风荷载计算方法与步骤

合集下载

风荷载计算办法与步骤

风荷载计算办法与步骤

12风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

2.1风向垂直作用于建筑物表面单位面积上的风荷载标准值(基本风压50年一遇³,单位为kN/m2。

也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。

2.2.32.2.4风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

规范以B类地面粗糙程度作为标准地貌,给出计算公式。

2.2.6风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面;(5)未述事项详见相应规范。

2)群体风压体形系数檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。

且可忽略扭转的可按下式计算:○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下:○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:可以由结构动力学计算确定,对于较规则的高层建筑也可采用下列公式近似计算:○3脉动风荷载的背景分量因子,对于体型和质量沿高度均匀分布的高层建筑,计算方法如下:、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度≤2H,H为结构总高度,结构总高度小于等于梯度风高度。

风荷载标准值计算方法

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法:1.1风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0……7.1.1-2[GB50009-2001 2006 年版]上式中:w k :作用在幕墙上的风荷载标准值(MPa);Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算):1. 正压区2. 负压区- 对墙面,- 对墙角边,二、内表面对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2本计算点为大面位置按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。

根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f )其中K 为地面粗糙度调整系数, 1 f 为脉动系数A 类场地:B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: Bgz =0.89 X (1+2 [1 f ) 其中:1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0.3 对于B 类地形,B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数;根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24卩 z =1.379 X (Z/10).当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m0.32卩 z =(Z/10)当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取Z=10m 卩 z =0.616 X (Z/10) 0.44当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取Z=15m 卩 z =0.318 X (Z/10) 0.60当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数卩一、外表面 S1 : 按表7.3.1采用;取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以还应考虑室内压-0.2。

风荷载计算步骤

风荷载计算步骤

风荷载计算步骤一、引言风荷载计算是工程设计中非常重要的一项内容,它涉及到建筑物、桥梁、塔吊等工程设施的稳定性和安全性。

本文将介绍风荷载计算的步骤,帮助读者了解风荷载计算的基本原理和方法。

二、确定设计风速风荷载计算的第一步是确定设计风速。

设计风速是指在设计寿命期间内,某一特定地点上的平均风速。

确定设计风速需要参考相关的气象数据和规范,考虑地理位置、地形特征、气象条件等因素,以确保计算结果的准确性。

三、选择风压系数在进行风荷载计算时,需根据建筑物或结构物的形状和尺寸选择相应的风压系数。

风压系数是指单位面积上的风压力与动压的比值。

常用的风压系数有平面、曲面、圆柱体等,根据具体情况选择合适的系数进行计算。

四、计算风荷载根据确定的设计风速和选择的风压系数,可以计算出风荷载。

风荷载是指风对建筑物或结构物表面的作用力。

根据风压系数和结构物的投影面积,可以得到单位面积上的风荷载。

根据结构物的形状和布置,将单位面积上的风荷载乘以相应的面积,即可得到整体的风荷载。

五、设计风荷载分析在计算得到整体的风荷载后,需要进行设计风荷载分析。

设计风荷载分析是指根据风荷载的大小和方向,对建筑物或结构物进行稳定性分析。

通过分析结构物的受力情况,确定结构物的抗风能力是否满足设计要求,若不满足,则需要采取相应的加固措施。

六、风荷载施加位置确定在设计风荷载分析中,还需要确定风荷载施加的位置。

不同的建筑物或结构物在受风荷载时,其受力情况会有所不同。

通过施加风荷载的位置,可以进一步分析结构物的受力分布和变形情况,为设计提供依据。

七、风荷载计算结果验证在完成风荷载计算后,还需要对计算结果进行验证。

验证的目的是确定计算结果的准确性和合理性。

可以通过对已建成的建筑物或结构物进行实测,与计算结果进行对比,以验证计算方法的正确性。

若验证结果与计算结果相符,则说明风荷载计算是可靠的。

八、风荷载计算结果应用根据风荷载计算的结果,可以进行工程设计和施工。

根据计算结果确定结构物的尺寸、材料和施工方法,以确保结构物的稳定性和安全性。

风荷载计算算例

风荷载计算算例

.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为:0k z s z w u u βω= ()s u ——体型系数z u ——风压高度变化系数z β——风振系数0ω——基本风压k w ——风荷载标准值体型系数s u 根据建筑平面形状由《建筑结构荷载规范》项次30,迎风面体型系数(压风指向建筑物内侧),背风面(吸风指向建筑外侧面),侧风面(吸风指向建筑外侧面)。

风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表确定。

本工程结构顶端高度为+=米,建筑位于北京市郊区房屋较稀疏,由规范条地面粗糙度为B 类。

由表高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为和。

则米高度处的风压高度变化系数通过线性插值为:对于高度大于30m 且高宽比大于的房屋,以及基本自振周期T1大于的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。

本工程30层钢结构建筑。

基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算:1012Z z gI B β=+ ()式中:g ——峰值因子,可取10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取、、和;R ——脉动风荷载的共振分量因子z B ——脉动风荷载的背景分量因子脉动风荷载的共振分量因子可按下列公式计算:式中:1f ——结构第1阶自振频率(Hz )w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取、、和; 1ζ——结构阻尼比,对钢结构可取,对有填充墙的钢结构房屋可取,对钢筋混凝土及砌体结构可取,对其他结构可根据工程经验确定。

经过etabs 软件分析,结构自振周期1 4.67f s =脉动风荷载的背景分量因子可按下列规定确定:式中:1()z φ——结构第1阶振型系数H ——结构总高度(m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ;x ρ——脉动风荷载水平方向相关系数;z ρ——脉动风荷载竖向方向相关系数;k 、1α——脉动风荷载的空间相关系数可按下列规定确定:(1)竖直方向的相关系数可按下式计算:式中:H ——结构总高度(m );对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不应大于300m 、350m 、450m 和550m ;(2) 水平方向相关系数可按下式计算:式中:B ——结构迎风面宽度(m ),2B H ≤。

导线风荷载计算公式

导线风荷载计算公式

导线风荷载计算公式导线在受到风力作用时会产生风荷载,导线的风荷载是指单位长度上单位宽度的导线所受到的风力大小。

导线风荷载的计算是工程设计中的重要内容之一,具有一定的复杂性。

本文将介绍一些常用的导线风荷载计算公式。

一、简化拟静力法简化拟静力法是一种简化的计算导线风荷载的方法,适用于导线的挠度较小的情况。

该方法的基本原理是将导线视为一条"紧绷弦",在考虑了导线自重和风压力的作用后,通过静力平衡求解导线的挠度和张力。

导线的风荷载公式如下:Fw=0.5*ρ*V^2*Cd*A其中,Fw为单位长度上单位宽度的导线所受到的风荷载;ρ为空气密度;V为风速;Cd为风阻系数;A为单位长度上的导线风面积。

上述公式中的风阻系数Cd是根据导线的尺寸和形状以及风向等因素来确定的,需要参考相关的风洞试验数据进行计算。

导线风面积A则是导线在单位长度上与风相对的面积。

二、实测拟静力法实测拟静力法是通过对导线的实际测量数据进行分析和计算,确定导线的风荷载。

该方法要基于大量的实测数据,并结合导线的结构特点和风洞实验数据,通过统计分析等方法获得导线在不同风速下的风荷载。

实测拟静力法中的计算公式相对来说较为复杂,需要考虑导线的综合力学特性,如导线的弯曲刚度、拉伸刚度、弹性变形等。

其中,导线在风荷载作用下的挠度和张力是重要的计算参数。

三、动力法动力法是一种较为严格和精确的导线风荷载计算方法,适用于导线的挠度较大的情况。

该方法基于动力学理论,通过对导线的振动特性进行分析和计算,获得导线的风荷载。

动力法的计算包括了对导线的自振频率、模态形状、阻尼特性等方面的考虑。

其中,导线的自振频率是导线的重要特性参数,可以通过对导线的物理性质和几何形状进行反复试验来确定。

需要注意的是,导线风荷载的计算还需要综合考虑导线的材料强度、电气性能、安全系数等因素。

在实际工程中,一般会采用多种方法相互印证,综合考虑导线的各种因素,确保设计的准确性和安全性。

风荷载

风荷载

3.4 风荷载计算本工程位于城郊,地面粗糙度为B类,基本风荷载可按下式计算:w k=βz∙μs∙μz∙w0(3-10)式中βz—风振系数;μs—风荷载体型系数;μz—风压高度变化系数;w0—基本风压。

风振系数βz=1.0,风荷载体型系数μs=1.3,风压高度变化系数μz根据各楼层处高度可按《荷载规范》查的,基本风压w0=0.35kN m2⁄。

各楼层处风荷载P i=w ik∙ℎi∙b i,第i楼层处受风面的高度ℎi取计算楼层上下层层高各半,顶层取至女儿墙墙顶。

楼层出受风面的宽度b i取6m。

只考虑轴线○5一榀框架。

计算过程见下表。

表3-1 风荷载作用下各系数计算表层次βzμs Z(m) μz w0(kN mm2⁄) hi(m) b i(m) P i(kN)5 1.0 1.316.95 1.18 0.35 2.55 6.0 8.21图3-22 风荷载作用下框架结构计算简图D值法计算风荷载作用下内力:一般层k=∑i b2i c ,α=kk+2,底层k=∑i bi c,α=k+0.5k+2,柱子的抗侧移刚度D =α12i c h j2,计算结果如下表:表3-2 框架柱抗侧移刚度计算表层次 柱的类型 kα D (kN m ⁄)2~5层 中柱 (1根) 2.44 0.550 1.884×104 边柱(2根) 1.22 0.379 1.298×104 底层中柱(1根) 3.15 0.709 1.138×104 边柱(2根)1.570.5800.931×104注:∑i b 指框架梁线刚度之和,i c 指柱子的线刚度,k 指框架梁柱线刚度比,α指柱侧向线刚度降低系数。

3.4.1 各楼层风荷载剪力计算风荷载作用下各层剪力可按公式3-11计算: V jk =D jk∑D jk mk=1V j (3-11) 式中 V jk —第j 层第k 柱所分配到的剪力; D jk —第j 层第k 柱的侧向刚度D 值; m —第j 层框架柱数;V j —第j 层框架柱所承受的层间总剪力。

等效风荷载计算方法

等效风荷载计算方法

等效静力风荷载的物理意义从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。

等效静力风荷载理论就是在这一背景下提出的。

其基本思想是将脉动风的动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。

等效静力风荷载是联系风工程研究和结构设计的纽带[3],是结构抗风设计理论的核心内容,近年来一直是结构风工程师研究的热点之一。

等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明[45, 108]。

图1.3 气动力作用下的单自由度体系对如图1.3的单自由度体系,在气动力()P t 作用下的振动方程为:()mx cx kx P t ++= (1.4.1)考虑粘滞阻尼系统,则振动方程可简化为:()()()200222P t x f x f x mξππ++=(1.4.2)式中0f =为该系统的自振频率,ξ=为振动系统的临界阻尼比。

假设气动力为频率为f 的简谐荷载,即()20i ft P t F e π=,那么其稳态响应为:()()()2020012i ft F kx t e f f i f f πξ=-+⋅ (1.4.3)进一步化简有:()()2i ft x t Ae πψ-= (1.4.4)其中A =,()0202arctan1f f f f ξψ=-,A 为振幅,ψ为气动力和位移响应之间的相位角。

现在假设该系统在某静力F 作用下产生幅值为A 的静力响应,那么该静力应该为:F kA ==(1.4.5)如果不考虑相位关系,静力F 与简谐气动力()P t 将产生一致的幅值响应,则这两种荷载之间存在一种“等效”的关系,那么F 可以称为()P t 的“等效静力风荷载”。

从上面这个简单的实例可以很清楚的体会到,所谓等效静力风荷载是指这样一种静力荷载,当把它作用于结构上时,其在结构上产生的静力响应(不仅指代位移响应,也包括内力响应等)与外加气动力荷载产生的动力响应最大幅值是完全相等的。

风荷载计算——精选推荐

风荷载计算——精选推荐

风荷载计算风荷载计算4.2风荷载当空⽓的流动受到建筑物的阻碍时,会在建筑物表⾯形成压⼒或吸⼒,这些压⼒或吸⼒即为建所受的风荷载。

4.2.1单位⾯积上的风荷载标准值建筑结构所受风荷载的⼤⼩与建筑地点的地貌、离地⾯或海平⾯⾼度、风的性质、风速、风向⾼层建筑结构⾃振特性、体型、平⾯尺⼨、表⾯状况等因素有关。

垂直作⽤于建筑物表⾯单位⾯积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地⾯上10⽶⾼度处10分钟平均的风速观测数据,经概率统计得出50年⼀遇的值确定的风速V0(m/s)按公式确定。

但不得⼩于0.3kN/m2。

对于特别重要或对风荷载⽐较敏感的⾼层建筑,基本风压采⽤100年重现期的风压值;对风荷载是否敏主要与⾼层建筑的⾃振特性有关,⽬前还没有实⽤的标准。

⼀般当房屋⾼度⼤于60⽶时,采⽤100年⼀风压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地⽅的设计基本风压。

2.风压⾼度变化系数µz《荷载规范》把地⾯粗糙度分为A、B、C、D四类。

A类:指近海海⾯、海岸、湖岸、海岛及沙漠地区;B类:指⽥野、乡村、丛林、丘陵及房屋⽐较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较⾼的城市市区;风荷载⾼度变化系数µz⾼度(m)地⾯粗糙类别A B C D5 1.17 1.00 0.74 0.6210 1.38 1.00 0.74 0.6215 1.52 1.14 0.74 0.62 计算公式20 1.63 1.25 0.84 0.62 A类地区=1.379(z/10)0.2430 1.80 1.42 1.00 0.62 B类地区= (z/10)0.3240 1.92 1.56 1.13 0.73 C类地区=0.616(z/10)0.4450 2.03 1.67 1.25 0.84 D类地区=0.318(z/10)0.660 2.12 1.77 1.35 0.9370 2.20 1.86 1.45 1.0280 2.27 1.95 1.54 1.1190 2.34 2.02 1.62 1.19100 2.40 2.09 1.70 1.27150 2.64 2.38 2.03 1.61200 2.83 2.61 2.30 1.92250 2.99 2.80 2.54 2.19300 3.12 2.97 2.75 2.45350 3.12 3.12 2.94 2.68400 3.12 3.12 3.12 2.91≥450 3.12 3.12 3.12 3.12位于⼭峰和⼭坡地的⾼层建筑,其风压⾼度系数还要进⾏修正,可查阅《荷载规范》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 风荷载
当空气的流动受到建筑物的阻碍时,会在建筑物外表形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

1.1 单位面积上的风荷载标准值
建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、外表状况等因素有关。

垂直作用于建筑物外表单位面积上的风荷载标准值ωk 〔KN/m ²〕按下式计算:
ωk =βz μs μz ω0
风荷载标准值〔kN/m 2〕=风振系数×风荷载体形系数×风压高度变化系数×基本风压
1.1.1 基本风压ω0
按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。

按公式 ω0=1
2ρv 02
确定数值大小,但不得小于2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。

也可以用公式ω0=1
1600v 02计算基本风压的数值,也不得小于。

1.1.2 风压高度变化系数μZ
风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

标准以B 类地面粗糙程度作为标准地貌,给出计算公式。

μZX
=(H tB 10)2αB (10H tX )2αX (Z 10
)2αX
μZA =1.248(Z 10)0.24
μZB =1.000(Z 10)0.30
μZC =0.544(Z 10)0.44
μZD =0.262(Z 10
)0.60
1.1.3 风荷载体形系数μS
1〕单体风压体形系数
〔1〕圆形平面μS =0.8;
〔2〕正多边形及截角三角平面μS=0.8+
√n
,n为多边形边数;
〔3〕高宽比H
B
≤4的矩形、方形、十字形平面μS=1.3;
〔4〕V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比H
B >4的十字形、高宽比H
B
>4,
长宽比L
B
≤1.5的矩形、鼓形平面μS=1.4;
〔5〕未述事项详见相应标准。

2〕群体风压体形系数
详见标准规程。

3〕局部风压体形系数
檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,μS不宜小于。

未述事项详见相应标准规程。

1.1.4风振系数
对于高度H大于30米且高宽比H
B
>1.5的房屋,以及自振周期T1>0.25s的各种高耸结构都应该考
虑脉动风压对结构发生顺向风振的影响。

〔对于高度H大于30米、高宽比H
B
>1.5且可忽略扭转的高层建筑,均可只考虑第一振型的影响。


结构在Z高度处的风振系数βz可按下式计算:
βz=1+2gI10B z√1+R2
○1g为峰值因子,去; I10为10米高度名义湍流强度,取值如下:
○2R为脉动风荷载的共振分量因子,计算方法如下:
R=√π
6ζ1
x12 (1+x12)34
x1=
30f √kωω0
ζ1为结构阻尼比,对钢筋混凝土及砌体结构可取ζ1=0.05;kω
f1
f1=1 T1
高层建筑的基本自振周期T1可以由结构动力学计算确定,对于较规则的高层建筑也可采用
○3B z脉动风荷载的背景分量因子,对于体型和质量沿高度均匀分布的高层建筑,B z计算方法如下:
B z=kHα1ρxρz Φ1(z)μz(z)
k、α1
Φ1(z)为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度风高度。

ρx、ρz为脉动风荷载水平、竖直方向相关系数,分别按下式计算:
ρx=10√H+60e−H/60−60
B
ρz=10√B+50e−B/50−50
B
B为结构迎风面宽度〔m〕,B≤2H,H为结构总高度,结构总高度小于等于梯度风高度。

相关文档
最新文档