七年级数学上册2.7有理数的乘法第1课时有理数的乘法法则课件(新版)北师大版
北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
七年级数学上册 2.7 有理数乘法(第1课时)“负负得正”的乘法法则可以证明吗? (新版)北师大版

七年级数学上册 2.7 有理数乘法(第1课时)“负负得正”的乘法法则可以证明吗?(新版)北师大版关于“负负得正”的乘法法则,是否可以通过证明来确认这条法则呢?这个问题历来被老师们关注,有关专家对此也有各种看法,现将一篇文章转摘如下,供老师们参考(田载今,中学数学教学参考,2005年第3期)。
有理数的乘法法则中包括“负负得正”一条,“两个负有理数相乘,结果(积)是一个正有理数,其绝对值等于相乘两数的绝对值的乘积.”例如,(-2)×(-3)=+6。
这条法则对刚学它的人来说,不是很容易理解,多数人是把它硬记下来的.记得水稻专家袁隆平院士说过他学正负数时想不清这个法则的道理,就去向老师请教,老师说:“你记住就行了.”编写教材时,大家为说明这条法则的道理想了很多办法,有的教材以实际问题为背景来说明,有的教材从运算律的角度进行说明,有的教材利用相反数的意义解释……教学中,许多老师都反映这条法则的道理不是很好讲.也有人考虑:是否可以通过证明来确认这条法则呢?教科书中哪种说法可以算是对它的证明呢?一种意见认为,“负负得正”有着丰富的实际背景,实践是检验真理的标准,这些实际背景对这一法则的证明.例如,考虑这样的问题:如果水位一直以每小时2厘米的速度下降,现在水位在水文标尺刻度的A处,3小时前水位在水文标尺的刻度在何处?为区分水位变化方向,我们规定水位上升为正,下降为负;显然3小时前水位在水文标尺刻度的A处上方6cm处,这可以表示为(-2)×(-3)=+6.在许多情况下,都能找到类似这样的“负负得正”的原型,因此,“负负得正”可以认为是通过客观实践检验证明的.上面的意见中,以“实际事物的原型”替代“数学的证明”的做法是不妥的.数学中的证明不是个例的验证,数学不是物理、化学、生物那样的实验科学,它的命题具有一般性,不能依靠检验个别案例完成对一般结论的证明,而需要依据已有的结论(定义、公理和定理等)经合乎逻辑的推导来证明.这些客观事物中的原型,只有在人为地规定问题中有关量的正负意义之后,即经过数学化、抽象化之后,才具有了“负负得正”的意义,它们只能说明“负负得正”有实际背景,或作为应用“负负得正”法则的例子,而不能作为逻辑地推导这个法则的根据.另一种意见认为,可以通过运算律来证明“负负得正”这一法则,具体推导过程如下:有了有理数的加法法则以及“正正得正”,“正负得正”的乘法法则之后,由分配律,有(-1)×(-1)=(-1)×(1-2)=(-1)×1-(-1)×2=-1-(-2)=-1+2=1 .进而由交换律和结合律可以推出任何两个负数相乘的结果,例如,(-2)×(-3)=(-1)×2×(-1)×3=(-1)×(-1)×2×3 =[(-1)×(-1)]×(2×3)=1×6=6.于是,得出“负负得正”这一法则.笔者认为,上面的意见中在应用分配律时,用到了(-1)×(1-2)=(-1)×1-(-1)×2. (1)当确立了有理数的加法法则以及“正正得正”,“正负得负”的乘法法则,而尚未确立“负负得正”这一法则时,这样做是缺乏根据的.在这时,我们可以确信(-1)×(2-1)=(-1)×2-(-1)×1.⑵这是因为⑵的左边为(-1)×(2-1)=(-1)×1=-1.⑵的右边为(-1)×2-(-1)×1=-2-(-1)=-2+1=-1.所以(2)的左边等于右边,即(2)成立.但是,我们不能用类似的方法推出⑴成立,因为⑴的左边为(-1)×(1-2)=(-1)×(-1),而(-1)×(-1)的法则此时尚未成立,所以无法确定⑴的左边是否等于右边,即此时分配律等于(-1)×(1-2)是否适用尚且存疑。
2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件

B.负数
第二章 有理数及其运算
C.零 第二章 有理数及其运算
第二章 有理数及其运算
D.无法确定
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第二章 有理数及其运算
6.如图,数轴上的 A,B,C 三点所表示的数分别为 a,b,c.根 据图中各点的位置,下列式子正确的是( D )
18.一辆出租车在一条东西走向的大街上营运.一天上午,这辆车 一共连续送客 10 次,其中 4 次向东行驶,每次行驶 10 km;6 次向西行驶,每次行驶 7 km.问:
(1)该出租车连续送客 10 次后,停在离出发点的什么地方? 解:规定向东为正,则 10×4+(-7)×6=40+(-42)=-2(km). 所以该出租车停在出发点的西边 2 km 处.
2.(2019·温州)计算:(-3)×5 的结果是( A )
A.-15
B.15
C.-2
D.2
3.下列运算结果为负数的是( C )
A.-11×(-2)
B.0×(-2 019)
C.(-6)-(-4)
D.(-7)+18
4.一个有理数和它的相反数之积为负
C.一定不大于 0
第二章 有理数及其运算
2.7 有理数的乘法 第1课时 有理数的乘法
提示:点击 进入习题
1 见习题 2 A
3C
4C
答案显示
5B
6 D 7 A 8 -20;15 9 1;0;±1 10 A
11 D
12 B
13 C
14 D
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题
北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)

(3) 3 (11).
(4)( 27) 0.
53
8
【思路点拨】确定两数符号→积的符号→绝对值相乘
【自主解答】(1)(-3)×7=-(3×7)=-21. (2)(-8)×(-2)=+(8×2)=16.
(3) 3 (11) (3 4) 4. 5 3 53 5
(4)( 27) 0 0. 8
(10 1 1 6) 2. 3 10
(2) 3 5 14 (0.25) 65
3 5 9 1 9. 654 8
【总结提升】有理数乘法运算“三步法”
题组一:两个有理数相乘 1.下列说法正确的是( ) A.同号两数相乘,符号不变 B.积一定大于每一个因数 C.两数相乘,如果积为正,那么这两个因数都是正数 D.两数相乘,如果积为负,那么这两个因数异号 【解析】选D.由有理数乘法法则可得D正确.
7 有理数的乘法
第1课时
1.熟记有理数的乘法法则.(重点) 2.能根据有理数的乘法法则计算有理数的乘法.(重点) 3.知道倒数的概念. 4.会判断多个非零有理数相乘积的符号.(难点)
一、有理数的乘法法则
正
负
(1)符号:两数相乘,同号得___,异号得___.
(2)绝对值:把绝对值_相__乘__.
(3)同0相乘:任何数与0相乘,积仍为_0_.
交换分子、分母的位置即得其倒数
【自主解答】(1)因为
34 43
1,所以
3 4
的倒数是
4. 3
(2)因为 0.2
1,( 5
1) 5
(5)
1,
所以-0.2的倒数是-5.
(3)因为2 2 8 ,( 8) ( 3) 1,
北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案

二、例题:
三、小结:
促进了学 生的表达 与交流,为 后续学习 打下基础。 课件展示 归纳使知 识更系统 化,便于学 生记忆。
理数的乘
(raciprocal),也称这两个有理数互为倒数 教师追问:同学们你知道怎样求一个的道数吗? 1.非零整数——直接写成这个数分之一 2.分数——把分子、分母颠倒位置即可 带分数要化成假分数,小数化为分数再求
法法则解 决两个例 题,且明确 倒数的定 义在有理 数范围内
例 2:(3)(-4)×5 ×(-0.25)(从左向右依次运算)
仍有意义。
(4)( 3)( 5)( 2)
5
6
[(3 5)] (2) 56
1 (2) 2
1
根据上面例题,教师提问:几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一个因数为 0 时,积是多少? 积的符号又负数的个数确定,若是奇数,结果为负, 若是偶数,结果为正 有一个因数为 0 时,积是 0 3、出示课件: 试一试 : 教师鼓励学生主动解决问题
加法法则引出有理数的乘法来解决了一些实际问题。
1、培养学生的动态观察 、对比、分析生活问题的能力;让学生能综合运用有理数及其加、
减法的有关知识灵活地解决简单的实际问题。
学习 2、在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的
目标 灵活处理。使学生感受到折 线统计图确实可以直观地反映事物的变化情况。
1、11 8 1 (1) 4 22 2
11 8 1 4 22 2
1 2
2、0×(-3) ×(-4) ×(-5) ×(-6)
=0
几个有理数相乘有一个因数为 0 时,积是 0
课堂 1、两个数的积为正,那么这两个数( C )
《有理数的乘法》第一课时课件 (一等奖)2022年最新PPT

(7) (-6)×0; 0
(2) (-6)×(-9); 54 (4) (-6)×1; -6 (6) 6×(-1); -6 (8) 0×(-6);0
5.填空: (1) 2×(-6)=_-_1_2___;(2) 2+(-6)=__-4_____;
(3) (-2)×6=_-_1_2_____;(4) (-2)+6=_4_____;
(5) (-2)×(-6)=_1_2____;(6) (-2)+(-6)=_-_8___;
(9) |-7|×|-3|=_2_1_____;(10) (-7)×(-3)=_2_1____.
图形的旋转〔第1课时〕
活动1
钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?
12 11 10
9
8 76
= +〔20×0.25〕
=5 〔2〕原式= ( 3 5 ) ( 2 )
56 1 (2)
2 1
方法提示:三个有理数相乘,先把前两个 数相乘,再把所得结果与另一数相乘。
议一议:
几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一因数为 0 时,积 是多少?
几个不等于零的数相乘,积的符号由负 因数的个数决定。
例题分析
例1 计算: (1) (−4)×5 ;
(2) (−4)×(−7) ;
(3)
(3)(8); 83
〔4〕
(3)
(
1). 3
提示:求解中的步骤 第一步是确定积的符号; 第二步是 确定积的绝对值。
解(1)〔-4〕×5=-(4×5)=-20
〔2〕〔-5〕×〔-7〕=+〔5×7〕=35
七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版
拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。
北师大版七年级数学2.7 有理数的乘法(1)教案
有理数的乘法〔第1课时〕1 教材说明北师大版七年级上册第二章“有理数及其运算〞第7节“有理数的乘法〞2 学情分析本节课的主要内容是“有理数的乘法法则〞,在此之前学生已经学习了有理数加法法则和减法法则,也对“几个相同的数连加形式可以写成乘法形式〞有较深刻的认识,所以本节课可以类比“有理数加法法则〞对乘法法则进行归纳总结;而本节课要为接下来的“有理数的除法〞“有理数的乘法〞做铺垫,所以对符号的处理尤为关键。
2 重难点重点:有理数的乘法法则的探索与归纳难点:有理数的乘法法则的探索与归纳3 教学目标〔1〕归纳有理数乘法法则,并能准确判断结果的正负〔2〕通过类比、找规律的方法,体会归纳获得数学结论的过程〔3〕体验数学探究的乐趣,增强数学学习的信心和兴趣4 教学设计环节1 类比发现甲水库的水位每天升高3cm,乙水库的水位每天下降3cm,4天后甲、乙水库水位的总变化量各是多少?【设计】通过水库这个具体情境,帮助学生列出正数×负数的算式,初步感知符号对结果的影响。
环节2 探索规律【设计】一正一负两数相乘有实际情景作为载体,两个负数相乘的情景学生较难理解,从找规律的角度来解释学生更容易接受。
一正一负、两负相乘都可在规律中寻找答案,并能将与0相乘的情况也列出。
环节3 归纳总结有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.【设计】归纳法则,使学生对运算算理和方法固定化。
环节4 应用提升【设计】简单运用乘法法则,再次稳固符号对结果的影响;将倒数的概念扩大到有理数范围,能快速说出任意有理数的倒数;能进行2个以上有理数的计算,并能快速判断结果的正负。
2.2.1有理数的乘法乘法法则课件(第1课时)(24张PPT)七年级数学上册 (人教版2024)
1.若ab<0,a+b>0, 那么这两个数( B ) A.符号相反,绝对值相等 B.符号相反且正数绝对值较大 C.符号相反且负数绝对值较大 D.符号相反
2.如果ab<0,且a>b, 则有( B A. a>0,b>0 B. a>0,b<0
) C. a<0,b>0
课堂小结
两数相乘
1.同号得正,异号得负,且积的绝对值 等于乘数的绝对值的积 法则
2.任何数同0相乘,都得0.
步骤
判断
确定
运算
倒数
若a,b互为倒数,则 ab=1
课堂练习
1. -3×(-7)的值是( D ) A.-10 C.-21
B.10 D.21
2.下列运算结果为负数的是( C ) A.-11×(-2) B.0×(-2 021) C.(-6)-(-4) D.(-7)+18
第二章 有理数的运算
第二章 有理数的运算
填空
(1)若a<0,b>0,则ab < 0; (2)若a<0,b<0,则ab > 0;
(3)若ab>0,则a、b应满足什么条件? a、b同号 (4)若ab<0,则a、b应满足什么条件? a、b异号
5.已知m、n互为相反数,c、d互为倒数,求m+n+3cd-10的值=
知识准备
有理数加法
1.符号法则 法则
2.绝对值法则
步 骤 判断
确定
运算
探究新知
问题一:观察下面的乘法算式,你能发现什么规律吗?
(1) 3×3=9
(2) 3×3=9
3×2=6
2×3=6
3×1=3
1×3=3
七年级数学北师大版(上册)2.7有理数的乘法法则课件
例2 已知a与b互为相反数,c与d互为倒数,m的绝对值为
6,求
a
m
b
-cd+|m|的值.
解:由题意得a+b=0,cd=1,|m|=6.
∴原式=0-1+6=5;
ab m
故
-cd+|m|的值为5.
1. 若 ab>0,则必有 ( D )
A. a>0,b>0 B. a<0,b<0 C. a>0,b<0 D. a>0,b>0或a<0,b<0
解:(1)原式 (3 5 9 1 ) 27 .
654
8
(2)原式 5 6 4 1 6. 54
(+2)×(+3)= 6 (-2)×(-3)= 6
同号两数相乘
(+2)×(-3)= - 6 异号两数相乘
(-2)×(+3)= - 6
0 × 5= (0 -5)× 0 = 0
一数与0相乘
你能从中发现规律吗?结果的符号怎么定?绝对值怎么算?
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,积仍为0.
= −(4×5)
=+(5×7)
=−20 ;
(3)(
3 8
)
(
8 3
);
(3 8) 83
=1 ;
=35;
(4) (3)( 1 ); 3
= +(3× 1 ) 3
=1 .
观察(3)、(4)两题你有什么发现?
2.倒数
我们把乘积为1的两个有理数称为互为倒数, 其中的一个数是另一个数的倒数.
(1)正数的倒数是正数,负数的倒数是负数; (2)分数的倒数是Байду номын сангаас子与分母颠倒位置; (3)求小数的倒数,先化成分数,再求倒数; (4)0没有倒数.