地铁通风及设备.ppt.Convertor供参考学习

地铁通风及设备.ppt.Convertor供参考学习
地铁通风及设备.ppt.Convertor供参考学习

第一章地铁通风空调工程概述

地铁通风空调系统是应地铁特殊的环境需求而产生。

原因:

1.温度:基本与外界隔绝,高密度列车运行、设备运转和大量乘客的集散产生的热量,地层的蓄热,若不及时排除,空气温度

2.湿度:地铁周围土壤通过地铁围护结构渗湿量也较大,空气湿度,乘客难以忍受,地铁设备正常运行也会受到影响。

3.新鲜空气:巨大的客流,补充新鲜空气,保证地铁内的空气环境。

必须设置通风空调系统,对地铁内部的空气温度、湿度、气流速度和空气质量等空气环境因素进行控制,为乘客和工作人员提供一个舒适的环境,并满足地铁设备正常运行的需要。

第一章地铁通风空调工程概述

概述

通过空气处理机组、风机、冷水机组、冷却塔、水泵、风阀、消声器、变频多联空调机、BAS系统等设备的工作,实现对地铁线路的站厅、站台、隧道正常工况时的

通风空调;阻塞、事故、火灾等工况时的通风的工程。

地铁通风空调系统是地铁环控系统的主体部分。

第一节地铁通风空调工程的组成

一、组成

第一节地铁通风空调工程的组成

二,作用

1.为乘客提供过渡性舒适环境:

往返于地面到车站至列车内

2.当列车阻塞在区间隧道时,通风系统向阻塞区间提供通风:

保证列车空调正常工作,维持列车箱内乘客在短时间内能承受的环境条件;

3.在车站或区间隧道发生火灾时,通风系统有效排烟:

向乘客和工作人员提供必要的新风和通风,使得乘客和工作人员能安全迅速

疏散,为消防人员灭火创造条件;

4.满足地铁车站内管理用房及设备用房的温度、湿度要求:

提供良好的工作环境和保证设备正常运行环境。

三、基本要求、设计原则和标准《地铁设计规范》GB50157—2003

1.基本要求:

当列车正常运行时,应保证地铁内部空气环境在规定范围内;

当列车阻塞在区间隧道时,应保证阻塞处的有效通风功能;

当列车在区间隧道发生火灾事故时,应具备防灾排烟、通风功能;

当车站发生火灾事故时,应具备防灾排烟、通风功能。

2.地铁隧道、车站室内参数及设计原则(部分):

列车车厢设置空调,车站设置屏蔽门时,地铁隧道夏季的最高温度不得高于40℃;

当地下车站采用空调系统时,站厅层的空气计算温度比空调室外计算干球温度低2—3℃,且不应超过30℃;

站台层的空气计算温度比站厅层的空气计算温度低1—2℃;

当采用空调系统时,每个乘客每小时需供应的新鲜空气量不应少于12.6m3,且系统的新风量不应少于总送风量的10%。

地下车站管理用房及设备用房内每个工作人员每小时需供应的新鲜空气量不应少于

30m3,且新风不应少于总送风量的10%。

3. 对噪声控制的标准

地铁的通风空调系统设备传至站厅、站台厅的噪声不得超过70dB(A);

车站管理用房及设备用房的通风空调应有消声和减振措施。

通风空调设备传至各房间内的噪声不得超过60dB(A);

通风空调机房内的噪声不得超过90dB(A)。

这些基本要求、设计原则和标准,能有效保证地铁通风空调工程实现其功能

第二节隧道通风系统

活塞通风:

一般是在车站在两端上下行线各设一个活塞风道及相应的风井

原理:

利用地铁列车在隧道内高速运行所产生的活塞效应(指在隧道中高速运行的列车,会带动隧道中的空气产生高速流动,类似汽缸内活塞压缩气体(如图)的现象)而形成的通风,实现隧道与外界通风换气

第二节隧道通风系统

一、分类

二、区间隧道通风系统模式

1.双活塞风道模式

2. 典型单活塞风道模式

3.单活塞风道兼容模式

4. 单活塞风道单风井模式

第二节隧道通风系统

1.车站每端设置两个活塞风道,机械风道与活塞风道并联布置,每站机械通风风道及设备

四组,有四个隧道通风井。常见布置原理如图所示

2. 每端取消列车进站端活塞风道,保留出站端活塞风道,每站活塞风

道2个,机械通风风道及设备还是4组,有4个隧道通风井,布置原理如图:

第二节隧道通风系统

3.正常运行时,由一台隧道风机兼车站排热风机,事故状况下转作区间隧道通风,排热风阀

关闭,布置原理如图:

第二节隧道通风系统

4.车站同一端的两台风机共用一个风井的纯并联模式,隧道通风风井为2个,活塞风道和机械风道各两条以并联方式布置,车站一端的两台风机只能对两条线路组织送/排风(烟)工况,不能同时进行对一条线路送风,而对另一条线路实行排风(烟),灵活性稍差,布置如图

第二节隧道通风系统

三、隧道通风运行模式

1.正常运行,

2.阻塞运行,

3.火灾事故运行

1.正常运行

A、在列车晚上停运后、早上运营前的一段时间打开隧道通风系统,进行通风换气。

B、列车正常运行时,车站隧道通风系统投入运行而区间隧道停止运行,利用列车活塞效应通过车站两端的活塞风井进行通风换气

2.阻塞运行:

当列车因故障阻塞在区间隧道时,区间隧道通风系统开启对阻塞的区间隧道进行通风。

3.火灾事故运行:

在区间隧道发生火灾时,进行排烟降温。隧道两端风机采用以一排一送,组织背着乘客

疏散方向排烟,迎着乘客疏散方向正压送风,即引导乘客向迎风面撤离和有序排烟,为消防人员灭火、救援创造条件。

第二节隧道通风系统

四、站台隧道通风系统特点

1)服务范围:屏蔽门外侧的停车隧道

2)采用车站有效站台内轨顶和轨低同时排风方式,且排风口位置应正对列车散热部位

3)列车在站台着火时,该系统应兼作排烟系统

4)机房一般设于车站两端,风井与车站大系统的排风系统风井合用

第三节车站区通风空调系统

一、分类

1.车站通风空调大系统

2. 车站通风空调小系统

二、大系统运行模式

第三节车站区通风空调系统

大系统:地下车站公共区通风空调系统包括站厅、站台、人行通道公共区的通风空调系统1)作用:满足乘客过渡性舒适温度、湿度要求

2)组成:组合式空调机组、回/排风机、小新风机、相应的控制风阀、风道等

3)特点:具有小新风空调、全新风空调、全通风三种运行模式

第三节车站区通风空调系统

小系统:车站管理用房及设备用房的通风空调系统

1)作用:满足管理用房及设备用房的温度、湿度的要求

2)要求:设置舒适性空调,配备若干个柜式空调机器、送风机、风阀等,以满足各个房间人员、设备对温度、湿度的要求。

第三节车站区通风空调系统

二、大系统运行模式

A、当室外新风焓值大于车站的回风点焓值时,回风与部分新风在组合式空调机组的混合段,经处理后送人站厅、站台公共区,即小新风空调运行模式。(正常运行时)

B、当室外新风焓值小于或等于车站回风混合点焓值,且其干球温度大于空调送风点温度时,采用全新风,即全新风空调运行模式。(乘客流量很大时)

C、当室外新风的温度小于空调送风点的温度时,新风不经冷却处理,利用组合式空调机组直接送至车站公共区,即全通风运行模式。(发生火灾时)

第四节防排烟系统

1. 车站公共区防火区的防排烟

2. 管理用房及设备用房防火区的防排烟

3. 地下站公共区与管理用房及设备用房分别为独立的防火区。

防火区:站厅、站台公共区划分成若干个防火区,在站厅层A、B两端各设一台排烟风机进行机械排烟。

第四节防排烟系统

要求; 当站厅、站台发生火灾时进行机械排烟,使车站内形成负压区,保证新鲜空气由外界通过人行人口或楼梯口进入车站站厅、站台,为乘客撤离和消防人员灭火创造条件。发生火灾情况:

1)当车站站厅防火防烟分区发生火灾时,立即关闭送、回风系统,该区排烟风机启动进行机械排烟。

2)当车站站台发生火灾时,关闭站厅层回/排风管上的电动阀,站台层回/排风兼排烟管上的电动阀切换至全开状态,开启车站着火区域的排烟风机,利用站台的回/排风管向

地面排烟。

同时,站厅层的组合式空调机组开启,通过电动阀的控制,对站厅层送风,保证站台向上疏散的楼、扶梯口形成向下不低于1.5m/s风速的气流,让乘客迎着气流方向撤向站厅和地面。

3)公共区发生火灾时,关闭车站无关的小系统和水系统,车控室立即进行加压送风。

4) 管理用房及设备用房发生火灾时,大系统停止运行,小系统按设定火灾模式运行,立

即组织机械排烟或隔断火源和烟气;与火灾相邻的内通道,设有排烟系统的立即进行排烟;着火区所在端的内走道和车控室立即进行加压送风;气体保护房间执行气体保护模式。对用气体灭火的房间设排风及送风系统。

第五节空调水系统

一、作用:为车站空调系统提供冷源,供给车站大小系统

二、组成:冷水机组、水泵、冷却塔等

冷水机组一般采用电动式压缩式冷水机组,供回水温度为7/12℃

每个车站冷水机组一般设置不少于2台,机组要求随负荷变化能自动调节制冷量

冷却塔设置在通风良好的地面上,与周围环境协调,噪音需符合国家标准《声环境质量标准》GB 3096—2008的规定,

空调水系统一般要设置分水器、集水器,对空调水进行分配和集成。

第二章地铁通风空调工程主要设备

地铁通风空调的实现,是靠地铁通风空调系统的设备保证。

地铁对设备的要求:

1、可靠性高——客运量大、列车运行密度高

2、防潮性好、使用寿命长——地下十几米深,相对封闭和潮湿

3、防灾防火、安全性要求高——客运大容量公共交通

地铁通风空调工程常用的主要设备有:

风机、空气处理机、风阀、消声器、冷水机组、水泵、冷却塔、变频多联空调机等。第一节风机

包括:隧道风机、射流风机、推力风机、大小系统送风风机、排风风机、排烟风机。

主要分类:轴流通风机、离心通风机,以轴流通风机为主。

轴流通风机的工作原理:

当叶轮在电机带动旋转时,空气从风机进风口轴向吸人,叶轮上叶片的旋转推力对空气做功,使得空气能量增加并沿风机轴向流动排出。

地铁一般采用专用地铁轴流通风机,它是地铁车站和隧道区间内通风的主要设备。

特点:1)大风量、高风压、高效率、可逆转、切换时间短、抗腐蚀性强、运行可靠、耐高温、防喘振、安装方便、运行平稳等特点。

2)应有由国家权威部门出具的风机(隧道风机、射流风机、推力风机、排烟风机)型式实验报告和耐高温检测合格报告。

第一节风机

一、隧道风机:为轴流通风机

安装位置:设于车站两端的设备房、区间通风机房内

作用:用于区间隧道、站台隧道通风、防排烟。

结构组成:叶片、电机、风机机壳、轮毂、轴、轴承、电机支撑板、前导流栅、后导流栅、整流罩等组成。

分类:

可逆转耐高温轴流通风机——TVF风机

单向运转耐高温变频轴流通风机(排热风机)——UOF (B)风机

回/排风机——HPF(B)风机

可逆转耐高温变频轴流风机(排热/隧道风机)——UO/TVF(B)风机

工作状态点:

TV 指风机用于隧道通风工况;

UO 指风机用于车站车行区排热工况。

UO/TVF 指风机为变频兼用风机,即UO/TVF风机。

(B) 表示该风机正常工况下采用变频运转的方式,火灾或其他事故工况下

采用工频运转的方式

二、射流风机:

特殊的双向(正反转)轴流通风机,其前后端均自带消声风筒,悬挂在隧道顶部或两侧。

工作原理:

运行时,将隧道一部分空气从风机一端吸人,经叶轮加速后,由风

机的另一端高速射出,使隧道内空气向设定方向流动,用于调节区

间内某一段压力、通风量及辅助排烟。

结构组成:叶片、电机、风机机壳、轮毂、轴、轴承、电机支撑板、消声器等

部件组成。

三、推力风机

1.推力风机(IMF风机)为双向(正反转)轴流通风机,设于区间机房内,用于加强某一

段隧道内通风。

2.推力风机火灾或阻塞时加强局部区间隧道通风

3.根据系统不同运行模式要求风机正转或反转,通过现场制作的喷嘴将空气高速射人

需加强风的区间隧道,推动隧道内空气向设定方向流动,前后端均带消声风筒。

四、送排风风机、防排烟风机

车站大系统风机包括:大系统的新风机、回/排风机

——用于车站公共区通风空调。

车站小系统风机包括: 小系统的送排风机、回回/排风

——用于车站管理用房及设备用房区域通风空调。

防排烟系统风机包括:排烟风机

——用于车站共公区、车站管理用房及设备用房区域等的排烟均为轴流通风机,主要由叶片、电机、风机机壳、轮毂、轴、轴承、电机支撑板等组成设于车站两端机房或设备层内

第二节空气处理机

工作原理:通过机组表冷、过滤、消声、风机等若干功能段的组合,外界提供冷源,实现对空气进行冷却、过滤、消声、输送等处理过程。

种类:组合式空调机组、柜式空凋器、风机盘管

第二节空气处理机

一、组合式空调机组

作用:车站公共区的空气处理。

组成:箱体、混合段、粗效过滤段、表冷挡水段、风机段(含检修门)、消声段、出风段和若干个中间段组成,

完成对空气的过滤、冷却、消声、新风处理和新、回风混合等功能,完成工艺所要求的空气处理过程

一、组合式空调机组

1.箱体

a便于拆装

b采用满足密封要求的连接方式,机组漏风率<1%。

c有足够的机械强度。

d应有足够的防“冷桥(隔热结构中局部构造的不同,引起该部位隔热性能降低,成为冷量大量传递的通道)”措施。

2.新回风混合段

设有新风口及回风口

通过新、回风口的风速应小于8m/s

设有一检修门

3.过滤段

过滤段的进风断面风速均匀度应大于80%。

过滤器前后应设检修门,以方便过滤器的检修、更换,检修门的设置位置可在本段内设置或前后其他功能段上。

过滤器前后应设置压差报警装置。

4.表冷段

表冷器管材应采用紫铜管。

凝水盘尺寸要足够大使凝结水顺利排走,无溢出。

表冷器的盘管设计工作压力为L 0MPa,无泄漏。

5.风机段

应采用变频电机,频率变化范围为20~50Hz。

电动机绝缘等级为H级,防护等级为IP55,电源电压为380V/50Hz,电机转速不应

趟过1450rpm。

电动机应能满足在温度≤45℃,相对湿度≤100%的环境中存储和连续运行。

风机采用皮带传动方式,便于电机的拆除、运输及更换。

6.消声段

根据整机噪声限值要求设置片式消声器。

消声器面板在穿孔后应进行防腐处理,面板与消声棉之间的滤布要求具有憎水性。

消声器的结构形式应便于拆装,且消声器前后设有检修门以便清灰

二、柜式空调器

用于车站管理用房及设备用房,由表冷器、风机、粗效过滤器、箱体等组成

一般采用吊装方.

三、风机盘管

用于车站的出人口长通道、管理用房及设备用房,由表冷器、风机等组成,为地铁通风空调工程空调末端设备。

特点:(1)风机应用耗电省、噪声低、调速范围宽;

(2)电动机应满足高、中、低三档转速稳定运行

第三节风阀

地铁通风空调工程使用的风阀包括:

1)调节阀,包括单体风阀、组合风阀;

2)防火阀,包括防火阀(70℃)、防火阀(280℃)、排烟防火阀等。

风阀的工作原理:

1)、调节阀是通过电动、手动调节风阀叶片的开启角度和开、闭,调节风量;

2)、防火阀是通过温度熔断器自动或手动、电动关闭风阀叶片,隔离防火区。

一、单体风阀

组成:主要由阀体、叶片、传动机构、执行器等

作用:用于车站大、小系统相对截面不大的风道或风管上调节谴风或排风量,控制方式为手动和电动。

二、组合风阀-代号:DZ

组成: 底框、单体风阀、传动机构、执行器等

作用:用于区间隧道通风系统、站内隧道通风系统和车站大系统,调节送风或排风量,控制方式为电动.

电动执行机构特点:

具有远距离电动控制和现场手动控制功能、机械和电气两种限位装置、延时报警功能,并应设置接线盒。

电动执行器与风阀转轴的连接方式应设有有效的防止打滑措施。

三、防火阀代号:FHF

1.防火阀(70℃)

动能:1.常开,70℃感温自动关闭,手动关闭和复位复位无怨触电阀门开/管信号输入。

2.在一定的时间内能满足耐火稳定性及耐火完整性,起隔烟阻火的作用。

3.设置在大、小系统送、回(不兼排烟)风管、排(不兼排烟)风管穿越公共区与设备

区防火隔墙处、楼板处、通风空凋机房隔墙处、变形缝处,小系统送、回(不兼排烟)管、排(不兼排烟)风管穿过非气体保护房间的各种配电房、控制室隔墙处。

2、防火阀(280℃)

功能:与70℃防火阀相同

区别:发生火灾时管道内气体温度状到280℃时才动作

设置在大、小系统排烟风管穿越公共区与设备区防火隔墙处、楼板处、通风空调机房隔墙处、变形缝处,小系统排烟风管穿过非气体保护房间的各种配电房、控制室隔墙处。站内隧道通风系统末端管路接入排热风室隔墙处。

3.排烟防火阀(70℃)

为常开,温度达到70℃熔断关闭、手动关闭、24 V电信号关闭、手动复位、输出开、关电信号类防火阀。

服务于气体保护房间的小系统风管穿过该房间的隔墙处。

第四节消声器

1.消声器是允许气流通过,同时又使气流中的噪声得到有效降低的消声设备。

2.阻性消声器的工作原理是:利用声波在敷设于气流通道内多孔性吸声材料中传播,因摩擦将声能转化为热能而散发掉,使沿管道传播的噪声随距离而衰减,从而达到消声、降低噪声目的。

通常选用的是金属外壳片式消声器和结构片式接与风机前后管相连接;

结构道内以及活塞风消声片内部应采用不燃性吸声材料,并能在150℃或250℃:烟气情况下持续有效工作1h

消声器的结构特性

1.按结构形式分:管道消声器、风道消声器

1)风道消声器:结构片式消声器,片间自锁连接,不需预埋件。为了维护、检修方便,在适当位置设置活动消声片、检修通l道或检修门

2)管道消声器:大型壳体消声器外壳采用单体壁板现场组拼,内部吸声片也采用单元体片式连接结构;小型壳体消声器为整体式结构。

2.外观要求

消声器外观要求平整,壳体、筋板、法兰等金属件平整清洁、无锈痕污物、无切割毛口、无凹坑、划伤、损伤、缺角等明显缺陷。

第五节冷水机组

冷水机组是为地铁车站空调大、小系统提供冷源的设备。

常用:螺杆式冷水机组、离心式冷水机组。

螺杆式制冷机组的特点:

1)结构简单、制冷效率高、易损件少、体积小重量轻、占地面积小;运动部件少、检修周期长

2)振动小、对基础要求低;制冷量可在10%一100%的范围内无级调节;

3)机组可采用高精度大屏幕触摸屏,全数字化中文显示;可实现计算机多重控制功能,操作更方便、更安全、更可靠。

4)缺点:运行噪声较高。

螃蟹甲站冷水机组效果图

第五节冷水机组

螺杆式制冷机组的工作原理

是容积回转式压缩机,靠机体内的一对相互啮合的阴阳转子旋转时产生周期性的容积变化来完成气体压缩,与冷凝器、热力膨胀阀、蒸发器一起工作实现制冷。一般阳转子为主动转子,阴转子为从动转子。

一、机组结构

机组组成:制冷压缩机、冷凝器、蒸发器、润滑系统、控制系统、保护系统、节流装置等。压缩机机组:全封闭或半封闭螺杆式制冷压缩机;

冷凝器:壳管式换热器;

蒸发器:满液式蒸发器。

润滑油应选用质量优等的产品;

机组用压缩机组件、温度和和压力传感器、油过滤器组件、安全阀与其他各类阀件、压力容器组件、油分离器组件等,应选用优质、高性能、高可靠性的产品。

(1)控制系统的控制功能:

启停控制、冷冻水出水温度控制、压缩机和节流装置的调节、单机及附属设备的程序控制、防反复启动逻辑、电流负荷限制等功能。

A、控制方式要求:

机组控制模块的自适应控制方式自动运行而避免由于制冷温度低,冷凝器温度高及电动机电流过负荷等非正常工况所引起停机,

只有在非正常工况延续到超出保护极限时,机组才会停止运行。

B、保护功能要求:

机组应具有断水、蒸发器冻结、冷媒不足、冷媒压力过低、冷媒压力过高、压缩机倒转、缺相、电动机绕组温度过高、冷媒排出温度过高及断油、吸气压力过低、排气压力过高、油位过低、油温过高保护等。

第五节冷水机组

(2)控制显示器:

应有水温设定值、电流极限设定值、蒸发器冷媒压力和温度冷凝器冷媒压力和温度自诊断检查和显示功能;

应能记录和保存多个故障,及故障发生的时间、名称等。

(3)自适应控制功能:

应在系统的任一参数变化到极限而有可能损坏机器或因此引起停机的情况下能够启动保护机组的作用功能,而且机组的控制模块能够进行修正,以确保机组运转。

机组设定的基本设置参数和控制参数应具有防丢失功能。

(4)机组各零部件的安装

应牢固、可靠,制冷压缩机应有防振动措施。

机组运转时应无异常响动,管路间或管路与零部件间不应有相互摩擦和碰撞。

(5)机组的隔热层

应有良好的隔热性能,在正常工作时表面不应有凝露现象。

机组的零部件和材料应符合有关标准的规定,满足使用性能要求。

二、外观外观

(1)机组涂装件表面应平整光滑、色泽一致,不应有明显的气泡、留痕、漏涂、底漆外露及不应有的皱纹和其他损伤。

(2)机组外壳保温应满足不产生冷凝结露的要求,对所有可能产生冷凝结露的部位要求在出厂前进行保温处理。

三、性能

(1)机组名义工况时的温度条件,应满足有关标准的规定。机组的控制、保护及显示功能,通信接口应满足控制系统要求。

(2)机组在名义玉况进行试验时,制冷量最大偏差应不小于名义值的95%;

消耗总电功率最大偏差不应大于机组名义值的105%;

冷冻水、冷却水的压力损失最大偏差不应大于名义值的110%;

冷水、冷却水的流量与名义规定值的偏差不得大于土5%

(3)机组名义工况性能系数应至少能满足国家标准《冷水机组能效限定值及能源效率等级》GB19577——2004中的2级水平。

(4)机组额定噪声值应≤86dB(A);机组振动值不应超过15μm/S。

(5)机组应具有较宽广的冷量调节范围,即机组的能量调节可在25%~100%的范围内连续进行;

为确保机纽安全可靠地启动以及在低压工况下正常运行,机组润滑油系统采用混合式油循环系统。

第六节冷却塔

冷却塔是为冷水机组冷却器提供冷却水的设备。

冷却塔的工作原理:

用水和空气的接触,通过蒸发作用来散去冷水机组冷却器产生的热。当干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒人塔内。当水滴和空气接触时,由于水蒸气表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温的目的。

地铁通风空调工程冷却塔一般安装在城市交通要道绿化带,要求冷却塔为超低噪声玻璃钢冷却塔。

一、冷却塔整体性能要求

(1)、塔体采用钢框架,所有钢构件采用热镀锌,塔体面板应采用优质材料,并考虑抗太阳辐射的影响,使其具有抗老化能力。

塔体框架结构应保证塔体在安装、运行后的稳定性,抗风、抗振、防盗。塔体外表面应有均匀的胶衣层,表面应光滑、无裂纹、色泽均匀。塔体边缘应整齐、厚度均匀、无分层、

切割加工断面应加封树脂。

(2)、冷却塔具有阻燃或不燃要求,填料应具的热力性能及阻力特性,耐高温、抗低温、阻燃性能好。

二、冷却塔工作性能要求

(1)在电压正常波动范围内能正常启动和运转,机组在使用现场组装后,应进行检查和试运转。

(2)按水温降对比法求出的实测冷却能力与设计冷却能力的百分比不得小于95%。

(3)单台冷却塔塔根据标准测试方法运行时噪声要求不超过60dB(A)。除了部分转动部件在正常寿命时间后更换外,填料的使用寿命不小于15年,其余的材料和部件应在正常情况下运、行不少于20年使用年限。

第六节冷却塔的组成

第七节水泵

水泵是为空调输送冷冻水、冷冻回水、冷却水的设备,主要是离心式水泵

离心式水泵的基本构造组成:

外壳、电机、叶轮、泵轴、轴承、轴封箱、密封端盖、联轴器等。

离心式水泵的工作原理:

水泵运转后,在叶轮高速旋转而产生的离心力的作用下,叶轮流道里的水被甩向四周,压人蜗壳,叶轮人口形成真空,水沿吸水管被吸人;吸人的水又被叶轮甩出经蜗壳而进入出水管,这样叶轮不断旋转,连续吸水、压水,输送水流。

一、水泵的技术性能

离心式水泵运行介质为清水,冷冻水进出水温为2/7℃,冷却水进出水温为32/37℃,靠离心式水泵输送。

整体性能应满足下列要求:

(1)水泵的工作压力应能承受土1.5倍工作曲的试验压而不渗漏。

(2)功率在22kW以上的离心式水泵转速不应超过1500rpm,运行时噪声应尽量低,符合环保部门要求,机座应提供安装减振设计。水泵配套有减振器和减振支架。

(3)所有水泵必须在工厂组装完整,并进行机械运转试验。

(4)水泵设计参数工作点的效率应≥70%。

(5)水泵电机功率应大于水泵在任何工作点所需轴功率的1.1倍。

(6)水泵应在额定及实际运行电压下能正常启动和运转。

(7)水泵的密封采用机械密封,漏水量≤1~2滴/h。

二、水泵的各部件

1.外壳

(1)外壳应为铸铁制造或承压能力更高的材料,应设有排水及排气孔。

(2)泵壳外表面应平滑、无砂眼或其他铸造缺陷,内表面经过抛光处理或由精密树脂铸造。

2.电机

(1)电机为三相鼠笼式异步电机,应采用高质量产品。

(2)电机的绝缘等级为F级,防护等级≥IP55。

(3)电源额定电压为380V/50Hz。

(4)电机的冷却方式采用风冷。

(5)正常运行时电机的电流值,不应超过额定电流值。

3.叶轮

(1)叶轮制造材料应为青铜或不锈钢。

(2)叶轮应加以固定以防止其按指定方向旋转时沿周向和轴向移动

地铁机电安装知识(通风空调概述)

目录 1、概述 (3) 2、通风空调系统分类 (3) 3、通风空调各系统组成及工作原理 (3) 4、车站排热系统 (7) 5、送排风(排烟)系统 (9) 6、空调通风(净化)系统 (11) 7、空调水系统 (13) 8、通风空调系统的控制方式 (15)

地铁通风空调系统简介 1、概述 地铁,顾名思义,是在地下运行的轨道交通工具。它是由区间隧道和站区构成的封闭式空间,它在作为城市地下交通的同时还肩负着战时人防的重要功能。地铁是作为一个特殊的公共场所,人口密度高,流量大,所存在的潜在危险也不容忽视。在这个封闭的空间里,由于空气流通不畅,随着季节、天气、客流量的变化而变化,同时地铁设备的运行所散发的热量及废气若不及时排除,将使本站和区间温度空气污染温度上升,空气质量下降,严重影响到地铁乘客乘车舒适度及车站办公人员工作环境的乘车环境。如何有效的控制室内环境,为乘客提供一个舒适、安全的乘车环境,如何在发生灾害(例如火灾)情况能够迅速和安全的帮助乘客离开现场,减少乘客和公共设施的损失通风空调系统发挥着极其重要的作用。归纳起来地铁通风空调系统有以下四方面作用: 1)为乘客正常行车创设舒适的环境; 2)为工作人员提供合理的工作环境; 3)保证设备正常运行; 4)事故及灾害情况下,进行合理的气流组织,及时排烟,诱导乘客疏散。 2、通风空调系统分类 2.1地铁通风空调系统按其质量验收规范分部工程分为:送排风系统、防排烟系统、空调风系统、冷却水系统、冷冻水系统

2.2按功能区域分为:隧道通风系统、排热系统、送排风系统、空调大系统(公共区空调通风)、空调小系统(设备办公区及设备机房空调通风)、空调水系统。 3、通风空调各系统组成及工作原理 3.1隧道通风系统组成 区间隧道活塞风与机械通风系统(兼排烟系统),简称TVF系统。隧道通风系统组成按照风亭至轨行区排列,一般主要设备包括:风亭、立式组合风阀、消声器、渐扩管、耐火软接、事故风机(可逆转轴流风机)、耐火软接、渐扩管、消声器、卧式风阀、就地控制箱、控制柜,按照该组成方式,在每个车站的两端安装分别两套,按照不同的功能模式,实现与风机同步配置运行的电动风阀(与风机开启状态一致),实现风机正反转(送排风)的单台或两台并联运行。其系统设备组成详见图1

广州地铁通风空调系统设计说课讲解

广州地铁通风空调系统设计 简介:随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 关键字:通风空调地铁冷负荷 前言 随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 一、工程概述

广州市地下铁道二号线首期工程全程约23.245km,南起于琶洲站,北终于江夏站,共设20个车站。新港东站是首期工程中第二个车站,编号为202,位于华南快速大道东侧新港东路中心,东侧为琶洲站,西侧为磨碟沙站,附近有广州会展中心和广州博览中心等大型建筑。车站总长度206.2m,标准段宽度16.5m,为单层明挖侧式站台的地下车站,站台在轨道两侧纵向布置,站厅为服务及中转区域,设在南北两侧中部,站台边缘设置屏蔽门与轨道隔开。由于轨道将车站分割为南北两侧,因此南北两侧均设环控机房及设备管理用房。车站东端隧道风亭及排风亭设于车站东端南北两侧,西端隧道风亭及排风亭,车站中部新风亭及排风亭结合出入口设于中部南北两侧,本车站南北两侧各有六个风亭。整个车站呈一个古字“車”形。车站总布置详见附图1。 根据隧道通风系统的要求,在车站两端布置相应的隧道通风设备。根据地铁运营环境要求,在车站站厅站台的公共区部分设置通风空调和防排烟系统,正常运行时为乘客提供过渡性舒适环境,事故状态时迅速组织排除烟气(简称大系统)。根据地铁设备管理用房的工艺要求和运营管理要求设置通风空调和防排烟系统,正常运行时为运营管理人员提供舒适的工作环境和为设备正常工作提供必需的运行环境,事故状态时迅速组织排除烟气(简称小系统)。

轨道空调系统简介

地铁通风空调系统 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1、开式系统 开式系统是应用机械或"活塞效应"的方法使地铁内部与外界 交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1)活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以内、风道面积大于10m2时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全"活塞通风系统"只有早期地铁应用,

现今建设的地铁多设置活塞通风与机械通风的联合系统。 暖通-空调-在线 2)机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2、闭式系统 闭式系统使地铁内部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的"活塞效应"携带一部分车站空调冷风来实现。这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间内每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。暖通空调在线 3、屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以内时,应采用空

地铁通风及空调工程施工方案

西安地铁 通风空调工程施工方案 编制人: 审核人: 批准人: XXX有限公司 西安地铁XX项目经理部 XXX年02月17日

目录 第一章、编制说明 (4) 1.1编制前言 (4) 1.2编制依据 (4) 1.3编制原则 (5) 第二章、工程概况 (6) 2.1工程简介 (6) 2.2工程特点 (8) 2.3施工范围 (8) 第三章、施工总体部署 (9) 3.1施工组织管理体系及质量管理体系 (9) 3.1.1施工组织管理体系 (9) 3.1.2质量管理体系 (9) 3.1.3施工及质量管理机构设置 (10) 3.2施工组织作业计划 (10) 3.2.1总体原则 (10) 3.2.2施工顺序 (11) 3.2.3劳动力安排 (12) 第四章、施工准备……………………………………………………… 12 4.1组织准备 (12) 4.2技术准备 (12) 4.3劳动力准备 (13) 4.4施工机械、机具准备 (14) 4.5材料、设备准备 (16)

4.6施工现场用电准备 (17) 4.7建立健全各项管理制度 (17) 第五章、主要施工方法及技术措施…………………………………… 18 5.1施工依据及主要参考资料 (18) 5.2现场施工及质量控制流程图 (19) 5.3主要施工方法及技术措施 (20) 5.3.1、通风与空调施工顺序安排 (20) 5.3.2、通风管道施工工艺流程图 (22) 5.3.3、风管制作工艺流程:风管制作工艺流程图 (23) 5.3.4、风管部件制作工艺流程 (34) 5.3.5、风管及部件安装工艺流程 (36) 5.3.6、风机安装工艺流程 (45) 5.3.7、风柜安装工艺流程 (49) 5.3.8、风管及部件保温工艺流程 (50) 5.3.9、冷冻、冷却、冷凝水管道及设备安装工艺流程 (52) 5.3.10、制冷设备的安装 (61) 5.3.11、通风空调系统调试工艺流程 (63) 第六章工期目标及工期保证措施 (69) 6.1工期目标 (69) 6.2工期保证措施 (69) 第七章、施工进度计划安排…………………………………………… 70 第八章、施工资源投入………………………………………………… 71 第九章、现场的材料供应和管理措施…………………………………

地铁车站通风空调系统优化设计探讨

地铁车站通风空调系统优化设计探讨 【摘要】以缩小地铁车站规模、减少工程投资为出发点,在满足地铁车站通风空调系统基本功能的前提下,通过对地铁隧道通风系统和空调水系统遇到的设计问题进行总结,提出优化设计方案供设计参考。隧道通风系统可通过设置单活塞风井来压缩车站规模,减少活塞风亭对车站周围环境的影响。同时特殊区段的隧道通风系统,可在充分了解地铁隧道通风系统原理的基础上优化系统设计,降低车站土建规模、避免对重要场合周围建筑景观的影响。地铁车站空调水系统可以选择设置集中冷站和采用新型制冷设备等方式来减小冷水机房的面积。 【关键词】地铁车站;通风空调;优化设计 0 引言 城市轨道交通作为城市中重要的交通工具,具有舒适、快捷等特点。随着我国国民经济的发展与城市化水平的不断提高,越来越多的城市开始建设并拥有地铁。地铁通风空调系统设备庞大,其布置方案的合理与否直接影响车站的建筑规模。地铁车站一般分为公共区和设备区,通风空调系统是占用机房最多的机电系统,根据系统形式的不同,通常占用设备管理用房面积的1/2~1/3。如何在满足系统功能的前提下,减少通风空调系统占用的设备用房面积,减小车站土建规模,降低地铁投资一直是地铁设计者的努力方向。 以缩小地铁车站规模为出发点,在满足系统基本功能的前提下,本文通过对实际设计过程遇到的问题进行总结,提出设计方案供设计参考。 1 车站隧道通风系统优化设计方案 目前上海、广州、深圳、成都等城市设计的地铁都采用了屏蔽门(Platform Screen Door,PSD)系统,很多采用开式或闭式系统的车站也加装了屏蔽门。屏蔽门系统的设置可以有效防止乘客有意或无意跌入轨道,减小噪声及活塞风对站台候车乘客的影响,改善了乘客候车环境的舒适度,具有节能、安全、美观等特点,在地铁中的应用越来越广泛。 屏蔽门系统的应用使隧道与车站分隔开来,不仅减小了车站公共区空调负荷,对隧道通风系统的形式与运行效果也产生了影响。 1.1 单活塞风井方案

地铁通风空调系统设计分析

地铁通风空调系统设计分析 发表时间:2019-08-16T09:48:31.743Z 来源:《科技新时代》2019年6期作者:骆运霖[导读] 因此要求设计人员在进行地铁通风空调系统设计时,必须要加强对相关结构和构件的设计应用,提高设计质量。 广州广电运通智能科技有限公司广东广州 510663 摘要:交通事业是我国的基础建设事业,交通事业的发展对于我国经济社会发展的重要性是毋庸置疑的,所以随着我国现代化建设水平的不断提高,我国的交通事业发展也在进一步加快。当前我国的道路交通系统建设逐渐向着智能化和立体化的方向发展,特别是地铁作为当前城市的新型交通方式,给人们的生活提供了更大的便利。地铁在建设的过程中,通风空调系统是十分必要的,可以保证地铁车厢内空气的正常流通,保证空气质量,这对于保护人们的身体健康也有着积极作用。所以本文就对地铁通风空调系统进行分析,并探究其设计和优化的有效策略。 关键词:地铁;通风空调系统;设计地铁是目前我国城市交通体系中的重要构成部分,很多城市都已经进行了地铁的建设,而地铁作为一种地下公共交通方式,其建设和发展能够使城市交通系统向着更加立体化的方向发展,提高城市交通系统的运行效率和水平,给人们的出行带来更大的便利,促进城市的快速发展。在地铁系统中,通风空调系统是其中的基础系统,通风空调系统的设计和施工能够为人们提供更舒适的出行体验,所以在现代地铁的设计工作中,必须要加强通风空调系统的设计和施工。 一、地铁通风空调系统的类型 1、开式系统 开式系统是早期地铁通风空调系统的主要类型,其具体又可以被划分为带空调的开式系统和不带空调的开式系统,其主要区别在于通风空调系统在运行时是否使用空调进行辅助。带空调的开始系统在运行时,需要利用空调对空气流通进行辅助,以此来提高通风效果;而不带空调的开始系统在运行时,不需要使用空调进行辅助,只是利用了隧道的方向流动,充分利用自然风带动空气流通。所以由此可见,开式系统在运行时具有低能耗的明显优势,其自然通风率更高,对自然风的利用率也更高,可以减少能源浪费,但是却无法充分满足乘客的需求。 2、闭式系统 闭式系统是与开式系统相对应的地铁通风空调系统,这种系统与开式系统存在着明显的差异,地铁车厢内部与外部是完全隔离的地铁车厢内部与外部是完全隔离的,其通风功能的实现完全依赖于空调设备和排风系统等。所以闭式系统在设计和施工的过程中,需要使用到大量的相关基础设备,而且设备的运行也需要消耗大量的能源,所以能耗比较高。但是,闭式系统能够应用于更大运载量的地铁站中,而且由于地铁内外的充分隔绝,所以可以安装大量的空调和排风系统,与自然风相比,能够为乘客创造更舒适的环境。 3、屏蔽门式系统屏蔽门式系统是近几年来地铁通风空调系统中发展出来的新类型,该系统已经在地铁站的通风空调中得到了有效的应用,其在运行的过程中,屏蔽门能够将地铁的隧道与车站隔离开来,这样地铁站内的通风系统就可以充分发挥出作用,其隔热性能良好,也可以有效保持地铁站内的温度适宜。屏蔽门还具有隔音效果,所以可以有效避免噪声对车站内造成影响。所以屏蔽门式系统已经成为了地铁通风空调系统的主要发展类型,其运行稳定性更强,能耗也得到了有效控制,通风性能更强。 二、地铁通风空调系统设计的问题 1、参数不合理 地铁通风空调系统在设计的过程中,参数的选择是极为重要的,这会对整个系统的功率、功能的发挥以及施工都会产生影响,进而影响到工程的整体质量。地铁通风空调系统的参数会受到多方面因素的影响,比如材料性能、质量以及相关设备的分布等,而设计人员往往没有对其进行深入分析,导致参数设置不合理,使地铁通风空调系统发挥出应有的作用。 2、能耗高 地铁通风空调系统在运行的过程中势必会消耗大量的能源,这是无法避免的,但是能耗却是可以控制的,可是大部分的设计人员在进行系统设计时,却没有考虑到其能耗问题,只考虑其质量和功能,对自然通风的利用率不足,空调系统的功能设置也不合理,这样使得通风空调系统的运行能耗加大。 3、结构不协调 地铁的通风空调系统结构比较复杂,所以在设计的过程中必须要保证结构的协调性,要严格遵循相关规范,并做好后期维护工作。但是很多设计人员在进行地铁通风空调系统的结构设计时,都存在着结构不协调的情况,无法对材料的用量和质量进行有效控制,这会给工程施工造成不利影响。 三、地铁通风空调系统的设计优化 1、利用自然风 在地铁通风空调系统的设计过程中,系统功能的实现不应该仅仅依赖于通风设备,否则会导致能耗过高,这不符合我国的可持续发展战略的要求。所以在现代地铁通风空调系统设计过程中,设计人员需要加强对自然风的利用,要利用自然通风适当替代排风设备的功能,以此来有效降低系统运行的能耗,从而达到节能减排。 2、完善系统冷源设置地铁的通风空调系统比较复杂,其在设计和运行的过程中能够发现,需要大量的设备进行辅助,这就导致了系统在运行的过程中会产生较大的能耗,同时设备本身的温度还会增加,这会使能耗进一步加大,能源的利用率降低。所以在地铁通风空调系统的设计工作中,必须要合理设置冷源,在每个组成部分分别设置不同的冷源,以此来实现对设备的降温和区域温度的调节,减少系统运行的能耗,提高能源利用率。 3、屏蔽门转换装置

地铁站通风空调施工方案

1、通风空调系统概述 本标段车站属于高架车站,车站通风空调系统主要由车站公共区通风空调系统(简称车站大系统)和车站设备管理用房通风空调系统(简称车站小系统)两部分组成。 车站大系统以自然通风方式为主,系统主要设备包括多联式新风系统、分体空调、墙壁式排风扇等。车站小系统主要设备包括送风机、排风机、墙壁式排风扇、吸顶式排气扇、多联式空调系统、多联式新风系统、分体空调等。 2、施工组织 组织有经验的施工骨干按照图纸进行定位放线、预留预埋、加工制作与安装。协调好与其它各专业的关系,确保质量、安全和工期满足工程要求。 3、施工重点难点控制 通风空调系统由通风系统和空调系统两部分组成,其中风管的制作与风管安装、水管的安装、空调工程设备安装、管道的检验试验、管道、设备绝热施工、空调设备的单机试运转与调试和无负荷联合试运转与调试构成了通风空调施工的主线,也是影响整个系统质

量的关键点,需进行重点控制。 3.1风管制作与安装 3.1.1材料的选择 本车站所有风管均采用镀锌钢板风管材料,镀锌钢板的厚度不小于下表规定: 防火风管的本体、框架与固定材料、密封垫料必须为不燃材料,其耐火等级应符合设计规定。 3.1.2风管制作 制作时以机械加工为主,手工制作为辅,采取场内预制;预制过程中应严格控制预制风管规格尺寸和设计风管规格尺寸一致,风管板材拼接的咬口缝应错开,不得有十字形品接缝。风管预制作业分为法兰和风管两条制作线,进行平行流水作业

3.1.3风口加固 风管边长大于630mm、保温风管边长大于800mm,管段长度大于1250mm或低压风管单边平面积大于1.2m2,中、高压风管大于1.0m2,均应采取加固措施。 边长小于或等于800mm的风管,宜采用愣筋、楞线的方法加固;中、高压风管的管段长度大于1200mm时,应采用加固框的形式加固;高压风管的单咬口缝应采取加强措施加固;风管的板材厚度大于或等于2mm时,加固措施的范围可适度放宽。几种常用加固的形式如下:

地铁通风空调系统方案

地铁通风空调系统 【摘要】简述了地铁通风空调系统和设备控制模式 【关键词】地铁通风空调系统控制模式 1概述 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1.1 开式系统 开式系统是应用机械或“活塞效应“的方法使地铁部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1.1.1 活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以、风道面积大于10㎡时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全“活塞通风系统”只有早期地铁应用,现今建设的地铁多设置活塞

通风与机械通风的联合系统。 1.1.2 机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2.1 闭式系统 闭式系统使地铁部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的“活塞效应”携带一部分车站空调冷风来实现。 这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。 2.2 屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以时,应采用空调或其他有效的降温方法。 安装屏蔽门后,车站成为单一的建筑物,它不受区间隧道行车时活塞风的影响。车站的空调冷负荷只需计算车站本身设备、乘客、广告、照明等发热体的散热,及区间隧道与车站间通过屏蔽门的传热和屏蔽门开启时的对流换热。此时屏蔽门系统的车站空调冷负荷仅为闭式系统的22%~28%,且由于车站与行车隧道隔开,减少了运行噪声对车站的干扰,不仅使车站环境较安静、舒适,也使旅客更为安全。 地铁环控系统一般采用屏蔽门制式环控系统或闭式环控系统。屏蔽门制式系统

地铁通风及设备.ppt.Convertor

第一章地铁通风空调工程概述 地铁通风空调系统是应地铁特殊的环境需求而产生。 原因: 1.温度:基本与外界隔绝,高密度列车运行、设备运转和大量乘客的集散产生的热量,地层的蓄热,若不及时排除,空气温度 2.湿度:地铁周围土壤通过地铁围护结构渗湿量也较大,空气湿度,乘客难以忍受,地铁设备正常运行也会受到影响。 3.新鲜空气:巨大的客流,补充新鲜空气,保证地铁内的空气环境。 必须设置通风空调系统,对地铁内部的空气温度、湿度、气流速度和空气质量等空气环境因素进行控制,为乘客和工作人员提供一个舒适的环境,并满足地铁设备正常运行的需要。 第一章地铁通风空调工程概述 概述 通过空气处理机组、风机、冷水机组、冷却塔、水泵、风阀、消声器、变频多联空调机、BAS系统等设备的工作,实现对地铁线路的站厅、站台、隧道正常工况时的 通风空调;阻塞、事故、火灾等工况时的通风的工程。 地铁通风空调系统是地铁环控系统的主体部分。 第一节地铁通风空调工程的组成 一、组成

第一节地铁通风空调工程的组成 二,作用 1.为乘客提供过渡性舒适环境: 往返于地面到车站至列车内 2.当列车阻塞在区间隧道时,通风系统向阻塞区间提供通风: 保证列车空调正常工作,维持列车箱内乘客在短时间内能承受的环境条件; 3.在车站或区间隧道发生火灾时,通风系统有效排烟: 向乘客和工作人员提供必要的新风和通风,使得乘客和工作人员能安全迅速 疏散,为消防人员灭火创造条件; 4.满足地铁车站内管理用房及设备用房的温度、湿度要求: 提供良好的工作环境和保证设备正常运行环境。 三、基本要求、设计原则和标准《地铁设计规范》GB50157—2003 1.基本要求: 当列车正常运行时,应保证地铁内部空气环境在规定范围内; 当列车阻塞在区间隧道时,应保证阻塞处的有效通风功能; 当列车在区间隧道发生火灾事故时,应具备防灾排烟、通风功能; 当车站发生火灾事故时,应具备防灾排烟、通风功能。 2.地铁隧道、车站室内参数及设计原则(部分): 列车车厢设置空调,车站设置屏蔽门时,地铁隧道夏季的最高温度不得高于40℃; 当地下车站采用空调系统时,站厅层的空气计算温度比空调室外计算干球温度低2—3℃,且不应超过30℃; 站台层的空气计算温度比站厅层的空气计算温度低1—2℃; 当采用空调系统时,每个乘客每小时需供应的新鲜空气量不应少于12.6m3,且系统的新风量不应少于总送风量的10%。 地下车站管理用房及设备用房内每个工作人员每小时需供应的新鲜空气量不应少于30m3,且新风不应少于总送风量的10%。 3. 对噪声控制的标准 地铁的通风空调系统设备传至站厅、站台厅的噪声不得超过70dB(A); 车站管理用房及设备用房的通风空调应有消声和减振措施。 通风空调设备传至各房间内的噪声不得超过60dB(A); 通风空调机房内的噪声不得超过90dB(A)。 这些基本要求、设计原则和标准,能有效保证地铁通风空调工程实现其功能 第二节隧道通风系统 活塞通风: 一般是在车站在两端上下行线各设一个活塞风道及相应的风井 原理: 利用地铁列车在隧道内高速运行所产生的活塞效应(指在隧道中高速运行的列车,会带动隧道中的空气产生高速流动,类似汽缸内活塞压缩气体(如图)的现象)而形成的通风,实现隧道与外界通风换气

地铁通风空调系统的优化措施及发展趋势

地铁通风空调系统的优化措施及发展趋势 发表时间:2019-04-12T11:31:58.267Z 来源:《建筑细部》2018年第19期作者:孙海林 [导读] 为了更加有效的提高地铁通风空调系统的各项功能,就需要针对地铁通风空调系统展开优化,同时还需要充分分析出地铁通风空调系统的未来发展趋势 中铁第六勘测设计院集团有限公司隧道设计分公司天津 300000 摘要:为了更加有效的提高地铁通风空调系统的各项功能,就需要针对地铁通风空调系统展开优化,同时还需要充分分析出地铁通风空调系统的未来发展趋势,以便为其今后的发展提供良好的基础保障。在本篇文章中将会制定出地铁通风空调系统的具体优化措施,而后针对地铁通风空调系统的未来发展趋势展开分析,希望可以为相关人员提供参考帮助。 关键词:地铁通风空调系统;优化措施;发展趋势 地铁通风空调系统在地铁结构中占据着极为重要的位置,其在地铁中主要负责地铁车厢内部的空气温度、湿度、流速等方面的控制。虽然传统的地铁通风空调系统可以为地铁的正常运行提供保障,但该系统在实际运转的过程中会出现诸多问题,例如冷却塔噪声较大等,最终就会影响到乘客的正常乘坐,因此就需要针对地铁通风空调系统制定出相应的优化措施,最终为系统与地铁的正常运行提供保障。此外,为了可以促使地铁通风空调系统在未来的发展中获得更加广阔的发展空间,还需要针对其未来的发展趋势展开分析。 一、地铁通风空调系统的具体优化措施 1、在通风空调电源系统中应用节能技术 地铁通风空调电源系统中实际应用节能技术的主要作用,就是为了可以有效降低电力能源的消耗,并且从根本上实现建筑工程节能的目的,同时电气电源节能会尽可能的降低在输送、运行、转换等方面中所消耗及使用的电能,通常情况下可以将通风空调电源系统的节能设计分为以下几种: 1.1、供配电系统的节能设计 为了可以更好的实现供配电系统的节能设计,就需要采用可以提高系统运行电压的因素以及降低无用功率与导线中的电阻等方式,同时还需要降低供配电系统线路出现损耗的情况,一般情况下供配电系统的节能设计可以通过以下几个方面来实现:第一个方面是根据负荷容量、供电距离、分布以及用电设备的特点等方面,设计出相对而言更加合理的供配电系统以及选择的供电电压,同时供配电系统需要尽可能的简单,而且相同电压的供电系统最高变配电级数不可以超过两级;第二个方面是在设计变电所的过程中,需要尽可能的将其靠近负荷中心,同时需要所见配电的半径距离、降低线路的损耗,而且还需要尽量缩短相应的用电客户内部变电所之间的宜敷设联络线,并根据实际负荷情况切除部分变压器。 1.2、变压器的节能设计 变压器节能设计的主要作用就是降低其实际的能源损耗、提高其实际的运行效率。在开展变压器节能设计工作时,除去变压器固定的铁损、杂散损耗、铜损之外,需要充分重视变压器在运行过程中的减损工作。变压器的经济运行在节能的同时还可以降低运行费用,不仅可以节省经济支出方面,同时还可以降低变压器出现损伤的情况。此外,需要选择合适的变压器容量与台数,可以选择容量与电力负荷相互适应的变压器,并对其实际负荷展开合理的分配,确保其可以工作在高效区域内【1】。 2、充分采用大小系统来分化冷源 小系统需要充分采用变频多联机的方式,在白天运转的过程中可以为公共区域提供服务,到夜间地铁停止运行之后可以充分控制空调内部的水系统,从根本上规避冷却塔在夜间运转时产生噪音的可能性。同时该种系统的操作较为简洁,同时在展开维护工作时,维护工作量相对较低。除此之外,当采用大小系统来分化冷源时,可以有效降低空调机房的实际面积,并且可以有效节约建造空调机房的资金,同时对于维护工作以及检修工作而言,该系统可以为其提供诸多便利,最终为地铁通风空调系统的服务质量起到一定程度上的推动作用。 3、全面优化对冷却塔噪声的控制 在实际优化对冷却塔噪声的控制时,可以充分通过以下几个方面来实现:第一个方面是全面控制声源出现噪声的可能性,在实现这一目标的过程中可以通过使用大叶轮、阔叶弧形叶片、风机端的平整度、动平衡低转速电动机、低噪音轴承等方式,来实现全面控制声源出现噪声的几率;第二个方面是可以选择在风机的顶端安装导流筒、ZP型号阻性消音器、导流消音弯头等方式,来更改消防喷淋水以及喷雾的喷洒方向;第三个方面是通过采用DZ型号的通风消音百叶屏的方式充分遮挡冷却塔,并且还需要确保遮挡的密封性同时在上方留出一个可以供新风进入冷却塔的通道,从根本上降低淋水的噪音;第四个方面是在通风消音百叶屏的顶端安装防雨挡板,在实现遮挡淋水的同时降低噪音【2】。 二、地体通风空调系统的未来发展趋势 地铁通风空调系统作为地铁中重要的系统之一,其不仅关系到地铁在运行过程中的安全,同时对于乘客在乘坐地铁时的体验而言也会起到一定程度上的影响作用,根据目前已经优化后的地铁通风空调系统而言,其未来的发展趋势主要可以分为两个方面: 第一个方面是节能。目前我国制定了大量的法律法规来限制电量的使用,并且进行了大量的宣传来树立公民的节电意识,同时,我国在近些年来,也投入了大量的人力物力财力来开设研究项目、划出独立的资金进行电气节能技术的研究。除此之外,节能方面也被确立为我国可持续发展战略的重要组成部分,是我国进行经济战略的重要方向之一。建筑的电气节能建立在不损害建筑使用功能的基础上,同时也不能让影响国民的正常生活,也不能为了所谓的节能盲目增加投资,使节能量与投资量不成比例。基于此就可以得知在地铁通风空调系统未来发展趋势中,节能是可以有效实现我国战略决策方针以及节约资源的方式。此外,在实际向着节能方向发展的过程中,需要充分应用节能技术,在应用节能技术的过程中需要充分遵守以下几个方面的原则:第一个方面需要重视适用性,需要在设备能够正常使用的基础上实施电气节能活动;第二个方面需要充分注重电气节能的实际性,不能因为要实行电气节能而增加设备的投资而额外增加成本,使投资成本大于节能效果,也就是得不偿失。 第二个方面是绿色。绿色环保方向是近年来国家与相关部门一直重视的方面之一,而地铁通风空调系统在实际运作的过程中会出现诸

地铁通风空调系统的设计

【摘 地铁通风空调系统 吴安华 (中铁电气化勘测设计研究院路安监理公司,天津300061)要】简述了地铁通风空调系统和设备控制模式 【关键词】地铁 1概述 通风空调系统控制模式 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1.1开式系统 开式系统是应用机械或“活塞效应“的方法使地铁内部与外界交换空气,利 用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1.1.1活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小

于300m、风道的长度在25m以内、风道面积大于10㎡时,有效换气量较大。在隧 道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的, 因此全“活塞通风系统”只有早期地铁应用,现今建设的地铁多设置活塞通风与机械通风的联合系统。 1.1.2机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车 站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应 同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气 温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2.1 闭式系统 闭式系统使地铁内部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气 量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的“活塞效应”携带一部分车站空调冷风来实现。 这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间内每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。 2.2 屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧 道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道 的温度控制在允许值以内时,应采用空调或其他有效的降温方法。 安装屏蔽门后,车站成为单一的建筑物,它不受区间隧道行车时活塞风的影响。车站的空调冷负荷只需计算车站本身设备、乘客、广告、照明等发热体的散热,及区间隧道与车站间通过屏蔽门的传热和屏蔽门开启时的对流换热。此时屏蔽门系统

地铁通风空调系统

地铁通风空调系统 一.背景 地铁车站及区间隧道是狭长的地下建筑,除各车站出入口、送排风口 与外界相通外,基本上与外界隔绝。由于列车运行及大量乘客的集散,使得地铁环境具有如下特点:列车运行过程中产生大量的热被带入车站;列车及各种设备的运行产生的噪声不易消除,对乘客造成很大影响;地铁列车运行时产生活塞效应,若不能合理利用,易干扰车站的 气流组织,影响车站的负荷;地层具有蓄热作用,随着运营时间的增加,地铁系统内部的温度会逐年升高;当发生火灾事故时,将导致环 境恶化,不易救援。 二、地铁通风空调系统 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根 据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风 系统和车站设备管理用房通风空调系统。 1、开式系统 开式系统是应用机械或"活塞效应"的方法使地铁内部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均 温度低于25℃且运量较少的地铁系统。1)活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列 车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成 正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这 种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶 空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却 隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧 道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有 效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以内、风道面积大于10m2时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难 实现的,因此全"活塞通风系统"只有早期地铁应用,现今建设的地铁 多设置活塞通风与机械通风的联合系统。 暖通-空调-在线 2)机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风 系统。

地铁车站通风系统简介

地铁车站通风及排烟系统简介 1 地铁车站概况 地铁车站是城市轨道交通系统的重要组成部分,为乘客的出行提供服务的场所。地铁车站的站位选择、车站规模、布置方式等对运营效果具有决定性的意义。地铁车站一般由站厅、站台、管理及设备用房、换乘通道、地面出入口、风亭、风道等部分组成。 地铁站台是地铁车站内供乘客上、下列车的平台,根据运营功能要求,地铁站台主要分为岛式站台、侧式站台和混合式站台。 岛式站台:站台位于上、下行行车路线之间,这种站台布置形式称为岛式站台。 如图 2.1 所示。岛式车站具有站台面积利用率高、能灵活调剂客流、乘客适用方便等优点,因此,一般常用于客流量较大的车站。 (2)侧式站台:站台位于上、下行行车路线的两侧,这种站台布置形式称为侧式站台。如图 2.2 所示。

侧式站台也是一种常用的车站类型。侧式车站站台面积利用率、调剂客流等方面均不及岛式车站,因此,侧式车站多用于客流量不大的车站或高架车站。 (3)岛、侧混合式站台:岛、侧混合式站台是将岛式站台及侧式站台同设在一个车站内,可同时在两侧的站台上、下车,也可适应列车中途折返的要求,但投资较大。如图2.3所示。 2 地铁通风及排烟系统组成 地铁通风系统是多系统构成的一个复合系统,各系统之间相互配合、协调运作,维持地铁内舒适的环境。在有屏蔽门的地铁车站中通风系统主要包括车站通风系统和隧道通风系统。车站通风系统包括公共区通风系统和设备管理房通风系统;隧道通风系统包括区间隧道通风系统和车站隧道通风系统。各系统同时兼作防排烟系统。如下图2.4所示:

图2.4 地铁通风排烟系统系统构成 2.1车站公共区排烟系统 地铁车站公共区域由站厅层公共区和站台层公共区组成,其防排烟系统一般与正常的通风空调系统合设,在火灾发生时由正常的通风系统转成排烟系统:关闭空调风机,打开相应的排烟风机进行排烟。 (1)站厅层防排烟系统 站厅层公共区是地铁乘车的中转站,是连接地面与站台的枢纽,是上下车乘客的必经之地,其安全性对整个车站安全的重要性不言而喻。按照现行的《地铁设计规范》规定:地下车站站厅、站台的防火分区应划分防烟分区,每个防烟分区的建筑面积不宜超过2000m2,且防烟分区不得跨越防火分区,站厅、站台公共区的排烟量按60m3/h·m2计算,当排烟设备负担两个防烟分区时,其设备能力应按同时排除两个防烟分区的烟量配置;按照规定应将站厅层公共区用挡烟垂壁划分成多个防烟分区,当站厅公共区发生火灾时,停止车站空调系统的运行,关闭厅、站台送风系统及站台层回/排风系统,将站厅层回/排风系统切换到排烟模式,烟气经过排烟风管(道)到风井排出,因此造成站厅层的负压使得烟气得以控制而不会扩散至站台层,站厅的新风由地铁的出入口补入。 (2)站台层防排烟系统 站台公共区域是乘客候车以及上、下车的地方,人员的密度也最高,另外站台空间窄而狭长,蓄烟能力较弱,离出入口楼梯距离较远,火灾模式下烟气蔓延的方向又与乘客疏散的方向相同,增加了站台火灾的危险性,比站厅层发生火灾时的疏散和防排烟困难。地下车站站台公共区域与站厅层公共区域应划分成一个防火分区,同样根据《地铁设计规范》应用挡烟垂壁划分为多个防烟分区,风量

地铁空调系统

地铁空调系统 一、背景 地铁车站及区间隧道是狭长的地下建筑,除各车站出入口、送排风口与外界相通外,基本上与外界隔绝。由于列车运行及大量乘客的集散,使得地铁环境具有如下特点: 列车运行过程中产生大量的热被带入车站;列车及各种设备的运行产生的噪声不易消除,对乘客造成很大影响;地铁列车运行时产生活塞效应,若不能合理利用,易干扰车站的气流组织,影响车站的负荷;地层具有蓄热作用,随着运营时间的增加,地铁系统内部的温度会逐年升高;当发生火灾事故时,将导致环境恶化,不易救援。 二、地铁通风空调系统 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1、开式系统 开式系统是应用机械或"活塞效应"的方法使地铁内部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1)活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于 0."4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。 利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与

外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明: 当风井间距小于300m、风道的长度在25m以内、风道面积大于10m2时,有效换气量较大。 在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全"活塞通风系统"只有早期地铁应用,现今建设的地铁多设置活塞通风与机械通风的联合系统。 暖通-空调-在线 2)机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2、闭式系统 闭式系统使地铁内部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的"活塞效应"携带一部分车站空调冷风来实现。 这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间内每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。暖通空调在线 3、屏蔽门系统

地铁通风空调系统

地铁通风空调系统 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

地铁通风空调系统 【摘要】简述了地铁通风空调系统和设备控制模式 【关键词】地铁通风空调系统控制模式 1概述 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 开式系统 开式系统是应用机械或“活塞效应“的方法使地铁内部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1.1.1 活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。

活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以内、风道面积大于10㎡时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全“活塞通风系统”只有早期地铁应用,现今建设的地铁多设置活塞通风与机械通风的联合系统。 机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 闭式系统

相关文档
最新文档