自考概率论与数理统计基础知识

自考概率论与数理统计基础知识
自考概率论与数理统计基础知识

一、《概率论与数理统计(经管类)》考试题型分析:

题型大致包括以下五种题型,各题型及所占分值如下:

由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。

7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

连续点,则存在,且。 12. 均匀分布、指数分布 P42(二级重点)选择、填空、计算题记住它们的概率密度,能够根据所给的密度函数识别它们。

13. 正态分布和一般正态分布的标准化 P44-P46(一级重点)选择、填空记住性质和公式:标准正态分布函数的性质:① ;② 概率的计算

(重点):。

③ 14. 随机变量函数的概率分布 P50-P54(三级重点)选择、填空在连续型随机变量函数的概率分布中,要记住用直接变换法求“非单调性”随机变量函数的概率密度的方法。第三章多维随机变量及其概率分布 15. 二维离散型随机变量联合分布律和边缘分布律 P62-P64(一级重点)选择、填空、计算题对于联合分布律,记住所有概率和为1.求概率时,找到满足条件的随机点,再把对应的概率相加即可。要记住边缘分布律的求法。通过分布律会判断X,Y是否相互独立。 16. 二维连续型随机变量的概率密度和边缘概率密度 P66-P69(一级重点)选择、填空、计算、综合;已知概率密度会求在平面区域内取值的概率,记住公式:练掌握连续型随机变量的边缘概率密度函数的求法,并能判断X,Y是否相互独立(考查的重点)。 17.二维随机变量的独立性 P73(一级重点)选择、填空、计算题考生要记住二维离散型的随机变量和二维连续型的随机变量独立性的判断。其一:与有=;其二:设为二维连续型随机变量,其概率密度为,关于与的边缘概率密度分别为和,则与相互独立的充要条件为:=。其三:一个结论

若二维随机变量服从二维正态分布,与相互独立的充要条件是。 18. 二维均匀分布、二维正态分布 P68-P71(三级重点)计算题、综合题记住这两种分布的概率密度函数,还有以下结论若二维随机变量服从二维正态分布,则随机变量与分别服从正态分布。

19. 两个随机变量函数的分布 P80-P91(三级重点)填空题记住结论并能灵活运用设相互独立,且,得。

推广:个独立正态随机变量的线性组合仍服从正态分布,

即。第四章随机变量的数字特征20. 随机变量数学期望的概念、性质与计算 P86-P94(一级重点)选择、填空、计算题首先要十分熟练的掌握数学期望的概念与性质,数学期望的性质在选择填空题中经常考到,然后要熟悉离散型和连续型随机变量及随机变量函数的数学期望的计算公式。考生一定要结合历年考试真题认真练习,做到心中有数。 21. 随机变量的方差的概念、性质及计算 P96-P103(一级重点)选择、填空、计算熟悉方差的性质和计算公式,一般用“内方减外方”来计算方差,即。在方差的性质中,要注意:常数的方差为零,所以D(X+C)=D(X);当X,Y相互独立时,才,此时特别的。 22. 常见分布的数字特征 P104(一级重点)选择、填空、计算题提醒各位考生,书上104页的那张表所包含的内容经常考到,是考试需要重点记忆的表格之一。不仅要记清各种分布的数学期望与方差,还要记清各自的概率分布与密度函数。表格熟记在心,能够灵活运用期望与方差的性质,基本上就能轻松拿下10-20分。 23. 协方差和相关系数 P105-

P107(一级重点)选择、填空、计算题要熟悉协方差的性质与计算公式性质:;,其中为任意常数;若,则;;。计算:,。另外,要掌握相关系数的计算公式,还要知道相关系数的含义:两个随机变量的相关系数是两个随机变量间线性联系密切程度的度量,越接近1,与之间的线性关系越密切。当时,与存在完全的线性关系,即;时,之间无线性关系,此时称X,Y不相关。随机变量与不相关的充分必要条件是。注意:①若随即变量与相互独立,则,因此与不相关,反之,随机变量与不相关,但与不一定相互独立。②若二维随机变量服从二维正态分布,

与,从而与不相关的充要条件是与相互独立,因此与不相关和与相互独立都等价于。以上两点在选择题中经常出现。第五章大数定律及中心极限定理 24. 切比雪夫不等式 P116(二级重点)选择、填空记住切比雪夫不等式的两种形式。它是用来估算概率的。 25. 大数定律 P116-P119(二级重点)选择、填空考生要记住相应的公式和含义。 26. 独立同分布序列的中心极限定理 P120(二级重点)选择、填空牢记:是独立同分布随机变量序列,渐进服从正态分布。当。分大时,独立同分布的随机变量的平均值的分布近似于正态分布 27. 棣莫弗-拉普拉斯中心极限定理 P122(三级重点)填空题主要结论:在贝努利试验中,若事件发生的概率为,又设为次独立重复试验中事件发生的频数,则当充分大时,近似服从正态分布。第六章统计量与抽样分布 28. 样本均值、样本方差

P133-P134(一级重点)选择、填空要清楚样本均值、样本方差、样本标准差的计算公式。另外,要牢记结论设总体的样本,为样本均值:①若总体分布为,则的精确分布为;

②若总体分布未知(或不是正态分布),且,则当样本容量较大时,的渐近分布为,这里的渐近分布是指较大时的近似分布。 29. 三大抽样分布 P137-P141(一级重点)选择、填空记住三大分布的定义,熟悉它们的结构,无需记忆概率密度函数。牢记重要结论:;等。偏重考查卡方分布的定义式。第七章参数估计 30. 单个正态总体均值和方差的置信区间 P156-P162(一级重点)填空、应用题书上162页的表的前3行内容常考,记住各种情况下的置信区间。做题时,只要将已知条件往相应的置信区间中代入求值即可。 31. 参数的矩法估计 P145(二级重点)填空题、计算题①用样本均值去估计总体的均值,则从解出的即为,称为的矩法估计量。②用样本二阶中心矩估计总体方差,即。(用的少)。 32.参数的极大似然估计 P147(二级重点)填空、计算考生要记住极大似然估计的方法与步骤:①写出似然函数并化简②两边取对数;③令,求出的值即为的极大似然估计 33. 估计量的无偏性 P153(一级重点)选择题设是的一个估计,若,则称为的无偏估计,否则称为有偏估计。是的无偏估计,但不是的无偏估计。本知识点经常和数学期望的性质联合来考查。 34. 估计量的有效性和相合性 P152-P153(一级重点)选择、填空

(或)相合性:若是得一个估计量,若,,则称是的相合估计。有效性:设,若,是的两个无偏估计,则称比有效。其中有效性经常考。第八章假设检验 35. 假设检验的两类错误 P169(一级重点)填空熟记概念:①一类错误是:在成立的情况下,样本值落入了拒绝域中,因而被拒绝,称这种错误为第一类错误,又称为拒真错误。一般记犯第一次错误的概率为,也叫置信水平。②另一类错误是:在不成立的情况下,样本值未落入,因而被接受,称这种错误为第二类错误,又称为取伪错误。记犯第二类错误的概率为。③由此可知:,。两类错误的概率是关联的,当样本容量固定时,一类错误的概率的减少将导致另一类错误的概率的增加;要同时降低两类错误的概率,需要增大样本容量。 36. 单个正态总体的均值和方差的假设检验 P170-P181(一级重点)选择、填空、应用题要牢记教材181页表中u检验和t检验的前三行,以及分布对应的内容。这是教材中的第三个重要表格。做题时要熟记解题步骤,记住相应的统计量和拒绝域,那么剩下的就是计算了。双边检验考查的较多。第九章回归分析 37. 用最小二乘法估计回归模型中的未知参数 P187(一级重点)填空、计算题整个第九章线性回归,仅考这一个考点,记住以下几点其一:回归直线是描述与之间关系的经验公式,称为回归常数,称为回归系数。其二:求,的估计,时,自然直观的想法是对一切观测值与回归直线的偏离达到最小,故使得其三:回归直线的确定引进记号

达到最小的,,即为,。

则,。其四:散点的几何重心在回归直线上第一部分三角函数表三角函数表反三角函数表

第二部分极限极限数列极限:刘徽的“割圆术”,设有一个半径为1的圆,在只知道直边形的面积计算方法之下,要计算其面积:方法:先做圆的内接正六边形,其面积记为,再做一内接正12边形,记其面积为再做一内接正24边形,记其面积为,如此逐次将变数加倍。。。得到数列,则当n无穷大时,有函数极限:常用的极

限公式

常用的几个公式

等比数列公式是等比数列, 当q<1时,等比数列的无穷项级数和为等差数列公式:或者:例设二维随机变量的分布函数为 , 求:(1)常数a, b, (2) 的概率

密度. 解:(1)由分布函数的性质知

从上面第二式得 , 从上面第三式得 , 再从上面第一式得 . 从而概率密度为

第三部分导数导数含义函数值的增长与自变量增长之比的极限。

重要的求导公

式 . ....导数的四则运算若函数,都在点处可导,则有(ⅰ);(ⅱ);

(ⅲ),.例题:解:(1)

(2) (3) (4)在概率中的应用主要是知道分布函数求密度函数,需要对分

布函数求导数。. 3 复合函数的求导链式法则两个可导函数复

合而成的复合函数的导数等于函数对中间变量的导数乘以中间变量对自变量

的导数.在利用复合函数的求导法则解决求导问题时,应该注意以

下几点: (1)准确地把一个函数分解成几个比较简单的函数; (2)复合

函数求导后,必须把引进的中间变量换成原来的自变量.利用复合函

数的求导法则求导的步骤如下: (1)从外到里分层次,即把复合函数分

成几个简单的函数; (2)从左到右求导数,即把每一个简单函数对自身

的自变量的导数求出来; (3)利用链式求导法则,从左到右作连乘.例

题:解函数可分解为则由复合函数求导

法则有主要在第二章第四节里面用

第四部分原函数和不定积分原函数:已知有是一个定义在区间内的函数,如果存在着函数,使得对内任何一点或

那么函数就称为例如:在区间内的原函数。是在区间上的原函数。

不定积分内,函数的带有任意常数项的原函数称为在区间内的不

定积分,记作,即。称为积分号,称为被积函数,称为

被积表达式,称为积分变量。基本积分公式由基本微分公式可得基本积分公式 1 (为常数),○2

(),○3,○4, 5 , 6,

7,○8,○9 0,, 1

11○12,, 13 . 这

些基本公式是求不定积分的基础,应熟记.求不定积分的方法一.第一

类换元法先看下例:回忆:令,定理1 (第一

类换元法):这种方法称为凑微分法.(将

公式中的箭头作出动态效果)例1求下列不定积分 1、解

1 ,

2 令

令 = 2、由上面的解

题可发现,变量只是一个中间变量,在求不定积分的过程中,只是都要

换回到原来的积分变量。因此,在较熟练之后,可以采用不直接写出中间变

量的做法。例如:通过以上例题,可以归纳出如下一般凑微

分形

式:

;;;;;

;;等

等.第二类换元法

2、分部积分法利用复合函数微分法则导出了换元积分法,它能解决许

多积分问题,但仍有许多类型的积分用换元法也不能计算,例如、、等等

本节我们用乘积的微分公式导出另一种重要的积分方法——分部积分法,可

以解决许多积分问题.设、是两个可微函数,由得.两边积分,可得即..分部积分公式

二、特殊情况 1、用分部积分法计算.不过有时需要多次使用分部积分

法.例6

求.解

.小结: 1.对可微函数、,有分部积分公

式:.当容易求出,且比易于积分时.利用分部积分公

式易于计算. 2.要记住适合使用分部积分法的常见题型及凑微分d的

方式.如果被积函数是两类基本初等函数的乘积,使用分部积分法时进

入微分号的顺序一般为:指数函数,三角函数,幂函数,反三角函数,对数函数。第五部分定积分的基本性质定积分性质

性质1 .这个性质可推广到有限多个函数的情形.性质2 (为常

数).性质3 不论三点的相互位置如何,恒

有.这性质表明定积分对于积

分区间具有可加性.牛顿-莱布尼茨公式定理2 (牛顿(Newton)-

莱布尼茨(Leibniz)公式)如果函数是连续函数在区间的一个原函

数,则定积分的计算 1.定积分的分部积分

法设函数与均在区间上有连续的导数,由微分法则,可得.等

式两边同时在区间上积分,

有.定积分的分部积分公式,

例5 设在上连续,证明: (1) 若为奇函数,则(2) 若为偶函数,则

小结: 1.定积分换元积分定

理:;..

注意:换元必换限,下限对下限,上限对上限 2.定积

分分部积分法:设函数与均在区间上有连续的导数,则有 (1) 若为

奇函数,则(2) 若. 3.对称区间上的积

分:设在上连续,则有;.广义

积分 1.设在积分区间上连续,定

义,

.变上限的积分如果在区间上连续,

则有.例一设随机变量的概率密度为

求的分布函数解当时, 当时

当时, 当时, 即的分布函数为

例二设连续型随机变量的分布函数为

求(1)的概率密度;(2)落在区间的概率解(1)(2)有

两种解法:或者, 例三设某种型号电子元件的寿命(以小时计)具有以下的概率密度

现有一大批此种元件(设各元件工作相互独立),问(1)任取1只,其

寿命大于1500小时的概率是多少?(2)任取4只,4只元件中恰有2

只元件的寿命大于1500的概率是多少?(3)任取4只,4只元件中至少有1只元件的寿命大于1500的概率是多少?解(1). (2)各元件工作相互独立,可看作4重贝努利试验,观察各元件的寿命是否

大于1500小时. 令表示4个元件中寿命大于1500小时的元件个数,则~,所

求概率为 . (3)

所求概率为第六部分偏导数求法 1.偏导数的定

义设函数z = f (x, y)在点P(x , y)的某邻域有定义,函数z在点P(x , y)处对变量x 导数和对变量y的偏导数分别定义为 = = 更多元的函数可以类似地定义偏导数. 2.偏导数的计算对

一个自变量求偏导数时,只要把其它的自变量都当常数就行了.因此,一元

函数的求导公式与导数运算法则都可用于求多元函数的偏导数. 3.高

阶偏导数对函数z = f(x, y)的偏导数再求偏导数就得到高阶偏导数,例

如 = ; =; = ;=.其中、称为混合偏导数.类

似地可以定义更高阶的偏导数.注意:1、更多元的函数可以类似地定义偏

导数. 2、计算法:对一个自变量求偏导时,只要把其他自变量都当常数就行时,把看作常量,而对求导数;

时,把看作常量,而对求导数。例1求在点处的偏导

数。 , 解法1:则

解法2:,则主要用于第三章的二维随机变量的

分布函数的求导例一设(X, Y)的概率密度为

求:关于X 及关于Y的边缘概率密度, 并判断X与Y是否相互独立. 解:

关于X的边缘概率密度当时, . 当或

时 , 所以同理当时,, 所

以X与Y不独立第七部分二重积分的性质由于二重

积分的定义与定积分的定义是类似的,因而二重积分有与定积分类似的性

质,叙述于下(假定所出现的二重积分均存在):性质1 被积函

数的常系数因子可以提到积分号外,即 (k为常数).特

别,令 f (x, y)≡1,则有.(D 性质2 函数和

(差)的二重积分等于各函数二重积分的和(差),

即.性质3 如果区域D可以划分为D1与

D2,其中D1与D2除边界外无公共点,则 =+.例 1

设X与Y是两个相互独立的随机变量, X在[0, 1]服从均匀分布, Y的概率

密度为求: (1) (X, Y)的概率密度;

(2) ; (3) 解: (1)由已知X与Y相互独立, (X, Y) 例2 设的概率密度为求的分布函数. 解: 由定义5

知当x>0, y>0时

当时, 例3 设X的概率密度为

求解:

例4 设(X,Y)服从在D上的均匀分布,其中D为x轴, y轴及x+y=1所围成,求D(X D(X) = 解: 二、二重积分的计算按照二重积分的定义计算二重积分,只对少数特

别简单的被积函数和积分区域是可行的,对一般的函数和区域,这种“和式的极限”是无法直接计算的.下面我们介绍将二重积分转化为两次定积分来计算的方法,这是计算二重积分的一种行之有效的方法. 1.X—型区域上二重积分的计算设D是平面有界闭区域,若穿过D的内部且平行于y轴的直线与D的边界相交不多于两点(如图示3),则称D为X—型区域.由图可知,此时区域D可以用不等式表示为

D:.图在区间[a,b]上任取一点x,过点x作与x轴垂直的直线,它与D相交于两

点,,axb.因此

经过以上两步计算,相当于在区域上累加了一

遍。.(1)由此可见,二重积分可以化为两次定积分来计算.第一次对变量y 积分,将x当作常数,积分区间是区域D的下边界的点到对应的上边界的点.第二次对x积分,它的积分限是常数.这种先对一个变量积分,再对另一个变量积分的方法,称为累次(或二次)积分法.公式(1)是先对y后对

x的累次积分公式,通常简记

为. 2.Y—型区域上二重积分的计算设D是平面有界闭区域,若穿过D的内部且平行于x轴的直线与D的边界相交不多于两点(如图示4),则称D为Y—型区域.由图可知,此时区域D可以用不等式表示为 D:.图4 利用与前面相同的方法,可得先对x后对y的累次积分公式:

通常简记

为.(2).(3) 3.一般区域上二重积分的计算如果区域D不属于上述两种类型,则二重积分不能直接利用公式(1)、(3)来计算.这时可以考虑将区域D划分成若干个小区域,使每个小区域或是X—型区域、或是Y—型区域.在每个小区域上单独算出相应的二重积分,然后利用二重积分对区域的可加性即可得所求的二重积分值.例1 计算二重积分其中D 是直线y=1, x=2, 及y=x 所围的闭区域。解法1. 将D看作X–型区域, 则,过作直线平行于边界为,则

为,

解法2. 将D看作Y–型区域, 则,过作直线平行于轴,交区域左

边界为为,

,其中D为矩形域D:

例2 0y1.解采用先y后x的积分次序,则

1x2 .注意:例2中的二重积分若采用先x后y的积分次序,则,函数xe先对x积分时需要用分部积分法来计算,这将使计算工作量增加(请读者自己完成,作一比较).由此可见,计算二重积分要根被积函数选择适当的积分次

序.例3 ,其中D是由抛物线y = x和直线

x2 成的闭区域.解:易求抛物线y2 = x和直线y = x2的交点为(1,-1)和(4,2)积分区域如图示5所示.D看作Y–型区域, 采用先x后y的积分次序,则将区域D表示为 D:

y2xy+2,-1y2.故有

图.注意本例若D看作X–型区域,采用先y后x的积分次序,由于区域D的下边界曲线需要用分段函数表示:当x∈[0,1]时,;当x∈[1,4]时,.,将D划分为D1、

D2两个部分区域(如图6),其中

D1:;. D2:由此可利用

二重积分的区域可加性计算此积

分:.图6 将D1、D2的表示式代入上式化为两个累次积分后可计算出积分结果.显然,这次序比较麻烦.例4 设D是由y = x2, y =-x和 x = 1所围成的闭区域,将二重积分I =种次序).解区域D如图示7所示.(1)将D看作Y–型区域, 先x后y: D应表为D = D1∪D2,其中 D1:; D2

(两.

(2)将D看作X–型区域, 先y后x: D应表为:-xyx2,0x1.故.图

图7b 例5 ,其中D是由直线y = x, y = 1与y轴围成的闭区域.解积分区域D如图示7.我们选取先x后y 的积分次序.将D表示为: D:0xy,0y1.故有

图注意:若先对y积分后对x ,由于函数对变量y的原函数不能表为初等函数,,第一步的积分将无法计算.小结: 1.X—型区域:设区域D:.则. 2.Y—型区域:设区域D:ψ1(y) x ψ2(y), cyd.则有

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计综合试题

Ⅱ、综合测试题 s388 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率论与数理统计考研真题

考研真题一 ( ). ,4,"",,,.,41.)4()3()2()1(0E T T T T E t ≤≤≤等于则事件个温控器显示的按递增顺序为设电炉断电事件以电炉就断电只要有两个温控器显示的温度不低于临界温度在使用过程其显示温度的误差是随机的个温控器在电炉上安装了中排列的温度值表示}. {(D)}; {(C)};{(B)};{(A)0)4(0)3(0)2(0)1(t T t T t T t T ≥≥≥≥数三、四考研题 00. (D); (C);(B);(A)( ). ,,,,,2.独立与独立与独立与独立与相互独立的充分必要条件是则三个事件两两独立设C A B A AC AB C A AB BC A C B A C B A 数四考研题00( ).,3.=B B A B A 不等价的是与和对于任意二事件 数四考研题 01. (D); (C); (B); (A)?=?=??B A B A A B B A . ) |()|(1,0,,独立的充分必要条件与是事件证明 和的概率不等于其中是任意二事件设B A A B P A B P A B A =4.数四考研题 02;,,;,,( ). }, {},{}, {}, {: ,5.4323214321相互独立相互独立则事件正面出现两次正、反面各出现一次掷第二次出现正面掷第一次出现正面引进事件将一枚硬币独立地掷两次A A A A A A A A A A ====数三考研题 03(B)(A). ,,;,,432321两两独立两两独立A A A A A A . ,,; ,,;,,;,,( ).6.一定不独立则若一定独立则若有可能独立则若一定独立则若和对于任意两个事件B A AB B A AB B A AB B A AB B A ?=?=?≠?≠数四考研题03(D)(C)(D)(C)(B)(A)7.从数1,中任取一个数, 记为X , 再从X ,,1 中任取一个数, 为Y , 则. __________}2{==Y P 2,3,4三、四考研题 05记1. .

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论与数理统计历年考研试题-3

第3章 数字特征 1. (1987年、数学一、填空) 设随机变量X 的概率密度函数,1 )(1 22 -+-= x x e x f π 则 E(X)=( ),)(X D =( ). [答案 填:1; 2 1.] 由X 的概率密度函数可见X ~N(1, 21 ),则E(X)=1,)(X D =2 1. 2. (1990年、数学一、填空) 设随机变量X 服从参数为2的泊松分布,且Z=3X-2, 则E(X)=( ). [答案 填:4] 3. (1990年、数学一、计算) 设二维随机变量(X,Y)在区域D:0

4. (1991年、数学一、填空) 设X ~N(2,2 σ)且P{2

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

《概率论与数理统计》习题 第五章 数理统计的基本概念

第五章 数理统计的基本概念 一. 填空题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 ), 且随机变量)1(~) (22 1 χ∑==n i i X C Y , 则常数 C=___. 解. ∑=n i i X 1 ~ N(0, n σ2 ), )1,0(~1 N n X n i i σ ∑= 所以 2 1,1σ σ n c n c = = . 2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且2 43221)43()2(X X b X X a Y -+-=, 则a = ______, b = ______时, Y 服从χ2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100) )1,0(~2022 1N X X -, )1,0(~1004343N X X - 20 1 ,20 1 = = a a ; 100 1,100 1 = = b b . Y 为自由度2的χ2分布. 3. 设X 1, X 2, …, X n 来自总体χ2(n)的分布, 则._____)(______,)(==X D X E 解. 因为X 1, X 2, …, X n 来自总体χ2(n), 所以 E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n) ,)(n X E = 22) ()(2 2 1=?= =∑=n n n n X D X D n i i 二. 单项选择题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 )的样本, 则样本二阶原点矩∑==n i i X n A 1 2 21的方差为 (A) σ2 (B) n 2 σ (C) n 42σ (D) n 4 σ 解. X 1, X 2, …, X n 来自总体N(0, σ2), 所以

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计考研真题集及答案

概率论与数理统计考研真题集及答案

1... ___________,,40%60%,2%1%2.生产的概率是则该次发现是次品的一批产品中随机抽取一件和和现从由和的产品的次品率分别为和工厂设工厂A B A B A 数一考研题 96的产品分别占考研真题一 ; __________)(,)(),()(,1.===B P p A P B A P AB P B A 则 且两个事件满足条件已知数一考研题 94品属. _____,,,30,20,503.则第二个人取得黃球的概率是取后不放回随机地从袋中各取一球今有两人依次个是白球个是黃球其中个乒乓球袋中有数一考研题 97). ()()((D)); ()()((C));|()|((B));|()|((A)( ). ),|()|(,0)(,1)(0,,4.B P A P AB P B P A P AB P B A P B A P B A P B A P A B P A B P B P A P B A ≠=≠==><<则必有且是两个随机事件设数一考研题 98._______)(,16 9 )(,2 1)()()(,: ,5.== < ==?=A P C B A P C P B P A P ABC C B A 则且已知满足条件和设两两相互独立的三事件Y Y 数一考研题 99. _________)(,,9 1 6.=A P A B B A B A 则不发生的概率相等发生不发生发生都不发生的概率为 和设两个相互独立的事件数一考研题 00的概率与7.从数1,中任取一个数, 记为X , 再从X ,,1Λ中任取一个数, 记为Y , 则. __________}2{==Y P 2,3,4数一考研题 05(C)); ()(A P B A P =(D)). ()(B P B A P =(A));()(A P B A P >(B));()(B P B A P >( ).8.设B A ,为随机事件1)|(0)(=>B A P B P 则必有且,,,数一考研题 069.某人向同一目标独立重复射击,每次射击命中目标的概率为)10(<

相关文档
最新文档