变压器铁心计算

变压器铁心计算
变压器铁心计算

注: ①三相五柱式等轭是指主轭和旁轭截面相等, 不等轭是指主轭和旁轭截面不相等。

6 冷轧硅钢片性能数据

冷轧硅钢片性能数据,可按表1.3公式计算, 或直接从表1.4 中选取。

ρ t x —铁心硅钢片密度( g / cm3 ) , 冷轧硅钢片取ρ tx = 7.65 g / cm3 ;

f d —铁心叠片系数, 从表1.1中选取, 采用冷轧硅钢片35Z155时, f d = 0.97 ; S jk—铁心级块毛截面积( cm2 );

b m—铁心级块中的最大片宽( cm ) ;

δm—铁心级块(铁心中两个油道之间或油道至最外级间)的总厚度( cm ) ; m—修正系数。

最外部级块(油道至最外级间的级块) : m = 1 ;

中间级块: 当δm≤7.5 cm 时: m = 1 ;

当δm≥20 cm 时: m = 0.5 ;

当7.5 <δm< 20 cm 时: m = 1.3 -0.04 δm( 1.15 )

摘要

本设计是以亚东亚变压器公司SFSZ-4000/110型变压器铁心为设计题目,主要任务是使得变压器在运行过程中的减少能耗和减小噪声。

本文在现有亚东亚变压器铁心设计的基础上,对变压器铁心的结构进行设计。对一些可以改进的关键问题进行计算,引用那些本来就设计得很好的部件。重点是对铁心片的更合理的选择以及合理的工艺和更好的叠装方法。

本设计采用30QG120型硅钢片叠装后作为铁心的主体,以高低上夹件,高低下夹件为主要夹紧件,再借用原有的其他紧固件和绝缘件构成整个框架对铁心进行设计。

本设计通过对铁心片的合理选择,降低了变压器在运行过程中的能耗并且还有利于噪声的减小。然后再进一步对铁心内部最热点对表面的温差(θo)计算,铁心表面对油的温差(θb)计算,铁心级块的单位高度(1cm)的热负荷(q jk)计算,铁心表面对油的温差(θb)计算,铁心温升计算,铁心内部最热点温升(θ)计算,及其各种耗损计算。

m

然后重点对硅钢片的叠装方式以及工艺进行概述,最后达到预期设计目得。

- 补充说明关于铁心安全接地的问题。

关键字:铁心;能耗;噪声;安全

Abstract

This design is to take second transformer company SFSZ-4000| in East Asia 110 transformer iron heart as to design a topic, the main task is to make the transformer is in the process of circulating in of the decrease can consume and let up voice.

This text carries on a design to the structure of the transformer iron heart on the foundation of existing second transformer iron in East Asia heart design.Carry on a calculation to some keys problems that can improve, quoted from those to originally design good parts.The point is the craft to more reasonable choice of iron heart slice and the reasonable with better fold to pack a method.

This design adopts a 30 QG120 type Huo steel slice fold to pack is iron heart behind of corpus, clip a piece by height, the height bottom clips piece in order to mainly clip a tight piece, again use other tight original firmwares and insulate a composing's the whole frame to carry on a design to iron heart.

This design passes the reasonable choice to iron heart slice and lowered transformer in the process of circulating in of can consume and still be advantageous to a letting up of voice.Then then further to iron heart inner part most hot order to surface of difference in temperature(θ o) calculation, iron heart surface to oil of difference in temperature(θ b) calculation, the hot burden(qjk) calculation of the unit height(1 cm) of iron heart class piece, iron heart surface to oil of difference in temperature(θ b) calculation, iron heart Wen Sheng's calculation, iron heart inner part most hot point Wen Sheng(θ m) calculation, and it is various loss calculation.

Then the point pack way and craft to carry on an outline to the Huo steel slice's folding and finally attain an expectation design eyes get.

-

Add to explain concerning iron and feel at ease all a problem of connecting the ground. Key word:Iron heart;Can consume;Zao voice;Safety

目录

2级标题变压器工作原理

当变压器一次侧施加交流电压U1,流过一次绕组的电流为I1,则该电流在铁芯中会产生交

变磁通,使一次绕组和二次绕组发生电磁联系,根据电磁感应原理,交变磁通穿过这两个绕组

就会感应出电动势,其大小与绕组匝数以及主磁通的最大值成正比,绕组匝数多的一侧电压高,

绕组匝数少的一侧电压低,当变压器二次侧开路,即变压器空载时,一二次端电压与一二次绕

组匝数成正比,变压器起到变换电压的目的。

当变压器二次侧接入负载后,在电动势E2的作用下,将有二次电流通过,该电流产生的电动势,也将作用在同一铁芯上,起到反向去磁作用,但因主磁通取决于电源电压,而U1基本保

持不变,故一次绕组电流必将自动增加一个分量产生磁动势F1,以抵消二次绕组电流所产生的

磁动势F2,在一二次绕组电流L1、L2作用下,作用在铁芯上的总磁动势(不计空载电流

I0),F1+F2=0, 由于F1=I1N1,F2=I2N2,故I1N1+I2N2=0,由式可知,I1和I2同相,所以

I1/I2=N2/N1=1/K

由式可知,一二次电流比与一二次电压比互为倒数,变压器一二次绕组功率基本不变,

(因变压器自身损耗较其传输功率相对较小),二次绕组电流I2的大小取决于负载的需

要,所以一次绕组电流I1的大小也取决于负载的需要,变压器起到了功率传递的作用。

变压器的基本工作原理是电磁感应原理。当交流电压加到一次侧绕组后交流电流流入该绕组就产生励磁作用,在铁芯中产生交变的磁通,这个交变磁通不仅穿过一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中引起感应电动势。这时如果二次侧与外电路的负载接通,便有交流电流流出,于是输出电能。

用三只单相变压器或如图所示的三相变压器来完成.三相变压器的工作原理和单相变压器是相

同的.。在三相变压器中,每一芯柱均绕有原绕组和副绕组,相当于一只单相变压器.三相变压器高压绕组的始端常用A,B,C,末端用X,Y,Z来表示.低压绕组则用a,b,c和x,y,z来表示.高低压绕组分别接成星形或三角行.在低压绕组输出为低电压,大电流的三相变压器中(例如电镀变压器),

如下图所示:

高频逆变器中高频变压器的绕制方法

高频逆变器中高频变压器的绕制方法 用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的

单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是: ①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半. ②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组

变压器参数计算

变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф= B * S ⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф/ ⊿t * N ⑷

EL = ⊿i / ⊿t * L ⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф/ ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф= B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨)

EE型变压器参数及高频变压器计算Word版

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

变压器匝数计算怎么算

变压器初、次线匝数,与其输入输出电压及输出功率有关,功率大小又与硅钢片截面积有关。 第一种: 常用小型变压器每伏匝数计算公式为:N=10000/ 这里:N—每伏匝数,F—交流电频率(我国为50HZ),B—磁通密度,S——铁芯截面积 磁通密度一般因材料而异,常见的硅钢片取左右. 根据此公式,你量一下变压器磁芯尺寸,计算出截面积,就可推算出每伏匝数。知道每伏匝数后,即可方便计算出初、次线匝数了。 例如:量得一小型变器中间舌宽为2CM,叠厚为3CM,则基截面为:2*3=6(CM^2) 如用H23片,取B值为。则计算每伏匝数为: N=10000/*50**6=(匝/伏) 如果初线接220V电源,则初线匝数=220*=(匝)取1179即可。设次级输出电源为12V,则12*=,取64匝即可,你如果是自己维修绕制,还需根据功率和电压再计算出线经大小。 第二种: 只要知道铁芯中柱的截面积、导磁率即可以计算匝数,知道功率就能计算线径。

例题: 变压器初级电压220V,次级电压12V,功率为100W,求初、次级匝数及线径。 选择变压器铁芯横截面积: S=×根号P=×根号100=×10≈13(平方CM), EI形铁芯中间柱宽为3CM,叠厚为,即3× 求每伏匝数:N=×100000/B×S B=硅钢片导磁率,中小型变压器导磁率在6000~12000高斯间选取,现今的硅钢片的导磁率一般在10000高斯付近,取10000高斯。 公式简化:N=×100000/10000×S=45/S N=45/13≈(匝) 初、次级匝数: N1=220×=770(匝) N2=12×=42(匝) 在计算次级线圈时,考虑到变压器的漏感及线圈的铜阻,故须增加5%的余量。 N2=42×≈44(匝) 求初、次级电流: I1=P/U=100/220≈(A) I2=P/U=100/12≈(A) 求导线直径:(δ是电流密度,一般标准线规为每M

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

第六章 磁路与变压器

第六章 磁路与变压器 一、内容提要 变压器是一种静止的电磁装置,原绕组(一次绕组)和副绕组(二次绕组)没有电的直接联系,通过交变磁场,利用电磁感应关系实现能量变换。在变压器中既有磁路问题,又有电路问题,变压器是磁路的具体应用,学习磁路是了解变压器的基础。因此本章在学习变压器理论之前讲述了磁路的基本概念及构成磁路的铁磁材料的性能;介绍了变压器理论、电机理论中常用的电磁定律及交流磁路的特点。简单地讲述了变压器的结构、工作原理、铭牌数据及变压器的外特性、效率性和变压器绕组的同极性端;并重点讲述了变压器电压、电流、阻抗的变换功能。 二、基本要求 1、了解磁路的概念和磁路中几个基本物理量 2、了解交流磁路和直流磁路的异同; 3、重点掌握分析磁路的基本定律,理解铁心线圈电路中的电磁关系、电压电流关系及功率与能量问题; 4、掌握变压器的基本结构、工作原理、铭牌数据、绕组的同极性端、外特性、损耗和效率特性; 5、掌握变压器的电压、电流、阻抗变换。 三、学习指导 磁路部分是学习变压器以及后面学习电动机内容的基础,学习磁路时可以与电路中的内容联系对比来加深理解和记忆。 1、磁场的基本物理量 1)磁感应强度B :表示磁场内某点的磁场强弱和方向的物理量。它是一个矢量,与电流之间的方向用右手螺旋定则确定。单位:特【斯拉】(T )。 2)磁通Ф:磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Ф=BS 。单位:韦【伯】(Wb )。 3)磁场强度H :计算磁场时所引用的一个物理量,也是矢量,通过它来确定磁场与电流之间的关系。单位:安【培】每米(A/m )。 4)磁导率μ:用来表示磁场媒质磁性的一个物理量,也是用来衡量物质导磁能力的物理量。H B =μ,单位:亨【利】每米(H/m )。真空导磁率为H/m 10470-?=πμ。 2、磁性材料与磁性能 1)、磁路 由于磁性物质(铁磁材料)具有高的导磁性。可用来构成磁通绝大部分通过的路径,这种磁路径称为磁路。 2)、磁通 磁通包括:主磁通和漏磁通 主磁通是磁通的绝大部分,沿铁心闭合起能量传递媒介作用,所经磁路是非线性的。

EI 铁芯电源变压器计算步骤.讲义

EI铁芯电源变压器计算步骤 编写者:黄永吾 已知变压器有以下主要参数: 初级电压U1=220V, 频率f=50Hz 次级电压U2=20V, 电流I2=1A 其他一些要求如安规、温升、电压调整率、环境、(防潮、防震、防灰尘等)、工作状态、寿命等。

EI型变压器设计软件计算步骤如下: 1.计算变压器功率容量: 2.选择铁芯型号: 3.计算铁芯磁路等效长度: 4.计算铁芯有效截面积: 5.计算变压器等效散热面积: 6.计算铁芯重量: 7.计算胶芯容纳导线面积: 8.初定电压调整率: 9.选择负载磁通密度: 10.计算匝数: 11.计算空载电流: 12.计算次级折算至初级电流: 13.计算铁芯铁损: 14.计算铁损电流: 15.计算初级电流:

以下为结构计算: 16.计算各绕组最大导线直径: 17.校核能否绕下: 18.计算各绕组平均长度: 19.计算各绕组导线电阻: 20.计算各绕组导线质量: 21.计算各绕组铜损: 22.计算各绕组次级空载电压: 23.核算各绕组次级负载电压: 24.核算初级电流: 25.核算电压调整率: 重复8~25项计算三次: 26.修正次级匝数: 重复8~25项计算三次: 27核算变压器温升:

EI型变压器设计软件计算步骤如下: 1. 计算变压器功率容量:以下为结构计算: 2. 选择铁芯型号:16.计算各绕组最大导线直径: 3. 计算铁芯磁路等效长度:17.校核能否绕下: 4. 计算铁芯有效截面积:18.计算各绕组平均长度: 5. 计算变压器等效散热面积:19.计算各绕组导线电阻: 6. 计算铁芯重量: 20.计算各绕组导线质量: 7. 计算胶芯容纳导线面积:21.计算各绕组铜损: 8. 初定电压调整率:22.计算各绕组次级空载电压: 9. 选择负载磁通密度: 23.核算各绕组次级负载电压: 10.计算匝数:24.核算初级电流: 11.计算空载电流: 25.核算电压调整率: 12.计算次级折算至初级电流:重复8~24项计算三次: 13.计算铁芯铁损:26.修正次级匝数: 14.计算铁损电流:重复8~24项计算三次: 15.计算初级电流: 27.核算变压器温升:

反激电源高频变压器参数计算方法

四、设计开关电源主要在变压器计算与画板 高频变压器参数计算方法 1﹚、磁通量与磁通密度相关公式: Ф = B * S⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳)

I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数 比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D))⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压:200--- 340 V 输出直流电压:23.5V 输出电流: 2.5A * 2 输出总功率:117.5W 2.确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.6 3.计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿ Vin(max) ----- 输入电压最大值Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌525.36(V) 4.计算PWM占空比: 由⑽式变形可得: D = (N1/N2)*E2/(E1+(N1 /N2*E2) D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀ D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89) 由些可计算得到占空比D≌0.481 5.算变压器初级电感量: 为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推 导过程:

最新第五章 磁路与变压器习题参考答案

第五章磁路与变压器习题参考答案 一、填空题: 1.变压器运行中,绕组中电流的热效应所引起的损耗称为损耗;交变磁场在铁心中所引起的损耗和损耗合称为损耗。损耗又称为不变损耗;损耗称为可变损耗。 2.变压器空载电流的分量很小,分量很大,因此空载的变压器,其功率因数,而且性的。 3.电压互感器在运行中,副方绕组不允;而电流互感器在运行中,副方绕组不允许。从安全的角度出发,二者在运行中,绕组都应可靠地接地。 4.变压器是能改变、和的的电气设备。 5.三相变压器的额定电压,无论原方或副方的均指其;而原方和副方的额定电流均指其。 6.变压器空载运行时,其是很小的,所以空载损耗近似等于。 7.电源电压不变,当副边电流增大时,变压器铁心中的工作主磁通Φ将基本维持不变。 二、判断题: 1. 变压器的损耗越大,其效率就越低。() 2. 变压器从空载到满载,铁心中的工作主磁通和铁损耗基本不变。() 3. 变压器无论带何性质的负载,当负载电流增大时,输出电压必降低。() 4. 电流互感器运行中副边不允许开路,否则会感应出高电压而造成事故。() 5. 互感器既可用于交流电路又可用于直流电路。() 6. 变压器是依据电磁感应原理工作的。() 7. 电机、电器的铁心通常都是用软磁性材料制成。() 8. 自耦变压器由于原副边有电的联系,所以不能作为安全变压器使用。) 9. 变压器的原绕组就是高压绕组。() 三、选择题: 1. 变压器若带感性负载,从轻载到满载,其输出电压将会() A、升高; B、降低; C、不变。 2. 变压器从空载到满载,铁心中的工作主磁通将) A、增大; B、减小; C、基本不变。 3. 电压互感器实际上是降压变压器,其原、副方匝数及导线截面情况是()

开关电源 高频 变压器计算设计

要制造好高频变压器要注意两点: 一就是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便就是高频交流电只沿导线的表面走,而导线内部就是不走电流的实习就是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便就是为了增大导线的表面积,然后更有效地运用导线。 二就是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的就是削减高频漏感与降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组与次级绕组之间分布电容的电容量,也增大了初级与次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级与次级之间的电容有利于减小开关电源输出端的共模打扰。若就是开关电源的次级有多路输出,而且输出之间就是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若就是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍就是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其她次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其她绕组的屏蔽,有助于减小变压器初级绕组与附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其她有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级与次级之间,仍就是绕在最外层,与开关电源的调整就是依据次级电压仍就是初级电压进行有关。若就是电压调整就是依据次级来进行的则偏压绕组应放在初级与次级之间,这样有助于削减电源发生的传导打扰发射。若就是电压调整就是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组与次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若就是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法: 开关电源高频变压器参数计算

第章磁路与铁心线圈电路课后习题

第6章 磁路与铁心线圈电路 62、某单相变压器如图所示,两个原绕组的额定电压均为110V ,副绕组额定电压为6.3V ,若电源电压为220V ,则应将原绕组的( a )端相连接,其余两端接电源。 (a)2和3; (b)1和3; (c)2和4。 63、变压器的铁损耗包含( b ),它们与电源的电压和频率有关。 (a)磁滞损耗和磁阻损耗 ; (b)磁滞损耗和涡流损耗; (c)涡流损耗和磁化饱和损耗。 64、变压器的铜损耗与负载的关系是( a )。 (a)与负载电流的平方成正比例; (b)与负载电流成正比例; (c)与负载无关。 65、变压器副边的额定电压是指当原绕组接额定电压时副绕组( b )。 (a)满载时的端电压; (b)开路时的端电压; (c)满载和空载时端电压的平均值。 66、一个R L =8Ω的负载,经理想变压器接到信号源上,信号源的内阻R 0=800Ω,变压器原绕组的匝数N 1=1000,若要通过阻抗匹配使负载得到最大功率,则变压器副绕组的匝数N 2应为( a )。 (a)100; (b)1000; (c)500。 67、一个负载R L 经理想变压器接到信号源上,已知信号源的内阻R 0=800Ω,变压器的变比K=10。若该负载折算到原边的阻值R 'L 正好与R 0达到阻抗匹配,则可知负载R L 为 ( c )。 (a)80Ω ; (b)0.8Ω; (c)8Ω。 68、一个信号源的电压U S =40V ,内阻R 0=200Ω,通过理想变压器接R L =8Ω 的负载。为使负载电阻换算到原边的阻值'=R L 200 Ω,以达到阻抗匹配,则变压器的变比K 应为( c )。 (a)25; (b)10; (c)5。 69、某理想变压器的变比K=10,其副边负载的电阻R L =8Ω。若将此负载 电阻折算到原边,其阻值'R L 为( b )。 (a)80Ω; (b)800Ω; (c)0.8Ω。 70、输出变压器原边匝数为N 1,副边绕组有匝数为N 2和N 3的两个抽头。将16Ω的负载接N 2抽头,或将4Ω的负载接N 3抽头,它们换算到原边的阻抗相等,均能达到阻抗匹配,则N 2:N 3应为( c )。 (a)4:1; (b)1:1; (c)2:1。

变压器名词解释及计算公式

变压器名词解释及计算公式 来源:扬州市华特电力设备厂 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. 当变压器二次绕组开路,一次绕组施加额定频率正弦波形的额定电压时,所消耗的有功功率称空载损耗。算法如下: 空载损耗=空载损耗工艺系数×单位损耗×铁心重量 E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. 负载损耗:当变压器二次绕组短路(稳态),一次绕组流通额定电流时所消耗的有功功率称为负载损耗。算法如下: 负载损耗=最大的一对绕组的电阻损耗+附加损耗 附加损耗=绕组涡流损耗+并绕导线的环流损耗+杂散损耗+引线损耗 G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. 阻抗电压:当变压器二次绕组短路(稳态),一次绕组流通额定电流而施加的电压称阻抗电压Uz。通常Uz以额定电压的百分数表示,即 uz=(Uz/U1n)*100% 匝电势: u=4.44*f*B*At,V

磁路与变压器

第6章磁路与变压器 本章基本要求: 了解磁路的基本概念。了解变压器的基本结构,掌握其工作原理、额定值的意义、外特性及绕组的同极性端。了解三相电压的变换。 本章讲授重点知识: ?磁路的概念、物理量和定律 ?交流铁心线圈电路的分析 ?变压器工作原理 本章讲授难点知识: ?交流铁心线圈电路的分析 本章作业:p143 2、3 §6.1磁路的基本概念和基本定律 线圈通有电流将有磁场产生,线圈绕制在铁芯上就构成了磁路。可以说,磁路就是局限在一定路径内部的磁场。 6.1.1 磁场的基本物理量 1.磁感应强度B 磁感应强度是表示空间某点磁场强弱与方向的物理量。B的大小等于通过垂直于磁场方向单位面积的磁力线数目,B的方向用右手螺旋定则确定。单位是特斯拉(T)。2.磁通Φ

磁通表示穿过某截面的磁力线总数。单位是韦伯(Wb)。 BS =Φ 3.磁导率μ 磁导率是衡量物质导磁能力的物理量。单位是亨/米(H/m)。 真空的磁导率:H/m 10470-?=πμ 相对磁导率μr :物质磁导率与真空磁导率的比值。 非铁磁物质μr 近似为1,铁磁物质μr 远大于1。 4.磁场强度H 磁场强度是描述磁场源强弱的物理量,与励磁电流成正比,磁场强度只与产生磁场的电流以及这些电流分布有关,与磁介质无关。单位是安/米(A /m )。是为了简化计算而引入的辅助物理量。 μB H = B H μ= 6.1.2 铁磁物质的磁化曲线 铁磁物质在磁化过程中的B-H 关系曲线称为磁化曲线。由于B 落后于H 变化(磁滞性),磁化曲线不是一条曲线,而是一个回线,又称磁滞回线。当H 增大到一定值时, B 几乎不再随H 变化,即达到了饱和值,这种现象称为磁饱和。

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

高频变压器匝数计算

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

变压器铁芯磁路的计算

1、课程设计的目的与作用 1.1、设计目的 1、学习电机的工作原理及电机设计的相关方法,利用电机设计仿真软件Ansoft RMxprt 2、参数设计法和利用MATLAB软件编程的传统设计方法完成典型电机产品设计; 3、完成电机主要尺寸的选择和确定、基本性能设计、磁路计算、参数设计、起动 计算等; 4、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 5、培养学生综合分析问题、发现问题和解决问题的能力。 6、培养学生运用知识的能力和工程设计的能力。 7、提高学生课程设计报告撰写水平。 1.2、设计作用 课程设计是培养和锻炼在校学生综合应用所学理论知识解决实际问题能力、进行工程实训的重要教学环节,它具有动手、动脑,理论联系实际的特点,是培养在校工科大学生理论联系实际、敢于动手、善于动手和独立自主解决设计实践中遇到的各种问题能力的一种较好方法。《电机学》是电气工程及自动化专业的一门专业基础课,具有应用性、实践性较强的特点,忽视了实践环节,学生不能很好的理解所学内容。通过设计,使学生系统、深入了解各种电机的工作原理和抽象出来的数学模型,对这门课程的认识和理解提高到一个新的水平。通过设计实践,培养学生查阅专业资料、工具书或参考书,掌握现代设计手段和软件工具,并能以仿真程序及仿真结果表达其设计思想的能力。通过设计,不但要培养和提高学生学习和应用专业知识的能力,而且要在实践过程中锻炼培养正确的设计思想,培养良好的设计习惯,牢固树立事实求是和严肃认真的科学工作态度。电机学课程设计是电机学课程学习的最后一个环节,通过设计不仅可以使学生更牢固的掌握所学知识,同时也可以为后续课程的学习打下扎实的理论基础。

小型变压器的简易计算

小型变压器的简易计算: 1,求每伏匝数 每伏匝数=55/铁心截面 例如,铁心截面=3.5╳1.6=5.6平方厘米 故,每伏匝数=55/5.6=9.8匝 2,求线圈匝数 初级线圈n1=220╳9.8=2156匝 次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝 次级线圈匝数计算中的1.05是考虑有负荷时的压降 3,求导线直径 要求输出8伏的电流是多少安?这里我假定为2安。 变压器的输出容量=8╳2=16伏安 变压器的输入容量=变压器的输出容量/0.8=20伏安 初级线圈电流I1=20/220=0.09安 导线直径d=0.8√I 初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米 次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米 经桥式整流电容滤波后的电压是原变压器次级电压的1.4倍。 小型变压器的设计原则与技巧 小型变压器是指2kva以下的电源变压器及音频变压器。下面谈谈小型变压器设计原则与技巧。 1.变压器截面积的确定铁芯截面积a是根据变压器总功率p确定的。设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即a=1.25 。如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。 2.每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。例如一只35w电源变压器,通常计算(中夕片取8500高斯)每伏应绕7.2匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25ma左右。通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。 3.漆包线的线径确定线径应根据负载电流确定,由于漆包线在不同环境下电流差距较大,因此确定线径的幅度也较大。一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2a/mm2(线径)。如果变压器连续工作负载电流基本不变,但本身散热条件较好,再加上环境温度又不高,这样的漆包线取电流密度2 5a/mm2(线径),若变压器工作电流只有最大工作电流的1/2,这样

变压器损耗计算公式

1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制, 可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 3、变压器节能技术推广 1)推广使用低损耗变压器; (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生

如何计算高频变压器参数

如何计算高频变压器参数 一. 电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N ⑷ EL = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)

3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二. 根据上面公式计算变压器参数: 1. 高频变压器输入输出要求: 输入直流电压: 200--- 340 V 输出直流电压: 23.5V 输出电流: 2.5A * 2 输出总功率: 117.5W 2. 确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = VIN(max) / (VRRM * k / 2) ⑾ N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1 ⑿ Vin(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

相关文档
最新文档