高速铁路轨道扣件调整不平顺方法
高速铁路无砟轨道道岔精调问题分析与作业方法

1 常见问题分析与处理道岔精调指上线铺设完成、运营开通之间所进行的全部工作,高质量的道岔精调对后期的维修养护意义重大。
然而,因铺设施工精度低,精调中会遇到许多精调难点及不易处理的缺陷,需要认真分析原因,有效进行整治克缺[1]。
1.1 常见问题(1)尖轨轨距偏小,不易调整到位;(2)导曲股通长垫板处直、曲股水平偏差;(3)心轨处支距过大[2]。
1.2 产生原因分析(1)轨距指两钢轨顶面下16 mm处最小距离,量取时要求道尺垂直于两钢轨工作边,在尖轨处检查轨距,影响的主要因素为位置是否准确、尖轨与基本轨是否密贴。
(2)导曲股通长垫板处直、曲股水平偏差较大的原因主要是由于施工时轨枕存在横坡导致,检查现场轨枕水平,两侧存在最大2 mm以上的横向偏差。
(3)支距指道岔直、曲基准股工作边之间的距离,对其控制可以有效控制整体框架、曲股轨向圆顺。
客运专线18号道岔为了使列车在曲股运行更加平稳,在辙岔范围内增加8个支距点,在精调过程中,发现最多时第22点支距最大超出设计值4 m m。
心轨支距出现错误的原因:①点位错误;②心轨顶铁顶死;③拼装错误。
1.3 处理办法(1)首先检查框架尺寸偏差,是否在设计要求范围内,其次通过塞尺对病害处尖轨与基本轨密贴进行检查,最后通过更换缓冲调距块进行改道作业。
(2)采用特制调高垫板或打磨轨枕进行处理。
(3)道岔内部焊接完成后,很难找准连接部直外股尖端,可以根据尖轨跟端电务导线孔中心位置进行确认,距电务导线孔中心量取750 mm处为第一点,后面各点根据图纸间距进行控制;直股轨距调整完成后,将岔心转换到曲股位置,检查岔心顶铁是否有顶死现象,如有顶死、长心轨有变形,需对翼轨上过长顶铁取片、打磨处理;对道岔岔心结构全面检查,各部尺寸认真量取,是否有超限及轨距块装错现象。
2 精调准备与流程道岔精调的方法直接影响到进度和质量,有效的作业方法可以提高精度,降低开通维护工作量。
通过不断总结、尝试,采用传统方法与先进技术相结合的方法,使道岔精调质量进一步提高。
400 kmh高速铁路轨道几何不平顺敏感波长分析

2021年4月第12卷第2期高 速 铁 路 技 术HIGHSPEEDRAILWAYTECHNOLOGYNo.2,Vol.12Apr.2021 收稿日期:2021 03 01作者简介:杨吉忠(1980 ),男,教授级高级工程师。
基金项目:中铁二院工程集团有限责任公司科技发展计划项目(KSNQ202058)引文格式:杨吉忠,谢毅,庞玲,等.400km/h高速铁路轨道几何不平顺敏感波长分析[J].高速铁路技术,2021,12(2):50-55.YANGJizhong,XIEYi,PANGLing,etal.SensitiveWavelengthAnalysisonTrackGeometricIrregularitiesof400km/hHigh speedRailway[J].HighSpeedRailwayTechnology,2021,12(2):50-55.文章编号:1674—8247(2021)02—0050—06DOI:10.12098/j.issn.1674-8247.2021.02.009400km/h高速铁路轨道几何不平顺敏感波长分析杨吉忠1 谢 毅1 庞 玲1 姜培斌2 凌 亮2(1.中铁二院工程集团有限责任公司, 成都610031;2.西南交通大学, 成都610031)摘 要:本文基于车辆-轨道耦合动力学理论,建立了考虑柔性车体的高速列车-轨道耦合动力学模型,对比分析了轨道几何不平顺波长变化对典型高速动车组动力学性能的影响规律,探讨了400km/h行车速度条件下高速铁路轨道几何不平顺的敏感波长。
结果表明:(1)400km/h高速铁路轨道几何不平顺敏感波长主要存在两个范围,短波范围的敏感波长主要与动车组车体的柔性模态有关,中长波范围的敏感波长主要与动车组车辆系统的刚体模态有关;(2)由于悬挂参数的差异,不同型号高速动车组对应的轨道几何不平顺敏感波长存在明显差异,在制定线路养护维修标准时,应考虑整条线路上所有运营的动车组型号;(3)不同类型轨道几何不平顺的敏感波长也存在差异,应针对不同的轨道几何不平顺类型制定相应的敏感波长管理标准。
轨道精调

轨道精调轨道精调主要是两项工作:轨道测量、扣件作业轨道精调总体分两个阶段:静态调整、动态调整轨道静态调整是在联调联试之前根据轨道静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型进行优化调整,合理控制轨距、水平、轨向、高低等变化率,使轨道静态精度满足高速行车条件。
轨道动态调整是在联调联试期间根据轨道动态检测情况对轨道局部缺陷进行修复,对部分区段几何尺寸进行微调,对轨道线型进一步优化,使轮轨关系匹配良好,进一步提高高速行车的安全性、平稳性和乘座舒适度,是对轨道状态和精度进一步完善、提高的过程,使轨道动、静态精度全面达到高速行车条件。
轨道精调工作思路:1.明确标准2.作业程序3.计划安排4.现场调整5.验收复检6.考核机制一、轨道静态调整轨道静态调整流程:CPⅢ复测、扣件调查、焊缝检查、轨道测量、调整量计算、现场标示、轨道调整、轨道复检。
1.标准三角坑(水平变化率)2mm/2.5m 2mm/3m高低(mm)5m/30m / 2 1 150m/300m / 10 10 10m人工拉弦线2 / 1轨向(mm)5m/30m / 2 1 150m/300m / 10 10 10m人工拉弦线2 / 12.测量高度重视轨道测量工作,确保测量数据真实可靠。
⑴测量人员必须经过专业培训;⑵测量仪器必须满足精度要求;⑶测量方法、设站精度等必须科学、合理;设站精度应不低于1mm,一次测量长度不宜大于60m;两站重叠不少于10根轨枕;一天测量长度不宜超过600m。
正线道岔单独测量时,与两端线路搭接长度不少于35m。
最终调整前,道岔直股应与两端各不少于150m正线一并测量,以控制道岔整体平顺性,特别是控制好300m长波不平顺。
⑷轨道、扣件必须处于良好状态;⑸在轨道静态测量之前应对CPⅢ控制网进行复测;(6)核对线路设计平、纵断面资料,重点复核轨面高程、轨道中线、坡度、竖曲线、平面曲线、曲线超高等关键参数。
铁路轨道现场测量准确性提升方法及测量数据应用思路

铁路轨道现场测量准确性提升方法及测量数据应用思路摘要:随着当前我国现代科学信息技术的不断进步以及现代人们生活品质水平的不断提高,人们对铁路交通运输过程中的安全管理都提出了更高的要求。
为了保证线路的安全运行,需要在线路建设和运营维护期间对轨道进行精准测量。
现场测量时,受现场各种因素影响,测量结果出现偏差。
关键词:铁路轨道;现场测量;提升方法;数据应用引言我国疆域辽阔,山川河流遍布,地势复杂多样,自然环境各不相同。
环境因素会使铁路轨道几何参数发生变化,轨距会受环境温度影响,超高会随路基、道砟、钢轨状态的变化而变化。
基于此,本文主要对铁路轨道现场测量准确性提升方法及测量数据应用思路进行论述,具体如下。
1影响现场测量结果的因素环境温度是影响轨道几何参数的主要因素,温度变化时轨道会热胀冷缩,导致轨距变化。
对于轨道几何参数测量仪器,计量检定或者校准时,实验室温度一般在20℃左右,但现场测量的环境温度有时超过50℃或低于-30℃。
温度变化会导致测量数据不准确。
为方便运输和使用,轨距尺、支距尺、轨检仪等大尺寸测量仪器一般选取比较轻的铝材,而铝和轨道材质的热膨胀系数不同。
现场环境温度与实验室温度相差大时,测量仪器的长度变化量和轨道几何参数变化量有明显差异,从而导致测量结果出现误差。
以轨距测量为例,轨距尺主体为铝结构,铝的热膨胀系数为23×10-6/℃。
温度变化时,可按照钢的热膨胀系数计算轨距变化量。
2铁路轨道现场测量准确性提升方法及测量数据应用思路2.1基于多目标级联深度学习的轨道板表面裂缝测量轨道板劣化严重程度判识是工务养维的重要基础,而裂缝识别与宽度的精确测量是判识劣化程度的重要依据。
基于传统机器视觉的轨道板裂缝判识易漏检、错检,复杂背景条件下检测精度较低,计算成本较高。
轨道板裂缝将导致雨水腐蚀轨道板内钢筋等结构物,降低轨道结构耐久性,严重危害轨道结构的服役性能。
目前对高速铁路轨道板裂缝的检查手段主要依靠人工目视巡检,精度和效率受检测人员工作经验、工作状态及工作环境等因素影响较大,具有较大不确定性,亟需一种高效、稳定、准确的裂缝病害识别及量化方法。
浅谈高速铁路轨道精测精调技术

浅谈高速铁路轨道精测精调技术作者:齐昌洋来源:《学习与科普》2019年第28期摘要:高速铁路轨道精测精调工作,关系者轨道的平顺性、安全性。
高速铁路轨道精测精调是一项精度要求极高、相互配合严密的工作,在具体作业时一定要十分认真、细致、稍不注意就会导致列车运行的重大事故。
本文主要通过对高速铁路轨道精测精调技术的轨检小车、作业流程、注意事项等问题进行分析探讨,以期对工程类似任务的开展提供参考。
关键词:高速铁路 ;轨道 ;精测精调高速铁路与普通铁路最大的区别就是高速行车、高可靠性、高平顺性,高安全性。
高速铁路的高安全性最终体现在轨道的高平顺性上。
轨道精测精调技术主要也是解决轨道的平顺性问题,其内容主要包括了轨道数据外业采集、数据内业精调、外业精调、质量回检等。
1轨检小车轨道几何状态测量仪,简称轨检仪,俗称“轨检小车”,是由轨道内部参数测量单元(轨距、超高、轨向、高低)和外部参数测量单元(轨道空间位置、横向和高程偏差)组成,其中内部测量单元可独立,外部测量单元需有其它测量设备(全站仪、CPIII棱镜组等)共同组成。
按照其测量方式以及测量的轨道参数,分为:静态测量的轨检仪和移动测量的轨检仪。
静态测量的轨道几何状态测量仪,也称“绝对测量小车”,可以静态测量的轨道内部参数有:轨距、超高,以及轨道空间位置、轨道偏差等外部参数。
绝对测量小车测量速度慢,但精度高,是第二代测量小车。
移动测量的轨道几何状态测量仪,也称“相对测量小车”,可以移动测量的轨道内部参数有轨距、超高、轨向、高低,无外部参数测量。
相对测量小车测量速度快,但精度低,为第一代测量小车。
近年来,国内厂家还综合绝对小车和相对小车的优缺点,研制出兼有相对和绝对测量功能的快速测量小车,也称“绝对+相对测量小车”,也就是第三代测量轨检小车,不仅可以移动测量轨道内部参数,也可以测量轨道的外部参数。
第四代的轨检仪将GPS定位与高速惯导相对测量融合在一起,创新性地研制出GPS+惯导轨检仪,它彻底放弃了绝对测量对线路CPIII控制网的依赖,利用GPS+高精度惯性导航系统测量得到线路的绝对坐标,高速惯导测量打破了普通移动测量移动速度不能超高8Km/h的限制,进一步提高了测量效率,为中、高动态环境下对轨道进行高精度实时连续定位提供了一种新的途径。
高速铁路轨道精调

四、我国高速铁路扣件类型
WJ-7型扣件——无挡肩/轨道板 WJ-8型扣件——有挡肩/轨道板 SFC型扣件 ——无挡肩/轨道板 300型扣件 ——有挡肩/轨道板 Ⅴ型扣件——有挡肩/轨枕
② 导曲线下股高于上股的限值:18号及以上道岔作业验收为0mm,经常 保养为2 mm,临时补修为3 mm。
③轨距偏差不含构造轨距加宽量。
长弦测量作业验收容许偏差管理值
项目 高低 方向
基线长(m) 300 30 300 30
测点间距(m)
容许偏差(mm)
150
≤10
5
≤2
150
≤10
5
≤2
注:当弦长为30m时,相距5m的任意两测点实际矢度差与设计矢度差的 偏差不得大于2mm;当弦长为300m时,相距150m的任意两测点实际矢 度差与设计矢度差的偏差不得大于10mm。
2.相对几何参数是指轨距、水平(超高)及其偏差和变化率,轨向 和高低偏差。偏差越小,轨道越平顺。
相对几何参数控制除了轨距、水平、高低、轨向、三角坑等轨道几 何尺寸外,还包括变化率、线型和长短波不平顺等是轨道状态表述的基 本元素,也是轨道状态控制的关键元素。
二、轨道不平顺
1.轨道不平顺的分类
①五大不平顺:扭曲、高低、水平、轨距、方向。 ②复合不平顺:在轨道同一位置,垂向和横向不平顺共存形成的双 向不平顺。 ③曲线头尾:曲线圆缓点区、缓直点区、超高、正矢、轨距顺坡起 点、终点不一致或不匹配形成的几何偏差。 ④周期性不平顺:多波连续,基频波的波长相同,幅值具有随机性。 尤其是方向连续三波以上不平顺,对晃车和舒适性影响很大。
轨道维修知识

中波
3~30m非周期 性
12.5m及25m等 与轨长有关的 周期性
1~40mm
高低、轨向、扭曲、 水平、轨距
接头、焊缝处道床沉 降形成的周期性高低 不平顺 路基、道床不均匀沉 降,中跨桥梁挠曲变 形桥梁、隧道头尾刚 度差异
1~30mm
长波
30~100m
1~60mm
轨道几何尺寸验收标准
项目 轨距(mm) 轨距变化率 水平(mm) 三角坑(水平变化率) 5m/30m 高低(mm) 150m/300m 10m人工拉弦线 5m/30m 轨向(mm) 150m/300m 10m人工拉弦线 验标 ±1 1/1500 1 2mm/2.5m 2 10 2 2 10 2
按不同激扰方式轨道不平顺
垂向轨道不平顺:高低、水平、扭曲、轨 面短波不平顺;钢轨轧制校直过程中形成 的垂向周期性不平顺。 横向轨道不平顺:轨向、轨距;钢轨轧制 校直过程中形成的横向周期性不平顺。 复合不平顺:轨向水平逆向复合、曲线头 尾的几何偏差。
荷载作用方式下不平顺
静态
动态
不同波长轨道不平顺
动态评价指标
• ⑴ 轨道动态检测无Ⅰ级及以上偏差; • ⑵ 轨道动力学检测无超标处所; • ⑶ TQI值,低速轨检(七项指标)3.6以内, 高速轨检(四项指标)2.1以内,单项指标 宜控制在0.5以内; • ⑷ 轨道动态检测波形平顺,无突变、无周 期性多波不平顺。 • ⑸ 动车添乘无明显晃车。
正线道岔单独测量时,与两端线路搭接长度不 少于35m。最终调整前,道岔直股应与两端各不 少于150m正线一并测量,以控制道岔整体平顺性, 特别是控制好300m长波不平顺。
⑷轨道、扣件必须处于良好状态; ⑸在轨道静态测量之前应对CPⅢ控制网进行复测 (6)核对线路设计平、纵断面资料,重点复核轨面高 程、轨道中线、坡度、竖曲线、平面曲线、曲线超 高等关键参数。
高速铁路轨道精调-PPT

24
Ⅲ. 静态、动态精调方法
3、轨道精调前应做的工作
4)CPⅢ测量网的复合。 5)线路设计平纵断面资料核对。重点复核轨面高程、 中线、坡度、竖曲线、平面曲线、超高等关键参数。 6)调整扣件的准备。 7)扣件系统安装情况的检查。包括:安装的正确性、 扭矩是否达到标准。
25
Ⅲ. 静态、动态精调方法
(5)宜选择阴天、无风、日落2小时、日出前、气候条 件稳定的时段进行;
(6)测距应根据气候条件修正。
27
Ⅲ. 静态、动态精调方法
4、轨道精调方法
(7)一次测量长度不宜大于60m;两站重叠不少于10根轨 枕;横向、高程偏差不应大于2mm,否则应采用线性或函 数方式进行顺接,变化率应小于1mm/10m。 (8)一天测量长度不宜超过600m。
18
Ⅱ. 标 准
项目
轨距(mm)
轨距变化率
水平(mm)
三角坑(水平变化率)
5m/30m
高低(mm)
150m/300m
10m弦线
5m/30m
轨向(mm)
150m/300m
10m弦线
正矢(mm)
20m弦线
6、沪杭线作业标准
验收标准 ±1
1/1500 1
2mm/3m 2 10 2 2 10 2
作业标准 -1~0 1/3000 1
21
Ⅲ. 静态、动态精调方法
1、轨道静态精调的时机
1)轨道精调应在长钢轨铺设、应力放散、锁定形成 无缝线路,焊接接头打磨后开始。 2)道岔精调应在直、侧股与正线、到发线焊联、接 头打磨后进行。
22
Ⅲ. 静态、动态精调方法
2、轨道动态精调的时机
轨道动态精调是在联调联试期间,根据轨道动态检测、 人工添乘情况对轨道个别晃车处所进行几何尺寸调整,以 进一步提高动车的安全性、平稳性和舒适性。