概率论与数理统计初步-xin

概率论与数理统计初步-xin

离线作业考核

《概率论与数理统计初步》

满分100分

一、计算题(每题10分,共70分)

1、已知随机变量X 服从二项分布),(p n B ,且6)(=X E ,6.3)(=X D ,试求二项分布的参数n ,p 的值。

2、设)4,2(~N X ,试求X 的概率密度为)(x f 。

3、设连续型随机变量X 的密度函数为

???<<+=其他,,

0,10,)(x b ax x f 且31)(=X E ,试求常数a 和b 。 4、当随机变量X 服从普阿松分布时,试求EX

DX 的值。 5、若随机变量X 在区间)6,1(上服从均匀分布,试求方程012=++Xy y 有实根的概率。

6、已知随机变量)1,3(~-N X ,)1,2(~N Y ,且X 与Y 相互独立,设随机变量72+-=Y X Z ,试求Z 的密度函数。

7、设),(Y X 的联合密度函数为其他0,0,,0),()32(>>???=+-y x Ae y x p y x ,试求(1)常数A ;(2)

X 的边缘密度函数。

二、证明题 (共30分)

1、一个电子线路上电压表的读数X 服从[θ,θ+1]上的均匀分布,其中θ是该线路上电压的真值,但它是未知的,假设n X X X ,,,21 是此电压表上读数的一组样本,试证明:(1)样本均值X 不是θ的无偏估计;(2) θ的矩估计是θ的无偏估计。

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

应用概率论与数理统计试题

试卷 学期: 2011至 2012 学年度第一学期 课程:应用概率论与数理统计专业: 班级:姓名:学号: 解答下列各题(每小题3分,共计51分) 1.设随机事件A与B互不相容,P(A)=0.2,P(B)=0.4,求P(B|A)2.设事件A、B满足P(A B)=0.2,P(A)=0.6,求P(AB)。 3.某人射击三次,其命中率为0.8,求三次中至多命中一次的概率为。

4.已知随机变量X 的分布函数为 F(x)= ????? ????? ?≥<≤<≤<3131321021 00x x x x , 求P }{1X =。 5.已知离散型随机变量X的分布函数为F(x)=???? ???≥<≤<≤<4 ,143,6.031,1.010x x x x ,, 求1}X |4P{X ≠<。 6.设随机变量X 的概率密度为 ??? ??<<-=,, ;x ,x )x (f 其他0224求P {-1

7.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,求F(3)。 8.一口袋装有3只红球,2只黑球,今从中任意取出2只球,求这两只恰为一红一黑的概率. 9.某仪器上装有4只独立工作的同类元件,已知每只元件的寿命(以小时计)σ),当工作的元件不少于2只时,该仪器能正常工作。 X~N(5000,2 求该仪器能正常工作5000小时以上的概率。 10.设事件A与B互不相容,P(A)=0.2,P(B)=0.3,求P(B A?). 11.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,求第二次取到的是正品的概率.

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计在大数据分析中的应用3篇 概率论与数理统计

概率论与数理统计在大数据分析中的应用3篇概率论与 数理统计 精品文档,仅供参考

概率论与数理统计在大数据分析中的应用3篇概率 论与数理统计 在大数据时代,利用概率论与数理统计方法来对繁杂数据进行分析与挖掘不失为是一种简单高效的方法。下面是本站为大家带来的,希望能帮助到大家! 概率论与数理统计在大数据分析中的应用1 概率论与数理统计知识是数学知识体系中的重要分支,对日常生活有着广泛的理论指导。基于此,本文首先介绍了概率论与数理统计的主要学科知识,其次对于概率论与数理统计知识在日常生活中的应用,从等概率问题、序列概率问题、几何概率模型问题、统计模型、常识性统计几个方面,进行具体的研究与分析,最后对概率与数理统计的应用做出展望。 概率论和数理统计是高等数学中的重要组成部分。在自然界和人们的日常生活中,随机现象与随机事件非常普遍,概率论和数理统计是对某一事件可能结果的客观分析和理性判断。只要我们细心研究就会发现,概率论和数理统计在日常生活中有着多方面的应用。 一、概率论与数理统计知识 概率论(Probability Theory)是研究随机现象数量规律的数学分支,数理统计(Mathematics Statistics)是以概率论为基础,研究人类社会和自然界中的随机现象变化规律的

一种数学模型[1]。概率论与数理统计知识主要包含事件间关系的确定、概率的计算、概率计算模型、概率计算公式、相关性分析、参数估计、假设检验与回归分析、随机变量知识、中心极限定理等等[2]。概率论与数理统计来源与生活,是对生活中的多种随机现象的逻辑分析与抽象总结。在日常生活中,也能找到多种应用概率论与数理统计知识的具体体现。 二、概率论与数理统计在日常生活中的具体应用体现 (一)概率论与数理统计在等概率事件中的应用 等概率事件是指每一个随机事件发生的概率都是相同的,等概率问题是生活中常见的问题,小到我们玩狼人杀时的身份抽取、值日生分组中的抓阄分组,大到工厂的货物质检、食品安全部门的卫生抽检,都能应用到概率论与数理统计的相关知识。 例1:一个罐头生产厂将密封不严、颜色不达标、微生物超標的罐头列为次品。该工厂每月生产十五批货。一批货的次品率是1/20,数量很大,有几万个,现在随机取9个。问9个里面次品数量大于2个(包括2个)的概率有多少? 解:P(B1)代表9个产品中次品数量大于2的概率 P(B2)代表9个里面次品数量小于1个(包括1个)的概率,也相当于只有一个次品的概率+没有次品的概率 P(B2)=9*(1/20)*(19/20)8 +(19/20)9

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计在电子专业的应用

概 率 统 计 在 电 子 专 业 的 应 用 姓名:储东明 学号:1305062023 专业班级:电子信息工程 成绩: 教师评语:

论概率统计在电子专业中的应用 概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.的概率论与数理统计学实际应用背景很广范。正如世界知名概率学家、华裔数学家钟开莱于1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科。”概率论与数理统计学应用于自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识。近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中。尤其在电子信息通信方面尤为重要,甚至是通信原理的基础课程。可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一。在此文中,进一步讨论概率统计在电子信息方面的应用。 概率论与数理统计在电子电路的随机信号处理及实验中有着广泛的应用,通信工程中信号的接收和发射,都需要概率论与数理统计学的理论作为基础。因为,信号是信息的载体。信号源的输出都是随机的,怎样在随机信号中找出我们所需要的信息,就需要使用统计方法来描述。同时,对于接收者来说怎样从一个不缺定或不可预测的信号中获取我们所需要的信息,仍然需要再次利用统计学中的知识。 根据概率论与数理统计中的知识所描述,事件的概率就是对于一次随机试验E,S是它的样本空间,那么对于随机试验E中的每一个

天津理工大学概率论与数理统计同步练习册标准答案详解

天津理工大学概率论与数理统计同步练习册答案详解

————————————————————————————————作者:————————————————————————————————日期: 2

第一章 随机变量 习题一 1、写出下列随机试验的样本空间 (1)同时掷三颗骰子,记录三颗骰子点数之和 Ω= { }1843,,,Λ (2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω= { }Λ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”, 如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。用“0”表示次品,用“1”表示正品。 Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,} (4)在单位圆内任意取一点,记录它的坐标 Ω= }|),{(122<+y x y x (5)将一尺长的木棍折成三段,观察各段的长度 Ω=},,,|),,{(1000=++>>>z y x z y x z y x 其中z y x ,,分别表示第一、二、三段的长度 (6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U = “在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U = 解: ( 1 ) U = { e3 , e4 ,… e10 。} 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 …、 10 ( 2 ) U = { e3 , e4 ,… } 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 … 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件

概率论与数理统计初步综合练习卷

概率论与数理统计初步综合练习 一.填空题 1设事件A 、B 、C , 则三个事件中至少有一个事件发生表示为 2. 设()3.0=A P ,()15.0=AB P ,且A 与B 相互独立,则()=?B A P ____________ 3. 设]5,1[~U X ,则X 落入[2,4]的概率为 4. 若).(~p n B X ,且 2=EX , 2.1=DX , =n 5. 已知()2=X E ,() 52=X E ,()=+12X D _____________。 6. 设1X ,2X ,……,n X 是总体()2 ,σμN 的样本,X ,2 S 分别是样本平均值和样本方 差, 则 n S X μ -服从 分布 二.选择题 1. 将一枚硬币连掷三次, 至少出现一次正面的概率为 ( ) A. 21 B. 43 C. 87 D 3 2 2 )(x F 是分布函数,则)2 3(F = ( ) A.0.1 B.0.3 C.0.6 D.1 3. 二维离散型随机变量 X 与Y 相互独立同分布, 且已知其边缘分布律为 {}{ }2111=-==-=Y P X P , {}{ }2 1 11====Y P X P 则 ==+)0(Y X P ( ) A. 21 B. 4 1 C.1 D .0 4. 如果X 与Y 满足)()(Y X D Y X D -=+,则必有( ) A. Y X 与独立 B. Y X 与不相关 C. 0(=) Y D D. 0)()(=Y D X D

5. 21,X X 为取自正态总体()2 ,~σμN X 的一个样本以下四个关于μ的无偏估计量中,方 差最小的是 ( ) A. 1X B. ()2121 X X +, C. 214341X X + D. 213 132X X + 6. 设总体X 服从正态分布,E(X)=2,E(X 2 )=8, X 1,X 2,…,X n 是X 的样本,1 1n i i X X n ==∑,则X 的分布为( ) A. 4(2,)N n B. (2,1)N C. 2(,4)N n D. 24(,)N n n 三.计算题1. 两台车床加工同样的零件,第一台加工的废品率为0.05,第二台加工的 废品率为0.06,加工出来的零件放在一起,已知这批零件中,由第一台车床加工和由第二台加工的各占一半,从这批零件中任取一件。 求:(1)取到合格品的概率。(2)取到的合格品是由第一台车床加工的概率。 设随机变量X 的密度函数?????=0 )(2x k x f 其他2 1<

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

概率论与数理统计复习汇总

第一章:概率论初步 基本概念:随机事件、古典概率、条件概率、事件的独立性 事件的关系与运算(结合集合论和文氏图来学习) 子事件(子集)、积事件(交集)、和事件(并集)、对立事件AB A B ∪A (补集)、 差事件 ;A B AB A AB ?==? 互斥事件 AB =Φ 事件发生:事件A 中至少有一个样本点出现. 处理技巧:把稍微复杂点事件处理成简单的互斥事件的和 []A B A B A =?∪∪运算规律:德摩根律 ; AB A B A B AB ==∪∪ 加法原理:(分类),乘法原理:12m n n n +++ 12m n n n ??? (分步) 排列: 全排列:; 组合:,m m n n A P ,!n ,! m m m n n n P C C C m n m n ?== 古典概型: 满足以下两个特点的随机试验 ()A n P A n Ω = 1. 试验的样本空间中有有限的样本点; 2. 每个样本点发生的可能性是相等.(对称性和均衡性) 例题1 计算下列概率题 (求概率前先设事件) 1. 抛两颗骰子,观察他们点数出现的情况, (1) 写出试验的样本空间; (2) 设两颗骰子点数相同,:A :B 两颗骰子点数和为5,求 (),().P A P B 2. 袋子中有a 只白球,b 只红球,2个人依次在袋子中取一球, (1) 做有放回的抽样,求第二个人取得白球的概率;()a P A a b =+ (2) 做无放回的抽样,求第二个人取得白球的概率; 1(1)()11()(1)b a a a a b a a P A a b a b a b a b a b a b a b () ?+?= ?+?==++?++?++?+ 注:当箱子中奖券足够多时,摸奖不分先后; 概率的公理化定义 设E 是一个随机试验,S 是它的样本空间,对于E 中的每一个事件A 赋予一个实数,记为,称为事件的概率,如果他满足下列的假设: ()P A A (1) (2) 对于0()P A ≤≤1;S 有()1;P S = (3) 设 两两互不相容,则有 12,,,,n A A A 1212()()()n n P A A A P A P A P A =+++∪∪ ∪∪ ()

概率论与数理统计学1至7章课后答案

一、第六章习题详解 6.1 证明(6.2.1)和(6.2.2)式. 证明: (1) ∑∑∑===+=+==n i i n i i n i i nb X a n b aX n Y n Y 1 11)(1 )(11 b X a b X n a n i i +=+=∑=1 )1( (2) ∑∑==+-+=--=n i i n i i Y b X a b aX n Y Y n S 1 212 2 )]()[(1)(11 221 2212)(1)]([1X n i i n i i S a X X n a X X a n =-=-=∑∑== 6.2设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本, X 与2S 分别为该样本均值。证明与2 (),()/E X Var X n μσ==. 证:()E X =12121 1 1 [()]()()n n E X X X E X X X n n n n μμ++ = ++== ()Var X =22 1212221 1 1[()]()()n n Var X X X E X X X n n n n n σσ++ =++ == 6.3 设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本,2 21 1()1n i i S X X n ==--∑, 证明: (1) 2 S =)(11 21 2X n X n n i i --= ∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 1 2212 2 )2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(1121 2X n X n n i i --=∑=

相关文档
最新文档