(浙江专用)202x版高考数学一轮复习 专题9 平面解析几何 第64练 直线的方程练习(含解析)

合集下载

高考数学一轮复习 第九章 平面解析几何9 (2)

高考数学一轮复习 第九章 平面解析几何9 (2)

高考数学一轮复习 第九章 平面解析几何9.11 圆锥曲线中定点与定值问题题型一 定点问题例1 已知定圆A :(x +3)2+y 2=16,动圆M 过点B (3,0),且和圆A 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)设不垂直于x 轴的直线l 与轨迹E 交于不同的两点P ,Q ,点N (4,0).若P ,Q ,N 三点不共线,且∠ONP =∠ONQ .证明:动直线PQ 经过定点.(1)解 圆A 的圆心为A (-3,0),半径r 1=4.设动圆M 的半径为r 2,依题意有r 2=|MB |.由|AB |=23,可知点B 在圆A 内,从而圆M 内切于圆A ,故|MA |=r 1-r 2,即|MA |+|MB |=4>2 3.所以动点M 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,其方程为x 24+y 2=1. (2)证明 设直线l 的方程为y =kx +b (k ≠0),联立⎩⎪⎨⎪⎧y =kx +b ,x 2+4y 2=4, 消去y 得,(1+4k 2)x 2+8kbx +4b 2-4=0,Δ=16(4k 2-b 2+1)>0,设P (x 1,kx 1+b ),Q (x 2,kx 2+b ),则x 1+x 2=-8kb 1+4k 2,x 1x 2=4b 2-41+4k 2, 于是k PN +k QN =kx 1+b x 1-4+kx 2+b x 2-4=2kx 1x 2-4k -bx 1+x 2-8b x 1-4x 2-4, 由∠ONP =∠ONQ 知k PN +k QN =0.即2kx 1x 2-(4k -b )(x 1+x 2)-8b =2k ·4b 2-41+4k 2-(4k -b )-8kb 1+4k 2-8b =8kb 2-8k 1+4k 2+32k 2b -8kb 21+4k 2-8b =0, 得b =-k ,Δ=16(3k 2+1)>0.故动直线l 的方程为y =kx -k ,过定点(1,0).教师备选在平面直角坐标系中,已知动点M (x ,y )(y ≥0)到定点F (0,1)的距离比到x 轴的距离大1.(1)求动点M 的轨迹C 的方程;(2)过点N (4,4)作斜率为k 1,k 2的直线分别交曲线C 于不同于N 的A ,B 两点,且1k 1+1k 2=1.证明:直线AB 恒过定点.(1)解 由题意可知x 2+y -12=y +1,化简可得曲线C :x 2=4y .(2)证明 由题意可知,N (4,4)是曲线C :x 2=4y 上的点,设A (x 1,y 1),B (x 2,y 2),则l NA :y =k 1(x -4)+4,l NB :y =k 2(x -4)+4,联立直线NA 的方程与抛物线C 的方程,⎩⎪⎨⎪⎧ y =k 1x -4+4,x 2=4y⇒x 2-4k 1x +16(k 1-1)=0,解得x 1=4(k 1-1),①同理可得x 2=4(k 2-1),②而l AB :y -x 214=x 1+x 24(x -x 1),③又1k 1+1k 2=1,④ 由①②③④整理可得l AB :y =(k 1+k 2-2)x -4,故直线AB 恒过定点(0,-4).思维升华 求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式y =kx +m ,则直线必过定点(0,m ).跟踪训练1 (2022·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且过点⎝⎛⎭⎫3,12. (1)求椭圆方程;(2)设直线l :y =kx +m (k ≠0)交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线x =12上,求证:线段AB 的中垂线恒过定点N .(1)解 椭圆过点⎝⎛⎭⎫3,12,即3a 2+14b2=1, 又2c =23,得a 2=b 2+3,所以a 2=4,b 2=1,即椭圆方程为x 24+y 2=1. (2)证明 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 1+4k 2,设AB 的中点M 为(x 0,y 0),得x 0=-4km 1+4k 2=12, 即1+4k 2=-8km ,所以y 0=kx 0+m =12k -1+4k 28k =-18k. 所以AB 的中垂线方程为y +18k =-1k ⎝⎛⎭⎫x -12, 即y =-1k ⎝⎛⎭⎫x -38, 故AB 的中垂线恒过点N ⎝⎛⎭⎫38,0.题型二 定值问题例2 (2022·江西赣抚吉名校联考)已知抛物线E :y 2=2px (p >0)上的动点M 到直线x =-1的距离比到抛物线E 的焦点F 的距离大12. (1)求抛物线E 的标准方程;(2)设点Q 是直线x =-1(y ≠0)上的任意一点,过点P (1,0)的直线l 与抛物线E 交于A ,B 两点,记直线AQ ,BQ ,PQ 的斜率分别为k AQ ,k BQ ,k PQ ,证明:k AQ +k BQ k PQ为定值. (1)解 由题意可知抛物线E 的准线方程为x =-12, 所以-p 2=-12,即p =1, 故抛物线E 的标准方程为y 2=2x .(2)证明 设Q (-1,y 0),A (x 1,y 1),B (x 2,y 2),因为直线l 的斜率显然不为0,故可设直线l 的方程为x =ty +1.联立⎩⎪⎨⎪⎧x =ty +1,y 2=2x ,消去x ,得y 2-2ty -2=0.Δ=4t 2+8>0,所以y 1+y 2=2t ,y 1y 2=-2,k PQ =-y 02. 又k AQ +k BQ =y 1-y 0x 1+1+y 2-y 0x 2+1 =y 1-y 0x 2+1+y 2-y 0x 1+1x 1+1x 2+1=y 1-y 0ty 2+2+y 2-y 0ty 1+2ty 1+2ty 2+2=2ty 1y 2+2-ty 0y 1+y 2-4y 0t 2y 1y 2+2t y 1+y 2+4 =2t ·-2+2-ty 0·2t -4y 0t 2·-2+2t ·2t +4=-y 0t 2+2t 2+2=-y 0. 所以k AQ +k BQ k PQ =-y 0-y 02=2(定值). 教师备选(2022·邯郸模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆于A ,B 两点,交y 轴于点M ,若|F 1F 2|=2,△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)MA →=λF 1A —→,MB →=μF 1B —→,试分析λ+μ是否为定值,若是,求出这个定值,否则,说明理由.解 (1)因为△ABF 2的周长为8,所以4a =8,解得a =2,由|F 1F 2|=2,得2a 2-b 2=24-b 2=2,所以b 2=3,因此椭圆C 的标准方程为x 24+y 23=1.(2)由题意可得直线l 的斜率存在,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧ y =k x +1,x 24+y 23=1, 整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧ x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.设M (0,k ),又F 1(-1,0),所以MA →=(x 1,y 1-k ),F 1A —→=(x 1+1,y 1),则λ=x 1x 1+1. 同理可得MB →=(x 2,y 2-k ),F 1B —→=(x 2+1,y 2),则μ=x 2x 2+1. 所以λ+μ=x 1x 1+1+x 2x 2+1=x 1x 2+1+x 2x 1+1x 1+1x 2+1=2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=2×4k 2-123+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k 2+1=8k 2-24-8k 24k 2-12-8k 2+3+4k 2=-24-9=83, 所以λ+μ为定值83. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB的斜率为k 1,点P 的坐标为⎝⎛⎭⎫1,32. (1)求椭圆C 的方程;(2)求证:k 1k 为定值.(1)解 由题意知⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧ a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1. (2)证明 设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),由于A ,B 为椭圆C 上的点, 所以x 214+y 213=1,x 224+y 223=1, 两式相减得x 1+x 2x 1-x 24=-y 1+y 2y 1-y 23, 所以k 1=y 1-y 2x 1-x 2=-3x 1+x 24y 1+y 2=-3x 04y 0. 又k =y 0x 0, 故k 1k =-34,为定值. 课时精练1.(2022·运城模拟)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.(1)解 将P 点坐标代入抛物线方程y 2=2px ,得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x .(2)证明 设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0⇒16m 2+16t >0⇒m 2+t >0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k P A =y 1-2x 1-1=y 1-2y 214-1=4y 1+2, 同理k PB =4y 2+2,由题意知4y 1+2+4y 2+2=2, 即4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,故-4t =4,即t =-1,故直线AB :x =my -1恒过定点(-1,0).2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,且其左顶点到右焦点的距离为5. (1)求椭圆的方程;(2)设点M ,N 在椭圆上,以线段MN 为直径的圆过原点O ,试问是否存在定点P ,使得P 到直线MN 的距离为定值?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题设可知⎩⎪⎨⎪⎧c a =23,a +c =5,解得a =3,c =2,b 2=a 2-c 2=5,所以椭圆的方程为x 29+y 25=1. (2)设M (x 1,y 1),N (x 2,y 2),①若直线MN 与x 轴垂直,由对称性可知|x 1|=|y 1|,将点M (x 1,y 1)代入椭圆方程,解得|x 1|=37014, 原点到该直线的距离d =37014; ②若直线MN 不与x 轴垂直,设直线MN 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 25=1,消去y 得(9k 2+5)x 2+18kmx +9m 2-45=0,由根与系数的关系得⎩⎪⎨⎪⎧ x 1x 2=9m 2-459k 2+5,x 1+x 2=-18km 9k 2+5,由题意知,OM →·ON →=0,即x 1x 2+(kx 1+m )(kx 2+m )=0, 得(k 2+1)9m 2-459k 2+5+km ⎝⎛⎭⎫-18km 9k 2+5+m 2=0, 整理得45k 2+45=14m 2,则原点到该直线的距离d =|m |k 2+1=4514=37014, 故存在定点P (0,0),使得P 到直线MN 的距离为定值.3.已知双曲线C 的渐近线方程为y =±3x ,右焦点F (c ,0)到渐近线的距离为 3.(1)求双曲线C 的方程;(2)过F 作斜率为k 的直线l 交双曲线于A ,B 两点,线段AB 的中垂线交x 轴于D ,求证:|AB ||FD |为定值.(1)解 设双曲线方程为3x 2-y 2=λ(λ>0),由题意知c =2,所以λ3+λ=4⇒λ=3, 所以双曲线C 的方程为x 2-y 23=1. (2)证明 设直线l 的方程为y =k (x -2)(k ≠0)代入x 2-y 23=1, 整理得(3-k 2)x 2+4k 2x -4k 2-3=0,Δ=36(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-4k 23-k 2,x 1x 2=-4k 2-33-k 2, 由弦长公式得|AB |=1+k 2·x 1+x 22-4x 1x 2=6k 2+1|3-k 2|, 设AB 的中点P (x 0,y 0),则x 0=x 1+x 22=-2k 23-k 2, 代入l 得y 0=-6k 3-k 2, AB 的垂直平分线方程为y =-1k ⎝⎛⎭⎫x +2k 23-k 2-6k 3-k 2,令y =0得x D =-8k 23-k 2, 即|FD |=⎪⎪⎪⎪⎪⎪-8k 23-k 2-2=61+k 2|3-k 2|, 所以|AB ||FD |=1为定值. 当k =0时,|AB |=2,|FD |=2,|AB ||FD |=1, 综上所述,|AB ||FD |为定值.4.(2022·河南九师联盟模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,长轴长为4.(1)求椭圆C 的方程;(2)设过点F 1不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.解 (1)因为焦距为2,长轴长为4,即2c =2,2a =4,解得c =1,a =2,所以b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)由(1)知F 1(-1,0),设点E (x 1,y 1),D (x 2,y 2),M (m ,0),因为直线l 不与x 轴重合,所以设直线l 的方程为x =ny -1,联立⎩⎪⎨⎪⎧x =ny -1,x 24+y 23=1, 得(3n 2+4)y 2-6ny -9=0,所以Δ=(-6n )2+36(3n 2+4)>0,所以y 1+y 2=6n 3n 2+4,y 1y 2=-93n 2+4, 又x 1x 2=(ny 1-1)(ny 2-1)=n 2y 1y 2-n (y 1+y 2)+1=-9n 23n 2+4-6n 23n 2+4+1 =-12n 2-43n 2+4, x 1+x 2=n (y 1+y 2)-2=6n 23n 2+4-2 =-83n 2+4. 直线ME ,MD 的斜率分别为k ME =y 1x 1-m,k MD =y 2x 2-m , 所以k ME ·k MD =y 1x 1-m ·y 2x 2-m=y 1y 2x 1-m x 2-m=y 1y 2x 1x 2-m x 1+x 2+m 2=-93n 2+4-12n 2-43n 2+4-m ⎝ ⎛⎭⎪⎫-83n 2+4+m 2 =-9-12n 2+4+8m +3m 2n 2+4m 2=-93m 2-12n 2+4m +12, 要使直线ME ,MD 的斜率之积恒为定值,3m 2-12=0,解得m =±2,当m =2时,存在点M (2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-936=-14, 当m =-2时,存在点M (-2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-94, 综上,在x 轴上存在点M ,使得ME ,MD 的斜率之积恒为定值,当点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14, 当点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.。

2022年高考数学(浙江专用)总复习教师用书:第9章 第1讲 直线的方程 Word版含解析

2022年高考数学(浙江专用)总复习教师用书:第9章 第1讲 直线的方程 Word版含解析

第1讲直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,把握过两点的直线斜率的计算公式;3.把握确定直线位置的几何要素,把握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角与斜率(1)直线的倾斜角①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;②规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π).(2)直线的斜率①定义:当直线l的倾斜角α≠π2时,其倾斜角α的正切值tanα叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan__α;②斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y2-y1x2-x1.2.直线方程的五种形式名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点y-y1y2-y1=x-x1x2-x1与两坐标轴均不垂直的直线截距式纵、横截距xa+yb=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)全部直线3.若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1P2的中点M的坐标为(x,y),则⎩⎪⎨⎪⎧x=x1+x22,y=y1+y22,此公式为线段P1P2的中点坐标公式.诊断自测1.推断正误(在括号内打“√”或“×”)(1)直线的倾斜角越大,其斜率就越大.()(2)直线的斜率为tan α,则其倾斜角为α.()(3)斜率相等的两直线的倾斜角不肯定相等.()(4)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.()(5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.()解析(1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°.(3)两直线的斜率相等,则其倾斜角肯定相等.(4)当直线的斜率不存在时,不行以用方程y-y0=k(x-x0)表示.答案(1)×(2)×(3)×(4)×(5)√2.(2021·衡水金卷)直线x-y+1=0的倾斜角为()A.30°B.45°C.120°D.150°解析由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°故α=45°,故选B.答案 B3.假如A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限 B.其次象限 C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限. 答案 C4.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 答案 3x -2y =0或x +y -5=06.(2021·金华市调研)直线kx -y -2k +4=0过定点P 的坐标为________;若幂函数y =f (x )也过点P ,则f (x )的解析式为________.解析 直线kx -y -2k +4=0可化为y -4=k (x -2),∴直线过定点P (2,4),设幂函数y =f (x )为y =x α,把P (2,4)代入,得4=2α,∴α=2,即y =f (x )=x 2. 答案 (2,4) f (x )=x 2考点一 直线的倾斜角与斜率【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 由于α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3]. 设直线的倾斜角为θ, 则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 答案 (1)B (2)(-∞,-3]∪[1,+∞)规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此依据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种状况争辩.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 (2021·杭州一调)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π) B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α.由于sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B. 答案 B考点二 直线方程的求法【例2】 依据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可接受点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为xa +y12-a=1, 又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34. 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 依据各种形式的方程,接受待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0. 若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a =1, ∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必需有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4 ≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 法一 设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b =1≥26ab ,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0.法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k ) =12×(12+12)=12. 当且仅当-9k =4-k,即k =-23时,等号成立, 即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:α 0° 0°<α<90° 90° 90°<α<180°kk >0不存在k <02.在求直线方程时,应先选择适当的直线方程的形式,并留意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必需存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若接受截距式,应留意分类争辩,推断截距是否为零;若接受点斜式,应先考虑斜率不存在的状况.[易错防范]1.求直线方程时要留意推断直线斜率是否存在;每条直线都有倾斜角,但不肯定每条直线都存在斜率.2.依据斜率求倾斜角,一是要留意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时简洁忽视的一点.基础巩固题组 (建议用时:30分钟) 一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30° B.60° C.120°D.150°解析 直线的斜率为k =tan α=3,又由于0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又由于直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.答案 B4.(2021·浙江三市十二校联考)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A.6x -4y -3=0 B.3x -2y -3=0 C.2x +3y -2=0D.2x +3y -1=0解析 由于抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2021·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13 B.-13 C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 B6.(2021·浙江五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2022·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A.y =3x +2B.y =3x -2C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2021·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C 二、填空题9.(2021·温州调研)已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________;BC 边上中线的方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.故BC 边上中线的方程为x +13y +5=0(-5≤x ≤32). 答案 x +13y +5=0 x +13y +5=0⎝ ⎛⎭⎪⎫-5≤x ≤3210.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________. 解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1.当2π3≤α<π时,-3≤tan α<0, 即-3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0).答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,111.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________.解析 ①若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +ya =1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________.解析 直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)13.(2021·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转π2,则所得到的直线l 2的方程为________.解析 对直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即为x -y -2=0. 答案 -2 x -y -2=0 力量提升题组 (建议用时:15分钟)14.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A.4x -3y -3=0B.3x -4y -3=0C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,由于直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0. 答案 D15.(2021·宁波调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B.[-1,0] C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.由于曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A16.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2), 设直线l 的斜率为k . 又k OA =2,k OB =23. 如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,217.设M =π2 011-2 012π2 012+2 011,N =π2 013-2 012π2 014+2 011,则M 与N 的大小关系为________.解析 设A =(-2 011,2 012),B (π2 012,π2 011),C (π2 014,π2 013),则有M =π2 011-2 012π2 012+2 011=k AB ,N =π2 013-2 012π2 014-(-2 011)=k AC (如图所示),则直线BD 的倾斜角∠BDO 和直线AC 的倾斜角∠CEO 均为锐角,且∠BDO <∠CEO ,所以k AB <k AC ,即M <N . 答案 M <N18.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则 直线AB 的方程是________.解析 直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32.所以直线AB的方程为y-1-1+32-1=x-11+32-1,3x+y-3-1=0.答案3x+y-3-1=0。

(浙江专用)高考数学一轮复习 专题九 平面解析几何 9.4 双曲线试题(含解析)-人教版高三全册数学

(浙江专用)高考数学一轮复习 专题九 平面解析几何 9.4 双曲线试题(含解析)-人教版高三全册数学

§9.4 双曲线基础篇固本夯基【基础集训】考点一 双曲线的定义和标准方程1.设P 是双曲线x 216-y 220=1上一点,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于 ( )A.1B.17C.1或17D.以上均不对 答案 B2.已知双曲线x 2a2-y 2b 2=1(a>0,b>0)的右焦点为F,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1C.x 23-y 2=1 D.x 2-y 23=1答案 D3.已知双曲线x 2a2-y 2b 2=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1C.3x 225-3y 2100=1 D.3x 2100-3y 225=1答案 A4.若实数k 满足0<k<5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等 答案 D考点二 双曲线的几何性质5.已知双曲线x 2a 2-y 23=1(a>0)的离心率为2,则a=( ) A.2 B.√62C.√52D.1 答案 D6.双曲线C:x 2a 2-y 2b 2=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为√3,则C 的焦距等于( ) A.2 B.2√2 C.4 D.4√2 答案 C7.已知双曲线C:x 2a 2-y 2b 2=1(a>0,b>0)的离心率为√52,则C 的渐近线方程为( ) A.y=±14x B.y=±13x C.y=±12x D.y=±x答案 C8.已知双曲线x 2a2-y2b2=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(√5,0),则a=;b=.答案1;2综合篇知能转换【综合集训】考法一求双曲线方程的方法1.(2018某某仿真模拟(三),8)已知双曲线C:x 2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=√3x,一个焦点坐标为(2,0),则双曲线C的方程为( )A.x 22-y26=1 B.x26-y22=1C.x2-y 23=1 D.x23-y2=1答案 C2.(2019某某某某三中一模,10)已知F1,F2分别为双曲线E:x 2a2-y2b2=1(a>0,b>0)的左,右焦点.过右焦点F2的直线l:x+y=c在第一象限内与双曲线E的渐近线交于点P,与y轴正半轴交于点Q,且点P为QF2的中点,△QF1F2的面积为4,则双曲线E的方程为( )A.x 22-y2=1 B.x22-y22=1 C.x24-y24=1 D.x24-y23=1答案 B3.(2018某某某某第二次实战考试)已知点A(-1,0),B(1,0)为双曲线x 2a2-y2b2=1(a>0,b>0)的左,右顶点,点M在双曲线右支上,△ABM为等腰三角形,且顶角为120°,则该双曲线的方程为( )A.x2-y 24=1 B.x2-y2=1C.x2-y 23=1 D.x2-y22=1答案 B考法二求双曲线的离心率(或取值X围)的方法4.(2018某某某某模拟,9)已知F1,F2是双曲线x 2a2-y2b2=1(a>0,b>0)的左,右焦点,过F1的直线l与双曲线的左右两支分别交于点B,A,若△ABF2为等边三角形,则双曲线的离心率为( )A.√7B.4C.2√33D.√3答案 A5.(2019某某某某3月联考,10)如图,双曲线C:x 2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作直线与C的渐近线交于P点,若等腰△PF1F2的底边PF2的长等于C的半焦距,则C的离心率为( )A.2√33B.23 C.2√63D.32答案 C6.(2018某某某某一模,5)若双曲线x 2a2-y 2b2=1(a>0,b>0)与直线y=2x 无交点,则离心率e 的取值X围是( )A.(1,2)B.(1,2]C.(1,√5)D.(1,√5] 答案 D【五年高考】考点一 双曲线的定义和标准方程 1.(2016课标Ⅰ,5,5分)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值X 围是( )A.(-1,3)B.(-1,√3)C.(0,3)D.(0,√3) 答案 A2.(2017某某,5,5分)已知双曲线x 2a2-y 2b 2=1(a>0,b>0)的左焦点为F,离心率为√2.若经过F 和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.x 24-y 24=1 B.x 28-y 28=1 C.x 24-y 28=1 D.x 28-y 24=1 答案 B3.(2016某某,6,5分)已知双曲线x 24-y 2b 2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D 四点,四边形ABCD 的面积为2b,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1D.x 24-y 212=1 答案 D4.(2015某某,6,5分)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线过点(2,√3),且双曲线的一个焦点在抛物线y 2=4√7x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1C.x 23-y 24=1D.x 24-y 23=1答案 D考点二 双曲线的几何性质5.(2019某某,2,4分)渐近线方程为x±y=0的双曲线的离心率是( ) A.√22 B.1 C.√2 D.2 答案 C6.(2019课标Ⅲ,10,5分)双曲线C:x 24-y 22=1的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO 的面积为( ) A.3√24B.3√22C.2√2D.3√2答案 A7.(2019课标Ⅱ,11,5分)设F 为双曲线C:x 2a 2-y 2b 2=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为( ) A.√2 B.√3 C.2 D.√5 答案 A8.(2018课标Ⅰ,11,5分)已知双曲线C:x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M,N.若△OMN 为直角三角形,则|MN|=( ) A.32 B.3 C.2√3 D.4 答案 B9.(2018课标Ⅱ,5,5分)双曲线x 2a 2-y 2b 2=1(a>0,b>0)的离心率为√3,则其渐近线方程为( ) A.y=±√2x B.y=±√3x C.y=±√22x D.y=±√32x答案 A10.(2017课标Ⅱ,9,5分)若双曲线C:x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线被圆(x-2)2+y 2=4所截得的弦长为2,则C 的离心率为( ) A.2 B.√3 C.√2 D.2√33 答案 A11.(2016课标Ⅱ,11,5分)已知F 1,F 2是双曲线E:x 2a2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为( ) A.√2 B.32 C.√3 D.2 答案 A12.(2015课标Ⅰ,5,5分)已知M(x 0,y 0)是双曲线C:x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ <0,则y 0的取值X 围是( ) A.(-√33,√33) B.(-√36,√36) C.(-2√23,2√23) D.(-2√33,2√33) 答案 A13.(2015课标Ⅱ,11,5分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A.√5 B.2 C.√3 D.√2 答案 D14.(2019某某,5,5分)已知抛物线y 2=4x 的焦点为F,准线为l.若l 与双曲线x 2a 2-y 2b 2=1(a>0,b>0)的两条渐近线分别交于点A 和点B,且|AB|=4|OF|(O 为原点),则双曲线的离心率为( ) A.√2 B.√3 C.2 D.√5 答案 D15.(2016某某,7,5分)已知椭圆C 1:x 2m2+y 2=1(m>1)与双曲线C 2:x 2n2-y 2=1(n>0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m>n 且e 1e 2>1B.m>n 且e 1e 2<1C.m<n 且e 1e 2>1D.m<n 且e 1e 2<1 答案 A16.(2019课标Ⅰ,16,5分)已知双曲线C:x 2a2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A,B 两点.若F1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ·F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为. 答案 217.(2018某某,8,5分)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为√32c,则其离心率的值是. 答案 218.(2017某某,14,5分)在平面直角坐标系xOy 中,双曲线x 2a2-y 2b 2=1(a>0,b>0)的右支与焦点为F的抛物线x 2=2py(p>0)交于A,B 两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为. 答案 y=±√22x教师专用题组考点一 双曲线的定义和标准方程1.(2015某某,7,5分)已知双曲线C:x 2a 2-y 2b 2=1的离心率e=54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1 B.x 29-y 216=1C.x 216-y 29=1D.x 23-y 24=1答案 C2.(2014大纲全国,9,5分)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A|=2|F 2A|,则cos∠AF 2F 1=( )A.14B.13C.√24D.√23答案 A考点二 双曲线的几何性质3.(2018某某,2,4分)双曲线x 23-y 2=1的焦点坐标是( )A.(-√2,0),(√2,0)B.(-2,0),(2,0)C.(0,-√2),(0,√2)D.(0,-2),(0,2) 答案 B4.(2015某某,5,5分)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A,B 两点,则|AB|=( ) A.4√33B.2√3C.6D.4√3答案 D5.(2015某某,8,5分)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e 2的双曲线C 2,则( ) A.对任意的a,b,e 1>e 2B.当a>b 时,e 1>e 2;当a<b 时,e 1<e 2C.对任意的a,b,e 1<e 2D.当a>b 时,e 1<e 2;当a<b 时,e 1>e 2 答案 D6.(2015某某,10,5分)设双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右焦点为F,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC,AB 的垂线,两垂线交于点D.若D 到直线BC 的距离小于a+√a 2+b 2,则该双曲线的渐近线斜率的取值X 围是( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-√2,0)∪(0,√2)D.(-∞,-√2)∪(√2,+∞) 答案 A7.(2014课标Ⅰ,4,5分)已知F 为双曲线C:x 2-my 2=3m(m>0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A.√3B.3C.√3mD.3m 答案 A8.(2012课标,8,5分)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A,B 两点,|AB|=4√3,则C 的实轴长为( ) A.√2 B.2√2 C.4 D.8 答案 C9.(2017,9,5分)若双曲线x 2-y 2m =1的离心率为√3,则实数m=.答案 210.(2016某某,3,5分)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是. 答案 2√1011.(2016某某,13,5分)已知双曲线E:x 2a2-y 2b 2=1(a>0,b>0).若矩形ABCD 的四个顶点在E上,AB,CD 的中点为E 的两个焦点,且2|AB|=3|BC|,则E 的离心率是. 答案 212.(2015某某,13,5分)设F 是双曲线C:x 2a2-y 2b 2=1的一个焦点.若C 上存在点P,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为. 答案 √513.(2015某某,15,5分)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py(p>0)交于点O,A,B.若△OAB 的垂心为C 2的焦点,则C 1的离心率为. 答案 3214.(2014某某,20,13分)如图,已知双曲线C:x 2a2-y 2=1(a>0)的右焦点为F,点A,B 分别在C 的两条渐近线上,AF⊥x 轴,AB⊥OB,BF∥OA(O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P(x 0,y 0)(y 0≠0)的直线l:x 0x a2-y 0y=1与直线AF 相交于点M,与直线x=32相交于点N.证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.解析 (1)设F(c,0),因为b=1,所以c=√a 2+1,直线OB 的方程为y=-1ax,直线BF 的方程为y=1a(x-c),解得B (c2,-c 2a).又直线OA 的方程为y=1a x, 则A (c ,ca ),k AB =c a -(-c 2a )c -c2=3a .又因为AB⊥OB,所以3a ·(-1a )=-1, 解得a 2=3,故双曲线C 的方程为x 23-y 2=1. (2)由(1)知a=√3,则直线l 的方程为x 0x 3-y 0y=1(y 0≠0),即y=x 0x -33y 0.因为直线AF 的方程为x=2,所以直线l 与AF 的交点为M (2,2x 0-33y 0);直线l 与直线x=32的交点为N (32,32x 0-33y 0),则|MF |2|NF |2=(2x 0-3)2(3y 0)214+(32x 0-3)2(3y 0)2=(2x 0-3)29y 024+94(x 0-2)2=43·(2x 0-3)23y 02+3(x 0-2)2.因为P(x 0,y 0)是C 上一点,则x 023-y 02=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 02-3+3(x 0-2)2=43·(2x 0-3)24x 02-12x 0+9=43,所求定值为|MF ||NF |=√3=2√33.【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届某某某某民族中学第二次月考,5)已知双曲线y 2a2-x 22=1(a>0)的一条渐近线方程为y=√2x,则双曲线的焦点坐标为( )A.(±√2,0)B.(±√6,0)C.(0,±√2)D.(0,±√6) 答案 D2.(2020届某某某某第二中学月考,3)已知双曲线C:x 2a -y 22-a 2=1的离心率为√2,则实数a 的值为( )A.1B.-2C.1或-2D.-1 答案 C3.(2020届某某某某一中第二次月考,5)已知双曲线C:x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线与直线x+2y+1=0垂直,则双曲线C 的离心率为( ) A.2 B.√5 C.√3 D.√2 答案 B4.(2020届某某某某第一中学10月月考,5)已知双曲线x 2a2-y 2b 2=1(a>0,b>0)的两条渐近线分别为直线l 1,l 2,经过右焦点F 且垂直于l 1的直线l 分别交l 1,l 2于A,B 两点,且FB⃗⃗⃗⃗⃗ =2AF ⃗⃗⃗⃗⃗ ,则该双曲线的离心率为( ) A.2√33B.√3C.43 D.4√33答案 A5.(2020届某某黄冈9月新起点考试)双曲线C 的方程为x 2a 2-y 2b 2=1(a>0,b>0),左,右焦点分别为F 1,F 2,P 为C 右支上的一点,PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0,以O 为圆心,a 为半径的圆与PF 1相切,则双曲线的离心率为( )A.√5B.√3C.2D.√2 答案 A6.(2019某某第三次调研测试,10)已知双曲线C:x 2a 2-y 2b 2=1(a>0,b>0)的实轴长是虚轴长的√2倍,则双曲线C 的渐近线方程为 ( )A.y=±2√2xB.y=±√2xC.y=±√22x D.y=±√24x答案 C7.(2019某某某某3月统一考试,6)已知F 1,F 2分别是双曲线C:y 2-x 2=1的上、下焦点,P 是其一条渐近线上的一点,且以F 1F 2为直径的圆经过点P,则△PF 1F 2的面积为( ) A.√22 B.1 C.√2 D.2 答案 C8.(2018某某某某模拟,8)已知P 是双曲线C:x 2a2-y 2b 2=1(a>0,b>0)左支上一点,F 1、F 2是双曲线的左、右焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M,N 两点(如图),点N 恰好平分线段PF 2,则双曲线的离心率是( )A.√2B.√3C.2D.√5 答案 D9.(2018某某某某联考,6)已知双曲线x 24-y 22=1的右焦点为F,P 为双曲线左支上一点,点A(0,√2),则△APF 周长的最小值为 ( )A.4+√2B.4(1+√2)C.2(√2+√6)D.√6+3√2 答案 B10.(2020届九师联盟高三9月质量检测,12)已知双曲线C:x 2-y 2b2=1(b>0)的左、右焦点分别为F 1,F 2,过F 2的直线与双曲线交于A,B 两点,若△ABF 1为等边三角形,则b 的所有取值的积为( )A.√10B.2√3C.√14D.4 答案 B二、多项选择题(每题5分,共20分)11.(2020届某某夏季高考模拟,10)已知双曲线C 过点(3,√2)且渐近线为y=±√33x,则下列结论正确的是( )A.C的方程为x 23-y2=1B.C的离心率为√3C.曲线y=e x-2-1经过C的一个焦点D.直线x-√2y-1=0与C有两个公共点答案AC12.(改编题)已知双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率为2√33,右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点,则有( )A.渐近线方程为y=±√3xB.渐近线方程为y=±√33xC.∠MAN=60°D.∠MAN=120°答案BC13.(改编题)已知平面内两个定点M(3,0)和N(-3,0),P是动点,且直线PM,PN的斜率乘积为常数a(a≠0),设点P的轨迹为C,则( )A.存在常数a(a≠0),使C上所有点到两点(-4,0),(4,0)距离之和为定值B.存在常数a(a≠0),使C上所有点到两点(0,-4),(0,4)距离之和为定值C.不存在常数a(a≠0),使C上所有点到两点(-4,0),(4,0)距离之差的绝对值为定值D.不存在常数a(a≠0),使C上所有点到两点(0,-4),(0,4)距离之差的绝对值为定值答案BD14.(改编题)△ABC为等腰直角三角形,其顶点为A,B,C,若圆锥曲线E以A,B为焦点,并经过顶点C,则圆锥曲线E的离心率可以是( )A.√2-1B.√22C.√2D.√2+1答案ABD三、填空题(每题5分,共20分)15.(2020届某某某某中学10月月考,7)已知双曲线x 2a2-y2b2=1(a>0,b>0)的一条渐近线方程为3x+y=0,则双曲线的离心率为. 答案√1016.(2018某某名校名师俱乐部二调,15)已知F1、F2分别是双曲线x2-y 2b2=1(b>0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF2|=2且∠F1AF2=45°,延长AF2交双曲线的右支于点B,则△F1AB的面积等于.答案 417.(2019豫北名校2月联考,15)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为.答案x2-y 28=1(x<0)18.(2019豫东豫北十所名校第五次联考,15)已知双曲线E:x 2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1的直线l与双曲线的左、右两支分别交于A,B两点.若△ABF2的内切圆与边AB,BF2,AF2分别相切于点M,N,P,且AP的长为4,则a的值为.答案 2。

高三数学 专题9.1 直线的方程(讲+练)(原卷版+解析版)

高三数学 专题9.1  直线的方程(讲+练)(原卷版+解析版)

专题9.1 直线的方程1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识点一 直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角,当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的范围是[0,π). 知识点二 直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ.(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 .知识点三 直线方程的五种形式考点一 直线的倾斜角与斜率【典例1】(山西平遥中学2019届模拟)(1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围是__________.【答案】 (1)B (2)(-∞,-3]∪[1,+∞)【解析】(1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3. (2)如图,因为k AP =1-02-1=1, k BP =3-00-1=-3, 所以k ∈(-∞,-3]∪[1,+∞).【方法技巧】直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此求倾斜角或斜率的范围时,要分⎣⎡⎭⎫0,π2,⎩⎨⎧⎭⎬⎫π2和⎝⎛⎭⎫π2,π三种情况讨论.当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).【变式1】(湖南浏阳一中2019届模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π【答案】B【解析】因为a 2+1≠0,所以直线的斜截式方程为y =-1a 2+1x -1a 2+1,所以斜率k =-1a 2+1,即tan α=-1a 2+1,所以-1≤tan α<0,解得3π4≤α<π,即倾斜角的取值范围是⎣⎡⎭⎫3π4,π.故选B. 考点二 直线方程的求法【典例2】( 北京师范大学实验中学2019届模拟)根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.【解析】(1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010, 则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1.又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0;当斜率存在时,设斜率为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上,所求直线方程为x -5=0或3x -4y +25=0. 【方法技巧】求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程.(2)待定系数法:设出所求直线方程的某种形式,由条件建立所求参数的方程(组),解这个方程(组)求出参数,再把参数的值代入所设直线方程即可.【变式2】(河北正定中学2019届模拟)过点P (3,1),且比直线l :x +3y -1=0的倾斜角小30°的直线方程为__________.【答案】 3x +y -4=0【解析】直线l :x +3y -1=0的斜率为-33,所以其倾斜角为150°,则所求直线的倾斜角为120°,因此所求直线的斜率k =- 3.又直线过点P (3,1),所以所求直线的方程为y -1=-3(x -3),即3x+y -4=0.考点三 直线方程的综合应用【典例3】( 辽宁阜新实验中学2019届模拟)(1)已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.(2)已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.【解析】(1)由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.故当四边形的面积最小时,实数a 的值为12.(2)依题意知直线l 的斜率k 存在且k <0, 则直线l 的方程为y -2=k (x -3)(k <0), 可得A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), 所以S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+-9k +4-k ≥ 12⎣⎢⎡⎦⎥⎤12+2-9k4-k =12×(12+12) =12, 当且仅当-9k =4-k,即k =-23时,等号成立.故△ABO 的面积的最小值为12, 此时直线l 的方程为2x +3y -12=0. 【方法技巧】(1)含有参数的直线方程可看作是直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题时,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.【变式3】(吉林长春市实验中学2019届模拟)当k >0时,两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形面积的最大值为__________.【答案】24【解析】因为2x +ky -2=0与x 轴交于点(1,0),由⎩⎪⎨⎪⎧kx -y =0,2x +ky -2=0,解得y =2kk 2+2,所以两直线kx -y=0,2x +ky -2=0与x 轴围成的三角形面积为12×1×2k k 2+2=1k +2k≤122,故三角形面积的最大值为24.考点四 综合考查【典例4】(黑龙江哈尔滨市第六中学2019届质检)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( )A .-12 B.-12或-2 C.12或2D .-2【答案】D【解析】∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+2sin θcos θ=15,∴2sin θ cos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2.【变式4】(江苏扬州中学2019届模拟)已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.【解析】(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.专题9.1 直线的方程1.(江苏省无锡一中2019届期中)直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°2.(河南省鹤壁一中2019届期末)若函数y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.+272C.+212D.-33+152723.(山西省晋城一中2019届质检)如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 24.(湖北省黄石一中2019届月考)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)5.(陕西师大附中2019届月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限6.(黑龙江省牡丹江一中2019届期中)设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43D.⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞7.( 浙江省舟山一中2019届期末)直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.8.(湖北省鄂州一中2019届期中)过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.9.(江西省南昌二中2019届期末)若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.10.(河北衡水中学2019届期中)已知点A (3,4),分别求出满足下列条件的直线方程. (1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.11.(江西省鹰潭一中2019届模拟)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )12.(广东惠州一中2019届质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-1,12 C .(-∞,-1)∪⎝⎛⎭⎫15,+∞ D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 13.(安徽省亳州一中2019届模拟)在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0 B.3x +y +6=0C .3x -y +6=0D .3x +y -6=014.(广西省来宾一中2019届模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B.(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)15.(山东省滨州一中2019届质检)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π416.(四川省德阳一中2019届模拟)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 的面积最大值是( )A .2 5B .5 C.52D. 5 17.(陕西省渭南一中2019届模拟)已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为__________________.18. (广东省云浮一中2019届模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.19.( 甘肃省兰州一中2019届调研)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.20.(四川省雅安一中2019届模拟)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程.1.(2019·浙江高三学业考试)直线y -26x =+的斜率为( )A.2B.-2C.12 D.12- 2.(2019·浙江高三学业考试)直线210x y +-=经过点( )A.(1,0)B.(0,1)C.11,22⎛⎫⎪⎝⎭D.11,2⎛⎫⎪⎝⎭专题9.1 直线的方程1.(江苏省无锡一中2019届期中)直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°【答案】A【解析】由直线l 的方程为3x +3y -1=0可得直线l 的斜率为k =-33,设直线l 的倾斜角为α(0°≤α<180°),则tan α=-33,所以α=150°.故选A. 2.(河南省鹤壁一中2019届期末)若函数y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.+272C.+212D.-33+272【答案】B【解析】设z =(x 1-x 2)2+(y 1-y 2)2,则z 的几何意义是两条曲线上动点之间的距离的平方.因为y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,所以y 1′=2cos 2x 1.因为函数y 2=x 2+3的斜率为1,所以令y 1′=2cos 2x 1=1,解得x 1=π6,则y 1=0,即函数在⎝⎛⎭⎫π6,0处的切线和直线y 2=x 2+3平行,则最短距离为d =⎪⎪⎪⎪π6+32.所以(x 1-x 2)2+(y 1-y 2)2的最小值为d 2=⎝ ⎛⎭⎪⎪⎫⎪⎪⎪⎪π6+322=+272.故选B.3.(山西省晋城一中2019届质检)如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【答案】D【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.故选D.4.(湖北省黄石一中2019届月考)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)【答案】A【解析】因为k ,-1,b 三个数成等差数列,所以k +b =-2,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2).5.(陕西师大附中2019届月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】直线Ax +By +C =0的斜率k =-A B <0,在y 轴上的截距为-C B>0,所以直线不经过第三象限. 6.(黑龙江省牡丹江一中2019届期中)设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43 D.⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞ 【答案】B【解析】易知直线ax +y +2=0恒过点M (0,-2),且斜率为-a .因为k MA =3---2-0=-52, k MB =2--3-0=43, 由图可知-a >-52且-a <43,所以a ∈⎝⎛⎭⎫-43,52. 7.( 浙江省舟山一中2019届期末)直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.【答案】y =23x 【解析】直线l 平分平行四边形ABCD 的面积,则直线l 过BD 的中点(3,2),则直线l :y =23x . 8.(湖北省鄂州一中2019届期中)过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.【答案】y =-53x 或x -y +8=0 【解析】当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y -a=1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0.9.(江西省南昌二中2019届期末)若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.【答案】16【解析】根据A (a,0),B (0,b )确定直线的方程为x a +y b =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,可得ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时,等号成立.故ab 的最小值为16.10.(河北衡水中学2019届期中)已知点A (3,4),分别求出满足下列条件的直线方程.(1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.【解析】(1)设直线在x ,y 轴上的截距均为a .①若a =0,即直线过点(0,0)及(3,4),所以直线的方程为y =43x ,即4x -3y =0. ②若a ≠0,设所求直线的方程为x a +y a =1.又点(3,4)在直线上,所以3a +4a=1,所以a =7.所以直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0.(2)由题意可知所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).故所求直线的方程为x -y +1=0或x +y -7=0.11.(江西省鹰潭一中2019届模拟)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )【答案】B【解析】由题意l 1:y =-ax -b ,l 2:y =-bx -a ,当a >0,b >0时,-a <0,-b <0.选项B 符合.12.(广东惠州一中2019届质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-1,12C .(-∞,-1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 【答案】D【解析】设直线l 的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k<3,解不等式得k <-1或k >12. 13.(安徽省亳州一中2019届模拟)在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0 B.3x +y +6=0C .3x -y +6=0D .3x +y -6=0【答案】C【解析】因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.14.(广西省来宾一中2019届模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2] B.(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)【答案】C【解析】令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 15.(山东省滨州一中2019届质检)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4【答案】D【解析】由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以-b =a ,则直线ax -by +c =0的斜率为k =a b =-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4,故选D.16.(四川省德阳一中2019届模拟)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx-y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 的面积最大值是( )A .2 5B .5C.52D. 5 【答案】C【解析】由题意可知动直线x +my =0过定点A (0,0).动直线mx -y -m +3=0⇒m (x -1)+3-y =0,因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △P AB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.当|P A |=|PB |时,△P AB 的面积取得最大值.由2|P A |=|AB |=12+32=10,解得|P A |= 5.所以S △P AB =12|P A |2=52.综上可得,△P AB 的面积最大值是52. 17.(陕西省渭南一中2019届模拟)已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为__________________.【答案】4x -3y -4=0【解析】由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12, 所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0.18. (广东省云浮一中2019届模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.【答案】(3+3)x -2y -3-3=0【解析】由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.19.( 甘肃省兰州一中2019届调研)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16. 【解析】(1)由题意知,直线l 存在斜率.设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.20.(四川省雅安一中2019届模拟)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 所在直线的方程.【解析】(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2. BC 边的中线AD 经过A (-3,0),D (0,2)两点,由截距式得AD 所在直线的方程为x -3+y 2=1, 即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12, 则BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.1.(2019·浙江高三学业考试)直线y -26x =+的斜率为( )A.2B.-2C.12D.12- 【答案】B【解析】由26y x =-+可知斜率2k =-,本题选B 。

2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。

2025年高考数学一轮复习-8.1直线的方程【课件】

2025年高考数学一轮复习-8.1直线的方程【课件】
知,直线 OA 的倾斜角为θ-45°,直线 OC 的倾斜角为θ+45°,故
tan−tan45°
2−1
1
kOA =tan(θ-45°)=

= , kOC =tan(θ+45°)
1+2
3
1+tantan45°
tan+tan45°
2+1


=-3.
1−2
1−tantan45°
目录
高中总复习·数学(提升版)
4
C.
π
0,
4
解析:

π
,π
2
B.

,π
4
D.
π
π

4
2



,π
4
1
1
由直线方程可得该直线的斜率为- 2 ,又-1≤- 2
+1
+1
<0,由结论1得倾斜角的取值范围是

,π
4
.
目录
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
PART
2
目录
高中总复习·数学(提升版)
直线的倾斜角与斜率
角为α,则tan α=-
3
,设直线的倾斜
3
3

,又α∈[0,π),所以α= .故选D.
3
6
目录
高中总复习·数学(提升版)
2. 已知直线 l 的倾斜角为60°,在 y 轴上的截距为-2,则直线 l 的方程
为(

A. y = 3 x +2 3
B. y =
3
x -2
3
C. y = 3 x -2

(浙江专用)高考数学一轮复习 专题9 平面解析几何 第63练 直线的倾斜角和斜率练习(含解析)-人教

word 1 / 4 第63练 直线的倾斜角和斜率 [基础保分练] 1.如图,直线l1的倾斜角是150°,l2⊥l1,l2与x轴相交于点A,l2与l1相交于点B,l3平分∠BAC,则l3的倾斜角为( )

A.60°B.45° C.30°D.20° 2.已知{an}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线斜率为( )

A.4B.14C.-4D.-14 3.(2019·某某一中期中)若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜角是直线3x-y=33的倾斜角的2倍,则( ) A.m=-3,n=1B.m=-3,n=-3 C.m=3,n=-3D.m=3,n=1 4.经过两点A(m,3),B(1,2m)的直线的倾斜角为135°,则m的值为( ) A.-2B.2C.4D.-4 5.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值X围是( )

A.π6,π3B.π6,π2

C.π3,π2D.π6,π2 6.若直线经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角α的取值X围是( ) A.0≤α

C.0≤α≤π4D.π4≤α7.直线l经过点A(1,2),在x轴上的截距的取值X围是(-3,3),则其斜率的取值X围是( ) A.-1,15

B.-∞,12∪(1,+∞) word 2 / 4 C.(-∞,1)∪15,+∞ D.(-∞,-1)∪12,+∞ 8.已知点(-1,2)和33,0在直线l:ax-y+1=0(a≠0)的同侧,则直线l的倾斜角的取值X围是( ) A.π4,π3B.0,π3∪3π4,π

C.3π4,5π6D.2π3,3π4 9.(2019·萧山中学月考)已知点P(3,2),点Q在x轴上,直线PQ的倾斜角为150°,则点Q的坐标为________. 10.已知两点A(0,1),B(1,0),若直线y=k(x+1)与线段AB总有公共点,则k的取值X围是________.

(浙江专用)高考数学大一轮复习 第九章 平面解析几何 第9讲 曲线与方程练习(含解析)-人教版高三全

第9讲 曲线与方程[基础达标]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1. 2.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16yD .x 2=-16y解析:选C.由条件知:动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .3.(2019·某某模拟)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为( )A .y =-2xB .y =2xC .y =2x -8D .y =2x +4解析:选B.设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,所以⎩⎪⎨⎪⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y . 因为点R (x 1,y 1)在直线y =2x -4上, 所以y 1=2x 1-4,所以-y =2(2-x )-4,即y =2x .4.(2019·某某一中高三期中)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为( )A .相交直线B .双曲线C .抛物线D .椭圆弧解析:选C.如图所示,建立坐标系,不妨设两条互相垂直的异面直线为OA ,BC ,设OB =a ,P (x ,y ,z )到直线OA ,BC 的距离相等,所以x 2+z 2=(x -a )2+y 2, 所以2ax -y 2+z 2-a 2=0,若被平面xOy 所截,则z =0,y 2=2ax -a 2;若被平面xOz 所截,则y =0,z 2=-2ax +a 2,故选C.5.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2解析:选D.如图,设P (x ,y ),圆心为M (1,0).连接MA ,PM , 则MA ⊥PA ,且|MA |=1, 又因为|PA |=1,所以|PM |=|MA |2+|PA |2=2,即|PM |2=2,所以(x -1)2+y 2=2.6.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0),距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C .x 225+y 29=1 D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.7.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -28.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.解析:设P (x ,y ), 因为△MPN 为直角三角形, 所以|MP |2+|NP |2=|MN |2,所以(x +2)2+y 2+(x -2)2+y 2=16, 整理得,x 2+y 2=4. 因为M ,N ,P 不共线, 所以x ≠±2,所以轨迹方程为x 2+y 2=4(x ≠±2). 答案:x 2+y 2=4(x ≠±2)9.已知点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q (x ,y )的轨迹方程是________.解析:依题意有|QP |=|QF |,则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.答案:x 2-y 23=110.(2019·某某高级中学模拟)已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.解析:OQ →=PF 1→+PF 2→,如图,PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=-12(x ,y )=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.答案:x 24a 2+y 24b2=111.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.解:设M (x 0,0),P (0,y 0),N (x ,y ), 因为PM →⊥PF →,PM →=(x 0,-y 0), PF →=(1,-y 0),所以(x 0,-y 0)·(1,-y 0)=0,所以x 0+y 20=0. 由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),所以⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=12y ,所以-x +y 24=0,即y 2=4x . 故所求的点N 的轨迹方程是y 2=4x .12.已知P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标.解:(1)圆A 的圆心为A (-1,0),半径等于2 2. 由已知|MB |=|MP |,于是|MA |+|MB |=|MA |+|MP |=22>2=|AB |, 故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆, 即a =2,c =1,b =1, 所以曲线Γ的方程为x 22+y 2=1.(2)由cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223.于是直线AP 的方程为y =24(x +1). 由⎩⎪⎨⎪⎧x 22+y 2=1,y =24(x +1),整理得5x 2+2x -7=0,解得x 1=1,x 2=-75.由于点M 在线段AP 上, 所以点M 坐标为⎝ ⎛⎭⎪⎫1,22. [能力提升]1.已知log 2x ,log 2y ,2成等差数列,则在平面直角坐标系中,点M (x ,y )的轨迹为( )解析:选A.由2log 2y =2+log 2x 得log 2y 2=log 2(4x ),故点M (x ,y )的轨迹方程为y 2=4x (x >0,y >0),即y =2x (x >0),故选A.2.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13,则动点P 的轨迹方程为( )A .x 2-3y 2=4 B .x 2+3y 2=4 C .x 2-3y 2=4(x ≠±1)D .x 2+3y 2=4(x ≠±1)解析:选D.由点B 与点A (-1,1)关于原点对称,得点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得k AP ·k BP =y -1x +1·y +1x -1=-13(x ≠±1),化简得x 2+3y 2=4,且x ≠±1.故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).3.已知点A ,B 分别是射线l 1:y =x (x ≥0),l 2:y =-x (x ≥0)上的动点,O 为坐标原点,且△OAB 的面积为定值2,则线段AB 中点M 的轨迹方程为________.解析:由题意可设A (x 1,x 1),B (x 2,-x 2),M (x ,y ),其中x 1>0,x 2>0,则⎩⎪⎨⎪⎧x =x 1+x 22,①y =x 1-x 22.②因为△OAB 的面积为定值2,所以S △OAB =12OA ·OB =12(2x 1)(2x 2)=x 1x 2=2.①2-②2得x 2-y 2=x 1x 2,而x 1x 2=2, 所以x 2-y 2=2.由于x 1>0,x 2>0,所以x >0,即所求点M 的轨迹方程为x 2-y 2=2(x >0). 答案:x 2-y 2=2(x >0)4.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.解析:因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,而a 2>1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,设M 是曲线C 上任意一点,所以|MF 1||MF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1|·|PF 2|=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.答案:②③5.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由题意,得|MP ||MQ |=5,即(x -26)2+(y -1)2(x -2)2+(y -1)2=5, 化简,得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25. 轨迹是以(1,1)为圆心,以5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段长度为252-32=8, 所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0,圆心(1,1)到直线l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎫|3k +2|k 2+12+42=52,解得k =512.所以直线l 的方程为512x -y +236=0,即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.6.(2019·某某市普通高中模考)如图,P 为圆M :(x -3)2+y 2=24上的动点,定点Q (-3,0),线段PQ 的垂直平分线交线段MP 于点N .(1)求动点N 的轨迹方程;(2)记动点N 的轨迹为曲线C ,设圆O :x 2+y 2=2的切线l 交曲线C 于A ,B 两点,求|OA |·|OB |的最大值.解:(1)连接QN ,因为|NM |+|NQ |=|NM |+|NP |=|MP |=26>23=|MQ |, 所以动点N 的轨迹为椭圆, 所以a =6,c =3,所以b 2=3. 所以动点N 的轨迹方程为x 26+y 23=1.(2)①当切线l 垂直坐标轴时,|OA |·|OB |=4.②当切线l 不垂直坐标轴时,设切线l 的方程为y =kx +m (k ≠0),点A (x 1,y 1),B (x 2,y 2),由直线和圆相切,得m 2=2+2k 2.由⎩⎪⎨⎪⎧y =kx +m x 2+2y 2=6得(2k 2+1)x 2+4kmx +2m 2-6=0, 所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-62k 2+1,所以x 1x 2+y 1y 2=x 1x 2+(kx 1+m )·(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2=(k 2+1)·2m 2-62k 2+1-km ·4km 2k 2+1+m 2=3m 2-6-6k22k 2+1=0, 所以∠AOB =90°,所以|OA |·|OB |=2|AB |, 又因为|AB |=1+k 2|x 1-x 2| =1+k 2·212k 2-2m 2+62k 2+1=2(1+k 2)·(8k 2+2)2k 2+1, 令t =k 2,则|AB |=22+2t4t 2+4t +1=22+24t +1t+4≤3, 当且仅当k =±22时,等号成立, 所以|OA |·|OB |≤32,综上,|OA |·|OB |的最大值为3 2.。

2025届高中数学一轮复习课件《直线方程》ppt


高考一轮总复习•数学
第6页
2.直线的斜率 (1)定义:一条直线的倾斜角 α 的 正切值 叫做这条直线的斜率,斜率常用小写字母 k
表示,即 k= tan α ,倾斜角是 90°的直线没有斜率.
(2)过两点的直线的斜率公式
经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 k=yx22--yx11. 3.直线的方向向量 若 P1(x1,y1),P2(x2,y2)是直线 l 上两点,则 l 一个方向向量的坐标为(x2-x1,y2-y1); 若 l 的斜率为 k,则一个方向向量的坐标为 (1,k) .
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 直线的倾斜角与斜率
1.直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,以 x 轴为基准,x 轴正向与直线 l 向上的方向 之 间所成的角叫做直线 l 的倾斜角.当直线 l 与 x 轴 平行或重合 时,规定它的倾斜角为 0°. (2)倾斜角的范围为 [0°,180°) .
第28页
高考一轮总复习•数学
第29页
所以直线 MN 的方程为1x+-y52=1, 即 5x-2y-5=0. (2)设直线方程的截距式为a+x 1+ay=1,则a+6 1+-a2=1,解得 a=2 或 a=1,则直线 的方程是3x+2y=1 或2x+1y=1,即 2x+3y-6=0 或 x+2y-2=0.
切线问题可利用导数的几何意义:设切点 P(x0,ln x0),则 k=f′(x0).
A.e
B.-e

(浙江版)高考数学一轮复习专题9.1直线与直线的方程(讲)(2021学年)

(浙江版)2018年高考数学一轮复习专题9.1 直线与直线的方程(讲) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江版)2018年高考数学一轮复习专题9.1 直线与直线的方程(讲))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江版)2018年高考数学一轮复习专题9.1 直线与直线的方程(讲)的全部内容。

专题9。

1 直线与直线的方程【考纲解读】【知识清单】1。

直线的倾斜角与斜率1.直线的倾斜角①定义.当直线l与x轴相交时,我们取x轴作为基准,x轴的正方向与直线l向上的方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°。

②范围:倾斜角α的范围为0απ≤<.2.直线的斜率①定义.一条直线的倾斜角(90)αα≠的正切叫做这条直线的斜率,斜率常用小写字母k表示,即tan k α=,倾斜角是90°的直线没有斜率.当直线l 与x 轴平行或重合时, 0α=,tan 00k ==。

②过两点的直线的斜率公式.经过两点11122212()()()P x y P x y x x ≠,,,的直线的斜率公式为2121y y k x x --=.3。

每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率.倾斜角为90°的直线斜率不存在.4.直线的倾斜角α、斜率k 之间的大小变化关系:(1)当[0,)2πα∈时,0,k α>越大,斜率越大;(2)当(,)2παπ∈时,0,k α<越大,斜率越大.对点练习:【2017届重庆市一中高三上学期期中】已知直线方程为,3300sin 300cos =+y x 则直线的倾斜角为( )A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
精品
第64练 直线的方程
[基础保分练]
1.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为
( )
A.4x-3y-3=0 B.3x-4y-3=0
C.3x-4y-4=0 D.4x-3y-4=0
2.(2019·舟山一中期中)过点(1,1),且在y轴上的截距为3的直线方程是( )
A.x+2y-3=0 B.2x-y-1=0
C.x-2y-1=0 D.2x+y-3=0
3.(2019·东阳中学月考)倾斜角为135°,在y轴上的截距为-1的直线方程是( )
A.x-y+1=0 B.x-y-1=0
C.x+y-1=0 D.x+y+1=0
4.将直线y=3x绕原点逆时针旋转90°,再向右平移1个单位长度,则所得到的直线方程为
( )

A.y=-13x+13 B.y=-13x+1

C.y=3x-3 D.y=13x+1
5.(2019·临安中学月考)已知直线l的斜率为3,在y轴上的截距为另一条直线x-2y-4=0
的斜率的倒数,则直线l的方程为( )
A.y=3x+2 B.y=3x-2

C.y=3x+12 D.y=-3x+2
6.已知直线2x-my+1-3m=0,当m变动时,所有直线都通过定点( )
A.-12,3 B.12,3

C.12,-3 D.-12,-3
7.经过点P(-5,-4),且与两坐标轴围成的三角形的面积为5的直线方程是( )
A.8x+5y+20=0或2x-5y-10=0
B.8x-5y-20=0或2x-5y+10=0
.
精品
C.8x+5y+10=0或2x+5y-10=0
.

精品
D.8x-5y+20=0或2x-5y-10=0
8.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-
y
+1=0,则直线PB的方程为( )
A.x+y-5=0 B.2x-y-1=0
C.2y-x-4=0 D.2x+y-7=0
9.在直线方程y=kx+b中,当x∈[-3,4]时,恰好y∈[-8,13],则此直线方程为_____________.
10.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,1),则过两点P1(a1,b1),P2(a2,
b
2
)的直线方程是________.

[能力提升练]
1.若直线4x-3y-12=0被两坐标轴截得的线段长为1c,则实数c的值为( )

A.16B.15C.6D.5
2.(2019·湖州一中月考)过点A(-1,-3),斜率是直线y=3x的斜率的-14的直线方程为( )
A.3x+4y+15=0 B.4x+3y+6=0
C.3x+y+6=0 D.3x-4y+10=0
3.(2019·杭州二中月考)过点P(1,3)且与x,y轴的正半轴围成的三角形面积等于6的直线方程
是( )
A.3x+y-6=0 B.x+3y-10=0
C.3x-y=0 D.x-3y+8=0
4.(2019·效实中学期中)过点M(2,1)的直线l与x轴,y轴分别交于P,Q两点,O为原点,且
S△POQ=4,则符合条件的直线l
有( )

A.1条B.2条C.3条D.4条
5.过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被
M
所平分,则此直线方程为________________.

6.设直线l的方程为(a+1)x+y-2-a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,则直线l的方程为__________________________;
(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,则△OMN的面积取最
小值时,直线
.
精品
l
对应的方程为________________.

答案精析
基础保分练
1.D 2.D 3.D 4.A 5.A 6.D 7.D 8.A 9.3x-y+1=0或3x+y-4=0
10.2x+y+1=0
能力提升练
1.B [令x=0,得y=-4;令y=0,得x=3.

∵1c2=32+(-4)2,且c>0,
∴c=15,故选B.]
2.A [由题意知,所求直线的斜率k=-34,由点斜式得直线方程y+3=-34(x+1),即3x+
4y+15=0,故选A.]
3.A [设所求直线方程为xa+yb=1(a>0,b>0),则有12ab=6且1a+3b=1,

∴a=2,b=6,则所求直线方程为x2+y6=1,即3x+y-6=0,故选A.]
4.C [设直线l方程为y-1=k(x-2),
∴P-1k+2,0,Q(0,-2k+1),

∴S△POQ=122-1k|1-2k|=4,
∴k=3±222或k=-12,故选C.]
5.x+4y-4=0
解析 过点M且与x轴垂直的直线是x=0,它和直线l1,l2的交点分别是0,103,(0,8),显
然不符合题意.故可设所求直线方程为y=kx+1,其图象与直线l1,l2分别交于A,B两点,
.
精品
则有①


yA=kx
A
+1,

xA-3y
A
+10=0,
.

精品



yB=kx
B
+1,

2xB+yB-8=0,

由①解得xA=73k-1,
由②解得xB=7k+2.
因为点M平分线段AB,
所以xA+xB=2xM,

即73k-1+7k+2=0,解得k=-14,

故所求的直线方程为y=-14x+1,
即x+4y-4=0.
6.(1)x-y=0或x+y-2=0
(2)x+y-2=0
解析 (1)当直线l经过坐标原点时,
由该直线在两坐标轴上的截距相等可得a+2=0,解得a=-2.
此时直线l的方程为-x+y=0,即x-y=0;

当直线l不经过坐标原点,即a≠-2且a≠-1时,由直线在两坐标轴上的截距相等可得
2+
a
a
+1

=2+a,解得a=0,
此时直线l的方程为x+y-2=0.
所以直线l的方程为x-y=0或x+y-2=0.

(2)由直线方程可得M2+aa+1,0,N(0,2+a),
因为a>-1,
所以S△OMN=12×2+aa+1×(2+a)

=12×
[a+1+1]
2

a
+1

=12a+1+1a+1+2
.
精品
≥122 a+1·1a+1+2=2.
当且仅当a+1=1a+1,
.

精品
即a=0时等号成立.此时直线l的方程为x+y-2=0.

如有侵权请联系告知删除,感谢你们的配合!

相关文档
最新文档