七年级数学上册2.7有理数的乘法第1课时有理数的乘法法则课件(新版)北师大版

合集下载

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加.
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)

5 6

3 8
-24;
(2)
-7

4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3

值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);

七年级数学上册 2.7 有理数乘法(第1课时)“负负得正”的乘法法则可以证明吗? (新版)北师大版

七年级数学上册 2.7 有理数乘法(第1课时)“负负得正”的乘法法则可以证明吗? (新版)北师大版

七年级数学上册 2.7 有理数乘法(第1课时)“负负得正”的乘法法则可以证明吗?(新版)北师大版关于“负负得正”的乘法法则,是否可以通过证明来确认这条法则呢?这个问题历来被老师们关注,有关专家对此也有各种看法,现将一篇文章转摘如下,供老师们参考(田载今,中学数学教学参考,2005年第3期)。

有理数的乘法法则中包括“负负得正”一条,“两个负有理数相乘,结果(积)是一个正有理数,其绝对值等于相乘两数的绝对值的乘积.”例如,(-2)×(-3)=+6。

这条法则对刚学它的人来说,不是很容易理解,多数人是把它硬记下来的.记得水稻专家袁隆平院士说过他学正负数时想不清这个法则的道理,就去向老师请教,老师说:“你记住就行了.”编写教材时,大家为说明这条法则的道理想了很多办法,有的教材以实际问题为背景来说明,有的教材从运算律的角度进行说明,有的教材利用相反数的意义解释……教学中,许多老师都反映这条法则的道理不是很好讲.也有人考虑:是否可以通过证明来确认这条法则呢?教科书中哪种说法可以算是对它的证明呢?一种意见认为,“负负得正”有着丰富的实际背景,实践是检验真理的标准,这些实际背景对这一法则的证明.例如,考虑这样的问题:如果水位一直以每小时2厘米的速度下降,现在水位在水文标尺刻度的A处,3小时前水位在水文标尺的刻度在何处?为区分水位变化方向,我们规定水位上升为正,下降为负;显然3小时前水位在水文标尺刻度的A处上方6cm处,这可以表示为(-2)×(-3)=+6.在许多情况下,都能找到类似这样的“负负得正”的原型,因此,“负负得正”可以认为是通过客观实践检验证明的.上面的意见中,以“实际事物的原型”替代“数学的证明”的做法是不妥的.数学中的证明不是个例的验证,数学不是物理、化学、生物那样的实验科学,它的命题具有一般性,不能依靠检验个别案例完成对一般结论的证明,而需要依据已有的结论(定义、公理和定理等)经合乎逻辑的推导来证明.这些客观事物中的原型,只有在人为地规定问题中有关量的正负意义之后,即经过数学化、抽象化之后,才具有了“负负得正”的意义,它们只能说明“负负得正”有实际背景,或作为应用“负负得正”法则的例子,而不能作为逻辑地推导这个法则的根据.另一种意见认为,可以通过运算律来证明“负负得正”这一法则,具体推导过程如下:有了有理数的加法法则以及“正正得正”,“正负得正”的乘法法则之后,由分配律,有(-1)×(-1)=(-1)×(1-2)=(-1)×1-(-1)×2=-1-(-2)=-1+2=1 .进而由交换律和结合律可以推出任何两个负数相乘的结果,例如,(-2)×(-3)=(-1)×2×(-1)×3=(-1)×(-1)×2×3 =[(-1)×(-1)]×(2×3)=1×6=6.于是,得出“负负得正”这一法则.笔者认为,上面的意见中在应用分配律时,用到了(-1)×(1-2)=(-1)×1-(-1)×2. (1)当确立了有理数的加法法则以及“正正得正”,“正负得负”的乘法法则,而尚未确立“负负得正”这一法则时,这样做是缺乏根据的.在这时,我们可以确信(-1)×(2-1)=(-1)×2-(-1)×1.⑵这是因为⑵的左边为(-1)×(2-1)=(-1)×1=-1.⑵的右边为(-1)×2-(-1)×1=-2-(-1)=-2+1=-1.所以(2)的左边等于右边,即(2)成立.但是,我们不能用类似的方法推出⑴成立,因为⑴的左边为(-1)×(1-2)=(-1)×(-1),而(-1)×(-1)的法则此时尚未成立,所以无法确定⑴的左边是否等于右边,即此时分配律等于(-1)×(1-2)是否适用尚且存疑。

2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件

2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件
第1课时 有理数的乘法 第二章 有理数及其运算
B.负数
第二章 有理数及其运算
C.零 第二章 有理数及其运算
第二章 有理数及其运算
D.无法确定
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第二章 有理数及其运算
6.如图,数轴上的 A,B,C 三点所表示的数分别为 a,b,c.根 据图中各点的位置,下列式子正确的是( D )
18.一辆出租车在一条东西走向的大街上营运.一天上午,这辆车 一共连续送客 10 次,其中 4 次向东行驶,每次行驶 10 km;6 次向西行驶,每次行驶 7 km.问:
(1)该出租车连续送客 10 次后,停在离出发点的什么地方? 解:规定向东为正,则 10×4+(-7)×6=40+(-42)=-2(km). 所以该出租车停在出发点的西边 2 km 处.
2.(2019·温州)计算:(-3)×5 的结果是( A )
A.-15
B.15
C.-2
D.2
3.下列运算结果为负数的是( C )
A.-11×(-2)
B.0×(-2 019)
C.(-6)-(-4)
D.(-7)+18
4.一个有理数和它的相反数之积为负
C.一定不大于 0
第二章 有理数及其运算
2.7 有理数的乘法 第1课时 有理数的乘法
提示:点击 进入习题
1 见习题 2 A
3C
4C
答案显示
5B
6 D 7 A 8 -20;15 9 1;0;±1 10 A
11 D
12 B
13 C
14 D
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题

北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)

北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)

(3) 3 (11).
(4)( 27) 0.
53
8
【思路点拨】确定两数符号→积的符号→绝对值相乘
【自主解答】(1)(-3)×7=-(3×7)=-21. (2)(-8)×(-2)=+(8×2)=16.
(3) 3 (11) (3 4) 4. 5 3 53 5
(4)( 27) 0 0. 8
(10 1 1 6) 2. 3 10
(2) 3 5 14 (0.25) 65
3 5 9 1 9. 654 8
【总结提升】有理数乘法运算“三步法”
题组一:两个有理数相乘 1.下列说法正确的是( ) A.同号两数相乘,符号不变 B.积一定大于每一个因数 C.两数相乘,如果积为正,那么这两个因数都是正数 D.两数相乘,如果积为负,那么这两个因数异号 【解析】选D.由有理数乘法法则可得D正确.
7 有理数的乘法
第1课时
1.熟记有理数的乘法法则.(重点) 2.能根据有理数的乘法法则计算有理数的乘法.(重点) 3.知道倒数的概念. 4.会判断多个非零有理数相乘积的符号.(难点)
一、有理数的乘法法则


(1)符号:两数相乘,同号得___,异号得___.
(2)绝对值:把绝对值_相__乘__.
(3)同0相乘:任何数与0相乘,积仍为_0_.
交换分子、分母的位置即得其倒数
【自主解答】(1)因为
34 43
1,所以
3 4
的倒数是
4. 3
(2)因为 0.2


1,( 5
1) 5

(5)

1,
所以-0.2的倒数是-5.
(3)因为2 2 8 ,( 8) ( 3) 1,

北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案

北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案

二、例题:
三、小结:
促进了学 生的表达 与交流,为 后续学习 打下基础。 课件展示 归纳使知 识更系统 化,便于学 生记忆。
理数的乘
(raciprocal),也称这两个有理数互为倒数 教师追问:同学们你知道怎样求一个的道数吗? 1.非零整数——直接写成这个数分之一 2.分数——把分子、分母颠倒位置即可 带分数要化成假分数,小数化为分数再求
法法则解 决两个例 题,且明确 倒数的定 义在有理 数范围内
例 2:(3)(-4)×5 ×(-0.25)(从左向右依次运算)
仍有意义。
(4)( 3)( 5)( 2)
5
6
[(3 5)] (2) 56
1 (2) 2
1
根据上面例题,教师提问:几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一个因数为 0 时,积是多少? 积的符号又负数的个数确定,若是奇数,结果为负, 若是偶数,结果为正 有一个因数为 0 时,积是 0 3、出示课件: 试一试 : 教师鼓励学生主动解决问题
加法法则引出有理数的乘法来解决了一些实际问题。
1、培养学生的动态观察 、对比、分析生活问题的能力;让学生能综合运用有理数及其加、
减法的有关知识灵活地解决简单的实际问题。
学习 2、在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的
目标 灵活处理。使学生感受到折 线统计图确实可以直观地反映事物的变化情况。
1、11 8 1 (1) 4 22 2
11 8 1 4 22 2
1 2
2、0×(-3) ×(-4) ×(-5) ×(-6)
=0
几个有理数相乘有一个因数为 0 时,积是 0
课堂 1、两个数的积为正,那么这两个数( C )

《有理数的乘法》第一课时课件 (一等奖)2022年最新PPT

《有理数的乘法》第一课时课件 (一等奖)2022年最新PPT
(5) (-6)×(-1);6
(7) (-6)×0; 0
(2) (-6)×(-9); 54 (4) (-6)×1; -6 (6) 6×(-1); -6 (8) 0×(-6);0
5.填空: (1) 2×(-6)=_-_1_2___;(2) 2+(-6)=__-4_____;
(3) (-2)×6=_-_1_2_____;(4) (-2)+6=_4_____;
(5) (-2)×(-6)=_1_2____;(6) (-2)+(-6)=_-_8___;
(9) |-7|×|-3|=_2_1_____;(10) (-7)×(-3)=_2_1____.
图形的旋转〔第1课时〕
活动1
钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?
12 11 10
9
8 76
= +〔20×0.25〕
=5 〔2〕原式= ( 3 5 ) ( 2 )
56 1 (2)
2 1
方法提示:三个有理数相乘,先把前两个 数相乘,再把所得结果与另一数相乘。
议一议:
几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一因数为 0 时,积 是多少?
几个不等于零的数相乘,积的符号由负 因数的个数决定。
例题分析
例1 计算: (1) (−4)×5 ;
(2) (−4)×(−7) ;
(3)
(3)(8); 83
〔4〕
(3)
(
1). 3

提示:求解中的步骤 第一步是确定积的符号; 第二步是 确定积的绝对值。
解(1)〔-4〕×5=-(4×5)=-20
〔2〕〔-5〕×〔-7〕=+〔5×7〕=35

七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版


拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。

北师大版七年级数学2.7 有理数的乘法(1)教案

有理数的乘法〔第1课时〕1 教材说明北师大版七年级上册第二章“有理数及其运算〞第7节“有理数的乘法〞2 学情分析本节课的主要内容是“有理数的乘法法则〞,在此之前学生已经学习了有理数加法法则和减法法则,也对“几个相同的数连加形式可以写成乘法形式〞有较深刻的认识,所以本节课可以类比“有理数加法法则〞对乘法法则进行归纳总结;而本节课要为接下来的“有理数的除法〞“有理数的乘法〞做铺垫,所以对符号的处理尤为关键。

2 重难点重点:有理数的乘法法则的探索与归纳难点:有理数的乘法法则的探索与归纳3 教学目标〔1〕归纳有理数乘法法则,并能准确判断结果的正负〔2〕通过类比、找规律的方法,体会归纳获得数学结论的过程〔3〕体验数学探究的乐趣,增强数学学习的信心和兴趣4 教学设计环节1 类比发现甲水库的水位每天升高3cm,乙水库的水位每天下降3cm,4天后甲、乙水库水位的总变化量各是多少?【设计】通过水库这个具体情境,帮助学生列出正数×负数的算式,初步感知符号对结果的影响。

环节2 探索规律【设计】一正一负两数相乘有实际情景作为载体,两个负数相乘的情景学生较难理解,从找规律的角度来解释学生更容易接受。

一正一负、两负相乘都可在规律中寻找答案,并能将与0相乘的情况也列出。

环节3 归纳总结有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.【设计】归纳法则,使学生对运算算理和方法固定化。

环节4 应用提升【设计】简单运用乘法法则,再次稳固符号对结果的影响;将倒数的概念扩大到有理数范围,能快速说出任意有理数的倒数;能进行2个以上有理数的计算,并能快速判断结果的正负。

2.2.1有理数的乘法乘法法则课件(第1课时)(24张PPT)七年级数学上册 (人教版2024)

答:甲地上空9km处的气温大约为-33℃.
1.若ab<0,a+b>0, 那么这两个数( B ) A.符号相反,绝对值相等 B.符号相反且正数绝对值较大 C.符号相反且负数绝对值较大 D.符号相反
2.如果ab<0,且a>b, 则有( B A. a>0,b>0 B. a>0,b<0
) C. a<0,b>0
课堂小结
两数相乘
1.同号得正,异号得负,且积的绝对值 等于乘数的绝对值的积 法则
2.任何数同0相乘,都得0.
步骤
判断
确定
运算
倒数
若a,b互为倒数,则 ab=1
课堂练习
1. -3×(-7)的值是( D ) A.-10 C.-21
B.10 D.21
2.下列运算结果为负数的是( C ) A.-11×(-2) B.0×(-2 021) C.(-6)-(-4) D.(-7)+18
第二章 有理数的运算
第二章 有理数的运算
填空
(1)若a<0,b>0,则ab < 0; (2)若a<0,b<0,则ab > 0;
(3)若ab>0,则a、b应满足什么条件? a、b同号 (4)若ab<0,则a、b应满足什么条件? a、b异号
5.已知m、n互为相反数,c、d互为倒数,求m+n+3cd-10的值=
知识准备
有理数加法
1.符号法则 法则
2.绝对值法则
步 骤 判断
确定
运算
探究新知
问题一:观察下面的乘法算式,你能发现什么规律吗?
(1) 3×3=9
(2) 3×3=9
3×2=6
2×3=6
3×1=3
1×3=3

七年级数学北师大版(上册)2.7有理数的乘法法则课件


例2 已知a与b互为相反数,c与d互为倒数,m的绝对值为
6,求
a
m
b
-cd+|m|的值.
解:由题意得a+b=0,cd=1,|m|=6.
∴原式=0-1+6=5;
ab m

-cd+|m|的值为5.
1. 若 ab>0,则必有 ( D )
A. a>0,b>0 B. a<0,b<0 C. a>0,b<0 D. a>0,b>0或a<0,b<0
解:(1)原式 (3 5 9 1 ) 27 .
654
8
(2)原式 5 6 4 1 6. 54
(+2)×(+3)= 6 (-2)×(-3)= 6
同号两数相乘
(+2)×(-3)= - 6 异号两数相乘
(-2)×(+3)= - 6
0 × 5= (0 -5)× 0 = 0
一数与0相乘
你能从中发现规律吗?结果的符号怎么定?绝对值怎么算?
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,积仍为0.
= −(4×5)
=+(5×7)
=−20 ;
(3)(
3 8
)
(
8 3
);
(3 8) 83
=1 ;
=35;
(4) (3)( 1 ); 3
= +(3× 1 ) 3
=1 .
观察(3)、(4)两题你有什么发现?
2.倒数
我们把乘积为1的两个有理数称为互为倒数, 其中的一个数是另一个数的倒数.
(1)正数的倒数是正数,负数的倒数是负数; (2)分数的倒数是Байду номын сангаас子与分母颠倒位置; (3)求小数的倒数,先化成分数,再求倒数; (4)0没有倒数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档