴上;对称面建系。一定要注明怎样建成的坐标系 (2)写点坐标 (3)写向量:向量最好在面上或者轴上 (4)法向量的简化计算 空间向量的坐标运算 1122330ababababab,

2222123aaaaa

112233222222123123

cos,abababaaabbbababab.

8.直线的方向向量和平面的法向量 (1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作l,显然一条直线的方向向量可以有无数个. (2)若直线l,则该直线l的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量. 平面法向量的求法:设平面的法向量为(,,)xyz.在平面内找出(或求出)两个不共

线的向量123123(,,),(,,)aaabbbab,根据定义建立方程组,得到00ab,通过赋值,取其中一组解,得到平面的法向量.

相关文档
最新文档