一次函数中考综合题练习
2020年中考数学必考考点专练:一次函数、反比例函数综合题(解析版)

|类型1| 比较函数值的大小,求自变量取值范围1.[2019·泸州]如图,一次函数y 1=ax+b 和反比例函数y 2=kx 的图象相交于A ,B 两点,则使y 1>y 2成立的x 的取值范围是 ( )A ..-2<x<0或0<x<4B .x<-2或0<x<4C .x<-2或x>4D .-2<x<0或x>4【答案】B【解析】观察函数图象,发现:当x<-2或0<x<4时,一次函数图象在反比例函数图象的上方,∴当y 1>y 2时,x 的取值范围是x<-2或0<x<4.2.如图,一次函数y 1=k 1x+b 1与反比例函数y 2=k2x (x>0)的图象交于A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是 ( )A ..x<1B .x<3C .0<x<3D .x>3或0<x<1【答案】【解析】观察函数图象,发现:当.x>3或0<x<1时,一次函数图象在反比例函数图象的上方,∴当y 1<y 2,时,x 的取值范围是x>3或0<x<13.[2019·扬州]若反比例函数y=-2x 的图象上有两个不同的点关于y 轴的对称点都在一次函数y=-x+m 的图象上,则m 的取值范围是 ( ) A .m>2√2B .m<-2√2C .m>2√2或m<-2√2D .-2√2<m<2√2【答案】C一次函数、反比例函数综合题[解析]∵反比例函数y=-2x图象上的点关于y 轴对称的点都在反比例函数y=2x的图象上,∴反比例函数y=2x的图象与一次函数y=-x+m 的图象有两个不同的交点,两个函数联立得方程组{y =2x ,y =-x +m ,化简得x 2-mx+2=0.∵有两个不同的交点,∴x 2-mx+2=0有两个不等的实根.∴Δ=m 2-8>0, ∴m>2√2或m<-2√2.4.[2019·玉林]如图,一次函数y 1=(k -5)x+b 的图象在第一象限与反比例函数y 2=kx 的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x<4,则k= 4 .[解析]观察图象可知{k -5+b =k ,4(k -5)+b =k4,解得{k =4,b =5.5.已知一次函数y=ax+b ,反比例函数y=kx (a ,b ,k 是常数,且ak ≠0),若其中一部分x ,y 的对应值如下表,则不等式-8<ax+b<kx 的解集是 -6<x<-2或0<x<4 .x-4-2 -1 1 2 4 y=ax+b -6 -4 -3 -1 0 2 y=kx-2-4-8842[解析]根据表格可得:当x=-2和x=4时,两个函数值相等,因此直线y=ax+b 与双曲线y=kx 的交点为(-2,-4),(4,2),由表即可得出当x=-6时,一次函数值y=-8,∴不等式-8<ax+b<kx的解集为-6<x<-2或0<x<4.6. 在平面直角坐标系xOy 中,直线y=kx+2k (k>0)与x 轴交于点P ,与双曲线y=3kx (x>0)交于点Q ,若直线y=4kx -2与直线PQ 交于点R (点R 在点Q 右侧),当RQ ≤PQ 时,k 的取值范围是 k ≥15 .[解析]如图,作QM ⊥x 轴于M ,RN ⊥x 轴于N , ∴QM ∥RN ,∴PQQR =PM MN,∵RQ ≤PQ ,∴MN ≤PM ,∵直线y=kx+2k (k>0)与x 轴交于点P , ∴P (-2,0),∴OP=2, 解kx+2k=3kx 得,x 1=-3,x 2=1,∴Q 点的横坐标为1,∴M (1,0),∴OM=1, ∴PM=2+1=3,解kx+2k=4kx -2得,x=2k+23k,∴R 点的横坐标为2k+23k,∴N (2k+23k,0),∴ON=2k+23k,∴MN=2k+23k-1,∴2k+23k-1≤3,解得k ≥15,故答案为k ≥15.7.[2019·巴中]如图,一次函数y 1=k 1x+b (k 1,b 为常数,k 1≠0)的图象与反比例函数y 2=k2x (k 2≠0,x>0)的图象交于点A (m ,8)与点B (4,2). (1)求一次函数与反比例函数的解析式; (2)根据图象说明,当x 为何值时,k 1x+b -k2x <0.解:(1)∵点B (4,2)在反比例函数y 2=k2x (k 2≠0,x>0)的图象上,∴2=k24,解得k 2=8,∴反比例函数解析式为y 2=8x(x>0).当y 2=8时,8=8m,∴m=1,∴点A 坐标为(1,8),将A (1,8),B (4,2)的坐标代入y 1=k 1x+b , 可得{8=k 1+b ,2=4k 1+b ,∴{k 1=-2,b =10,∴一次函数解析式为y 1=-2x+10.(2)由图象可知x 的取值范围为0<x<1或x>4.8.[2019·攀枝花]如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数y=mx 的图象在第二象限交于点B ,与x 轴交于点C ,点A 在y 轴上,满足条件:CA ⊥CB ,且CA=CB ,点C 的坐标为(-3,0),cos ∠ACO=√55. (1)求反比例函数的表达式;(2)直接写出当x<0时,kx+b<mx 的解集.解:(1)如图,作BH ⊥x 轴于点H ,则∠BHC=∠BCA=∠COA=90°, ∴∠BCH=∠CAO . ∵点C 的坐标为(-3,0), ∴OC=3. ∵cos ∠ACO=√55, ∴AC=3√5,AO=6. 在△BHC 和△COA 中,{∠BHC =∠COA =90°,∠BCH =∠CAO ,BC =AC ,∴△BHC ≌△COA . ∴BH=CO=3,CH=AO=6. ∴OH=9,即B (-9,3). ∴m=-9×3=-27,∴反比例函数的表达式为y=-27x .(2)∵在第二象限中,B 点右侧一次函数的图象在反比例函数图象的下方,∴当x<0时,kx+b<mx 的解集为-9<x<0.|类型2| 求几何图形面积9.[2019·凉山州]如图,正比例函数y=kx 与反比例函数y=4x 的图象相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )A .8B .6C .4D .2【答案】C[解析]设A 点的坐标为(m ,4m ),则C 点的坐标为(-m ,-4m ),∴S △ABC =S △OAB +S △OBC =12m ×4m +12m ×|-4m |=4,故选C .10.[2019·滁州定远一模]如图,已知反比例函数y=mx 与一次函数y=kx+b 的图象相交于A (4,1),B (a ,2)两点,一次函数的图象与y 轴交于点C ,点D 在x 轴上,其坐标为(1,0),则△ACD 的面积为( )A .12B .9C .6D .5【答案】D[解析]∵点A (4,1)在反比例函数y=mx 图象上,∴m=xy=4×1=4,∴y=4x . 把B (a ,2)代入y=4x得2=4a,∴a=2,∴B (2,2).把A (4,1),B (2,2)代入y=kx+b , 得{1=4k +b ,2=2k +b ,解得{k =-12,b =3,∴一次函数的解析式为y=-12x+3.∵点C 在直线y=-12x+3上, ∴当x=0时,y=3,∴C (0,3). 如图,过点A 作AE ⊥x 轴于点E .∴S △ACD =S 梯形AEOC -S △COD -S △DEA =(1+3)×42-12×1×3-12×1×3=5.11.如图,矩形ABCD 的边BC 在x 轴的负半轴上,顶点D (a ,b )在反比例函数y=kx 的图象上,直线AC 交y 轴点E ,且S △BCE =6,则k 的值为( )A .-12B .-6C .-2D .-3【答案】A[解析]∵矩形ABCD ,D (a ,b ),∴CO=-a ,CD=AB=b ,∵D (a ,b )在反比例函数y=kx 的图象上,∴k=ab ,∵S △BCE =6,∴12BC ·OE=6,即BC ·OE=12, ∵AB ∥OE ,∴BC OC =AB EO ,即BC ·EO=AB ·CO ,∴12=b ·(-a ),即ab=-12,∴k=-12,故选A .12.[2019·乐山]如图,点P 是双曲线C :y=4x (x>0)上的一点,过点P 作x 轴的垂线交直线AB :y=12x -2于点Q ,连接OP ,OQ .当点P 在曲线C 上运动,且点P 在Q 的上方时,△POQ 面积的最大值是 .【答案】3[解析]∵点P 是双曲线C :y=4x(x>0)上的一点,∴可设点P 坐标为(m ,4m),∵PQ ⊥x 轴,Q 在y=12x -2图象上,∴Q 坐标为(m ,12m -2),PQ=4m-(12m -2),∴△POQ 的面积=12m ×[4m -(12m -2)]=-14(m -2)2+3,∴当m=2时,△POQ 面积最大,最大值为3.13.[2019·宁波]如图,过原点的直线与反比例函数y=kx (k>0)的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连接AC ,交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连接DE ,若AC=3DC ,△ADE 的面积为8,则k 的值为 6 .[解析]连接OE ,OD ,在Rt △ABE 中,点O 是AB 的中点,∴OE=12AB=OA ,∴∠OAE=∠OEA ,∵AE 为∠BAC 的平分线,∴∠OAE=∠DAE , ∴∠OEA=∠DAE ,∴AD ∥OE ,∴S △ADE =S △ADO ,过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,易得S 梯形AMND =S △ADO =8, ∵△CAM ∽△CDN ,CD ∶CA=1∶3,∴S △CAM =9,延长CA 交y 轴于点P ,易得△CAM ∽△CPO ,可知DC=AP ,∴CM ∶MO=CA ∶AP=3∶1,∴S △CAM ∶S △AMO =3∶1,∴S △AMO =3,∵反比例函数图象在第一、三象限,∴k=6.14.[2019·盐城]如图,一次函数y=x+1的图象交y 轴于点A ,与反比例函数y=kx (x>0)的图象交于点B (m ,2). (1)求反比例函数的表达式; (2)求△AOB 的面积.解:(1)∵一次函数y=x+1的图象经过点B (m ,2), ∴2=m+1,解得m=1,则点B 的坐标为(1,2), ∵点B 在反比例函数y=kx (x>0)的图象上, ∴k=2,∴反比例函数的表达式为y=2x (x>0).(2)易得点A (0,1),∴OA=1, 过点B 作BC ⊥y 轴,垂足为点C ,则BC 就是△AOB 的高,BC=1, ∴S △AOB =12OA ×BC=12×1×1=12.15.[2019·遂宁]如图,一次函数y=x -3的图象与反比例函数y=kx (k ≠0)的图象交于点A 与点B (a ,-4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若△POC 的面积为3,求出点P 的坐标.解:(1)∵点B (a ,-4)在一次函数y=x -3的图象上,∴a=-1,∴B (-1,-4), ∵B (-1,-4)在反比例函数图象上, ∴k=(-1)×(-4)=4,∴反比例函数的表达式为y=4x .(2)如图,设PC 交x 轴于点H ,设P (m ,4m )(m>0),则C (m ,m -3),由{y =4x ,y =x -3,得x 2-3x -4=0,解得x 1=-1,x 2=4,∴A (4,1).∵PC=|4m +3-m |,OH=m ,∴△POC 的面积为3,∴12|4m +3-m |·m=3,∴m 1=2,m 2=1,m 3=5,m 4=-2.∵m>0,点P 与点A 不重合,且A (4,1), ∴m 4=-2不合题意,舍去,∴P 点坐标为(1,4),(2,2),(5,45).。
中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知函数y1=mx2+n,y2=mx+n(m>0),当p<x<q时,y1<y2,则()A.0<q−p<2B.0<q−p≤2C.0<q−p<1D.0<q−p≤12.一次函数y=bx+a(b≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.4.小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是()A.①B.②C.③D.④5.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣734或﹣12B.﹣734或2C.﹣12或2D.﹣694或﹣126.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>174或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).正确的有()A.1个B.2个C.3个D.4个7.直线y=ax﹣6与抛物线y=x2﹣4x+3只有一个交点,则a的值为()A.a=2B.a=10C.a=2或a=﹣10D.a=2或a=108.已知一次函数y1=2x−2,二次函数y2=x2,对于x的同一个值,这两个函数所对应的函数值分别为y1和y2,则下列表述正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小关系不确定9.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>410.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A.3B.4C.5D.611.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=-3(t-20)2+1200(5≤t≤20)12.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y= 12x2+bx+c的顶点,则抛物线y= 12x2+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个二、填空题13.抛物线y=2x2+x+a与直线y=−x+3没有交点,则a的取值范围是.14.如图,已知抛物线y1=−2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0,下列判断:①当x<0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是−12或√22.其中正确的是.15.如图,已知直线y=﹣34x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34x+3于点Q,则当PQ=BQ时,a的值是.16.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…21的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.18.直线y=x+2与抛物线y=x2的交点坐标是.三、综合题19.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?20.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.21.如图,已知抛物线 y =−12x 2+bx +c 经过A (2,0)、B (0,-6)两点,其对称轴与轴交于点C(1)求该抛物线和直线BC 的解析式;(2)设抛物线与直线BC 相交于点D ,连结AB 、AD ,求△ABD 的面积.22.某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量 y (万件)与售价 x (元/件)的函数关系式为 y ={−2x +140,(40≤x <60)−x +80.(60≤x ≤70)(1)当售价为60元/件时,年销售量为 万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少? (3)若销售该产品的年利润不少于750万元,直接写出 x 的取值范围.23.抛物线y =ax 2与直线y =2x -3交于点A(1,b).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.24.如图,平面直角坐标系中,抛物线 y =ax 2+bx +c 经过 A(−1,0) , B(3,0) 两点,与 y 轴交于点 C(0,−3) ,点 D 是抛物线的顶点.(1)求抛物线的解析式;(2)设P(m,n)为对称轴上一点,若∠PCD为钝角,求n的取值范围.参考答案1.【答案】D 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】B 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】D 13.【答案】a >3.5 14.【答案】③④15.【答案】﹣1,4,4+2 √5 ,4﹣2 √5 16.【答案】x <﹣1或x >4 17.【答案】y =83x 218.【答案】(-1,1)和(2,4)19.【答案】(1)解:根据题意:y =20000+ x 100 ×10000=100x+20000(2)解:设所获的利润w (元) 则W =(2200﹣1200﹣x )(100x+20000) =﹣100(x ﹣400)2+36000000;所以当降价400元,即定价为2200﹣400=1800元时,所获利润最大 (3)解:根据题意每天最多接受50000(1﹣0.05)=47500台 此时47500=100x+20000 解得:x =275.所以最大量接受预订时,每台定价2200﹣275=1925元.20.【答案】(1)解:由题意 {4a −2b +2=64b +2b +2=2 解得 {a =12b =−1∴抛物线解析式为y= 12x 2﹣x+2.(2)解:∵y= 12 x 2﹣x+2= 12 (x ﹣1)2+ 32.∴顶点坐标(1,3 2)∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3)∴S△BDC=S△BDH+S△DHC= 12×32•3+ 12×32•1=3.(3)解:由{y=−12x+by=12x2−x+2消去y得到x2﹣x+4﹣2b=0当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0∴b= 15 8当直线y=﹣12x+b经过点C时,b=3当直线y=﹣12x+b经过点B时,b=5∵直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点∴158<b≤3.21.【答案】(1)解:将A(2,0)、B(0,-6)代入y=−12x2+bx+c中可得{−12×22+2b+c=0c=−6解得:b=4;c=-6∴该抛物线的解析式为y=−12x2+4x−6∴抛物线对称轴为x=−42×(−12)=4∴C(4,0)设直线BC的解析式为y=kx+b(k≠0)将B(0,-6),C(4,0)代入得解得:k=32,b=−6∴直线BC 的解析式为 y =32x −6(2)解:连立方程组可得 {y =32x −6y =−12x 2+4x −6解得 {x =5y =32∴D(5, 32)∴△ABD 的面积为 12×2×(23+6)=15222.【答案】(1)20(2)解:设销售该产品的年利润为 W 万元当 40≤x <60 时, W =(x −30)(−2x +140)=−2(x −50)2+800 . ∵-2<0 ∴当 x =50 时 当 60≤x ≤70 时 ∵−1<0 ∴当 x =60 时 ∵800>600 ∴当 x =50 时∴当售价为50元/件时,年销售利润最大,最大为800万元. (3)解: 45≤x ≤55 理由如下:由题意得(x −30)(−2x +140)≥750解得 45≤x ≤5523.【答案】(1)解:∵点 A(1,b) 在直线 y =2x −3 上∴b =−1∴点 A 坐标 (1,−1)把点 A(1,−1) 代入 y =ax 2 得到 a =−1∴a =b =−1.(2)解:由 {y =−x 2y =−2 解得 {x =√2y =−2 或 {x =−√2y =−2 ∴点 C 坐标 (−√2,−2), 点 B 坐标 (√2,−2). (3)解: S △BOC =12×2√2×2=2√2.24.【答案】(1)解:由已知,设 y =a(x +1)(x −3)把C(0,−3)代入,得−3a=−3∴y=(x+1)(x−3)即y=x2−2x−3.(2)解:由y=x2−2x−3,得y=(x−1)2−4∴顶点D(1,−4).过点D作DH⊥y轴于点H,连结BC交对称轴于点E,连结DC.∵B(3,0),C(0,−3)∴OB=OC=3∴∠BCO=∠DCH=45°∴∠DCE=90°设BC函数表达式为y=kx+b把B(3,0),C(0,−3)两点代入y=kx+b得{k=1b=−3即BC函数表达式为y=x−3∵点E在对称轴上∴点E横坐标为1,代入y=x−3得E(1,−2)由∠PCD为钝角,则点P在点E上方即n>−2.第11页共11页。
【中考数学压轴题专题突破41】一次函数综合问题(1)

【中考压轴题专题突破41】一次函数综合问题(1)1.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.3.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.4.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.5.对于两个一次函数y1=k1x+b1和y2=k2x+b2(其中k1、k2、b1,b2均为常数且k1、k2均不为0),任取一个自变量x,当x<0时,y=y12+y2;当x≥0时,y=y12﹣y2,我们称这样的函数为函数y1=k1x+b1和y2=k2x+b2的“组合函数”.例如:y1=x﹣1和y2=x+1的“组合函数“为y=(1)已知一次函数y1=x﹣1和y2=4x﹣1.①求一次函数y1=x﹣1和y2=4x﹣1的“组合函数”所对应的函数表达式.②一次函数y1=x﹣1和y2=4x﹣1的“组合函数”的函数值y随x的增大而减小时,x的取值范围是.③当﹣4≤x≤4时,该“组合函数”的函数值y的取值范围是.(2)记一次函数y1=x﹣n(n>0)和y2=4nx+n2(其中n为常数)的“组合函数”的图象为G.①当n=1时,若直线y=a(a为常数)与图象G有三个不同的交点时,记三个交点的横坐标分别为x1、x2、x3(x1<x2<x3),求x1+x2+x3的取值范围.②在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(2,2),点B在第二象限.图象G与正方形ABCD的边恰好有两个公共点时,直接写出n的取值范围.6.如图,点O是平面直角坐标系的原点,直线y=kx+3交x轴于点A,交y轴于点B,OA =OB.(1)求k的值;(2)点P为第一象限内线段AB上方一点,点P的坐标为(t,),连接P A,PB,设△P AB的面积为S,求S关于t的函数关系式;(3)在(2)的条件下,在PB上方取一点C,连接BC,PC,使∠BCP=90°,且BC =PC.点D在线段AP上,且横坐标为,连接OC,CD,当∠OCD=45°时,求点P 的坐标.【中考压轴题专题突破41】一次函数综合问题(1)参考答案与试题解析1.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.2.解:(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0)∴AO=3,BO=6,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则,解得:∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠CHQ,∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,直线AB的表达式为:y=2x+6,即2m﹣6=2x+6,解得:x=m﹣6,故点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠P AM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠P AM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠P AO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠P AO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=,∴Q(,﹣3),P(﹣,3)设直线PQ的解析式为:y=ax+c,∴,解得:∴直线PQ的解析式为:y=﹣x+.3.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF的解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF的解析式为y=x+2;(2)△OBF的面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM∥x轴交BA的延长线于点M,过点T作TK⊥CR交RC的延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.4.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).5.解:(1)①当x≥0时,y=y12﹣y2,=(x﹣1)2﹣(4x﹣1)=x2﹣6x+2,当x<0时,y=y12+y2=,=(x﹣1)2+(4x﹣1)=x2+2x,∴y=②∵当x≥0时,函数解析式为:y=x2﹣6x+2,∴当0≤x≤3时,y随x的增大而减小.当x<0时,函数解析式为:y=x2+2x,∴x≤﹣1时,y随x的增大而减小.故答案为:x≤﹣1或0≤x≤3;③∵当﹣4≤x<0时,函数解析式为:y=x2+2x,∴﹣1≤y≤8,当0≤x≤4时,函数解析式为:y=x2﹣6x+2,∴﹣7≤y≤2,∴当﹣4≤x≤4时,﹣7≤y≤8;故答案为:﹣7≤y≤8;(2)①当n=1时,y1=x﹣1,y2=4x+1,∴组合函数为:y=∵直线y=a(a为常数)与图象G有三个不同的交点,∴1<a<2,∴当x2﹣6x=1时,x=3+,x=3﹣(舍去),当x2﹣6x=2时,x=3+,x=3﹣(舍去),∵x1+x2=﹣2,∴1+<x1+x2+x3<1+;②∵一次函数y1=x﹣n(n>0)和y2=4nx+n2,∴组合函数y=若y=x2﹣6nx(x>0)的顶点在正方形ABCD内时,∴﹣9n2>﹣2,0<3n<2,∴n2<,且0<n<,∴0<n<,此时y=x2+2nx+2n2与正方形ABCD的边也有1个交点,∴0<n<符合题意;若y=x2﹣6nx(x>0)的顶点不在正方形ABCD内部时,且与正方形ABCD的边有一个交点,∴22﹣6×n×2<﹣2,∴n>即y=x2+2nx+2n2与正方形ABCD的边有一个交点,∴2n2≤2∴n≤1,∴<n≤1;若y=x2+2nx+2n2的顶点在正方形ABCD的AB边上时,图象G与正方形ABCD的边恰好有两个公共点,∴n2=2,∴n=,综上所述:当0<n<或<n≤1或n=时,图象G与正方形ABCD的边恰好有两个公共点.6.解:(1)∵直线y=kx+3交y轴于点B,∴点B坐标(0,3),∴OB=3,∵OA=OB=3,∴点A(3,0),∴0=3k+3,∴k=﹣1;(2)如图1,过点P作PQ⊥OA,交AB于点Q,由(1)知,AB的解析式为:y=﹣x+3,∵点P的坐标为(t,),∴Q点的坐标为(t,﹣t+3),∴PQ=t+,∵,∴;(3)如图2,过点P作PM⊥OA于M,过点D作DN⊥OA于N,过点O作OH⊥OC,交CD的延长线于点H,连接AH,∵∠OCD=45°,∴∠OCH=∠OHC=45°,∴OC=OH,∵∠AOB=∠COH=90°,∴∠BOC=∠AOH,在△OBC和△OAH中,,∴△OBC≌△OAH(SAS),∴BC=AH,∠OCB=∠OHA,∵BC=CP,∴AH=PC,∵∠BCP=90°,∠OCD=45°,∴∠PCD=45°﹣∠OCB,∵∠AHD=45°﹣∠OHA,∴∠PCD=∠AHD,在△PCD和△AHD中,,∴△PCD≌△AHD(AAS),∴PD=P A,∵PM∥DN,∴MN=AN,∵D的横坐标为,点P的坐标为(t,),∴M(t,0),N(,0),∴﹣t=3﹣,∴t=,∴P(,).。
一次函数中考试题及答案

一次函数中考试题及答案试题1:已知一次函数y=kx+b的图象经过点A(2,5)和点B(4,9),求该一次函数的解析式。
答案:首先,将点A(2,5)和点B(4,9)的坐标代入一次函数y=kx+b中,得到两个方程:\[ 5 = 2k + b \]\[ 9 = 4k + b \]解这个方程组,我们可以得到k和b的值。
将第一个方程从第二个方程中减去,得到:\[ 4 = 2k \]从而得出k=2。
将k=2代入第一个方程,得到:\[ 5 = 4 + b \]解得b=1。
因此,该一次函数的解析式为y=2x+1。
试题2:若直线y=-2x+3与x轴交于点C,求点C的坐标。
答案:直线y=-2x+3与x轴相交时,y的值为0。
将y=0代入方程,得到:\[ 0 = -2x + 3 \]解这个方程,得到x=1.5。
因此,点C的坐标为(1.5,0)。
试题3:已知一次函数y=kx+b的图象与y轴交于点D(0,4),且该函数的斜率为2,求该一次函数的解析式。
答案:已知斜率k=2,且图象与y轴交于点D(0,4),即当x=0时,y=4。
将这些信息代入一次函数y=kx+b中,得到:\[ 4 = 2*0 + b \]解得b=4。
因此,该一次函数的解析式为y=2x+4。
试题4:若一次函数y=kx+b经过第一、二、三象限,且斜率k大于0,求b的取值范围。
答案:一次函数y=kx+b经过第一、二、三象限,说明该函数的图象从左下方向右上方延伸。
由于斜率k大于0,函数图象在y轴上的截距b必须大于0,以确保函数图象能够经过第二象限。
因此,b的取值范围是b>0。
试题5:已知一次函数y=kx+b的图象与x轴交于点E,且该函数的斜率k=-1,求点E的横坐标。
答案:一次函数y=kx+b与x轴相交时,y的值为0。
已知斜率k=-1,将y=0代入方程,得到:\[ 0 = -1x + b \]由于题目没有给出b的具体值,我们无法求出点E的具体坐标,但可以确定点E的横坐标为b。
2020年中考二轮专题复习:一次函数综合题(与面积有关)及答案解析

2020年中考二轮专题复习:一次函数综合题(与面积有关)1.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B,C两点,∠ABO=30°,OB=3OC.(1)证明:AC⊥AB;(2)将△ABC沿直线AB翻折得到△ABD,求直线BD的函数解析式;(3)在(2)的条件下,设直线BD交x轴于点E,嘉淇认为△ADE的面积与△AOB的面积相同,请判断嘉淇的观点是否正确.2.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.3.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC 的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.4.一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=.△OAB的外接圆的圆心M的横坐标为﹣3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.5.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.6.如图1,在平面直角坐标系中,点O为坐标原点,直线y=kx+4交x轴、y轴分别于点A、点B,且△ABO的面积为8.(1)如图2,求k的值;(2)如图3,点P是第一象限直线AB上的一个动点,连接PO,将线段OP绕点O顺时针旋转90°至线段OC,设点P的横坐标为t,点C的横坐标为m,求m与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点B作直线BM⊥OP,交x轴于点M,垂足为点N,点K在线段MB的延长线上,连接PK,且PK+KB=OP,∠PMB=2∠KPB,连接MC,求四边形BOCM的面积.7.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA =OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.8.如图:一次函数y=﹣x+3的图象与坐标轴交于A、B两点,点P是函数y=﹣x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.9.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE+S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.10.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF ∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF 的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,直线与x轴,y轴分别交于点A(6,0),B.点C(0,t)是线段OB 上一点,作直线AC.(1)若BC=2,求直线AC的函数解析式;(2)当1≤t≤4时,求△ABC面积的取值范围;(3)若AC平分∠OAB,记△ABC的周长为m,△AOC的周长为n,求m﹣n的值.13.如图,在平面直角坐标系中,Rt△AOC的直角边OA在y轴正半轴上,且顶点O与坐标原点重合,点C的坐标为(1,2),直线y=﹣x+b过点C,与x轴交于点B,与y轴交于点D.(1)B点的坐标为,D点的坐标为;(2)动点P从点O出发,以每秒1个单位长度的速度,沿O→A→C的路线向点C运动,同时动点Q从点B出发,以相同速度沿BO的方向向点O运动,过点Q作QH⊥x轴,交线段BC或线段CO于点H.当点P到达点C时,点P和点Q都停止运动,在运动过程中,设动点P运动的时间为t秒:①设△CPH的面积为S,求S关于t的函数关系式;②是否存在以Q、P、H为顶点的三角形的面积与S相等?若存在,直接写出t的值;若不存在,请说明理由.14.阅读下列两则材料,回答问题:材料一:定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为“对称直线”.例如,直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x1,y1),B(x2,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率k=材料二:对于平面直角坐标系中的任意两点(x1,y1),B(x2,y2),定义一种新的运算:L(A,B)=x1x2+y1y2,例如:A(﹣3,1)、B(2,4),(A,B)=﹣3×2+1×4=﹣2(1)若点A(﹣3,1)、B(2,4)在直线y=kx+b上,则k=;直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,求点P的坐标.(2)对于直线y=kx+b上的任意一点M(m,n),都有点N(2m,6n﹣34)在y=kx+b 的“对称直线”上:横坐标互不相同的三个点C,D,E满足L(C,D)=L(D,E),且D点的坐标为(2,2),过点D作DF∥y轴,交直线CE于点F,若DF=6,请求出直线CE、直线y=kx+b与x轴围成的三角形的面积.15.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.16.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.17.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.18.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t 值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.19.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.20.如图,等腰梯形OBCD中,DC∥OB,OD=CB,∠DOB=∠CBO,BD⊥OD,在平面直角坐标系中,等腰梯形OBCD的下底OB在x轴正半轴上,O为坐标原点,点B的坐标为(a,0),C、D两点落在第一象限,且BD=2a.点P以每秒1个单位长度的速度在对角线BD上由点B向点D运动(点P不与点B、点D重合),过点P作PE⊥BD,交下底OB于点E,交腰BC(或上底CD)于点F.(1)线段BC的长是(用含a的代数式表示);(2)已知直线PE经过点C时,直线PE的解析式为y=2x﹣,求a的值,并直接写出点B、C、D的坐标;(3)在(2)的条件下,设动点P运动时间为t(秒),在点P运动过程中,请直接写出△BEF为等腰三角形时t的值(或取值范围),并直接写出等腰△BEF面积的最大值.参考答案1.解:(1)证明:∵A(﹣,0),则OA=,∵∠ABO=30°,∴OB==3,∵OB=3OC,∴OC=1,∴点B的坐标为(0,3),点C的坐标为(0,﹣1),∴tan∠ACB==,∴∠ACB=60°,∴∠ACB+∠ABC=90°,∴∠BAC=90°,即AC⊥AB.(2)∵△ABD是由△ABC折叠得到的,∴∠ADB=∠ACB=60°,∠ABD=∠ABC=30°,∴∠DBC=60°,∴△BCD是等边三角形,∴BD=BC=4,如图1,过点D作DF⊥BC于F,则BF=2,DF=2,∴点D的坐标为(﹣2,1),设直线BD的函数解析式为y=kx+b(k≠0),将点B,D的坐标代入得:,解得:,∴直线BD的函数解析式为y=x+3.(3)如图2,∵点E是直线BD与x轴的交点,∴令y=x+3=0,解得x=﹣3,故OE=3,而AO=,∴AE=EO﹣AO=3﹣=2,∴S△AED=AE•y D=×2×1=,∵S△AOB=AO•OB=××3=,∴S△AED≠S△AOB,∴嘉淇的观点错误.2.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.3.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).4.解:(1)作MN⊥BO,由垂径定理得:点N为OB的中点,∴MN=OA,∵MN=3,∴OA=6,即A(﹣6,0),∵sin∠ABO=,OA=6,∴OB=,即B(0,),设y=kx+b,将A、B代入得:,(2)NB=OB=,MN=3,tan∠BMN==,则∠BMN=30°,∴∠ABO=60°,∴∠AMO=120°∴阴影部分面积为.5.解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF ∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠F AO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠F AD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.6.解:(1)把x=0代入y=kx+4,y=4,∴OB=4,∵△ABO的面积为8,∴=8,∴AO=4,∴A(﹣4,0),把x=﹣4,y=0代入y=kx+4,∴k=1;(2)把x=t代入y=x+4,∴P(t,t+4),如图1,过点P作PD⊥x轴,垂直为D过点C作CE⊥x轴,垂直为E;∴∠PDO=∠CEO=90°,∴∠POD=∠OPD=90°,∵线段OP绕点O顺时针旋转90°至线段OC,∴∠POC=90°,OP=OC,∴∠POD+∠EOC=90°,∴∠OPD=∠EOC,∴△OPD≌△OCE,∴OE=PD,m=t+4;(3)如图2,过点O作直线TO⊥AB,交直线BM于点Q,垂足为点T,连接QP,由(1)知,AO=BO=4,∴∠BOA=90°,∴△ABO为直角三角形,∴∠ABO=∠BAO=45°,∠BOT=90°﹣∠ABO=45°=∠ABO,∴BT=TO,∵∠BTO=90°,∴∠TPO+∠TOP=90°,∵OP⊥BM,∴∠BNO=90°,∴∠BQT=∠TPO,∴△QTB≌△PTO,∴QT=TP,PO=BQ,∴∠PQT=∠QPT,∵OP=PK+KB,∴QB=KP+KB,QK=KP,∴∠KQP=∠KPQ,∴∠PQT﹣∠KQP=∠QPT﹣∠KPQ,∠TQB=∠TPK,∴∠KPB=∠BPN,设∠KPB=x°,∴∠BPN=x°,∵∠PMB=2∠KPB,∴∠PMB=2x°,∠POM=∠P AO+∠APO=45°+x°,∠NMO=90°﹣∠POM=45°﹣x°,∴∠PMO=∠PMB+∠NMO=45°+x°=∠POM,∴PO=PM,过点P作PD⊥x轴,垂直为点D,∴OM=2OD=2t,∴∠OPD=90°﹣∠POD=45°﹣x°=∠BMO,∴tan∠OPD=tan∠BMO,∴,,∴t=4或t=﹣2(舍),∴OM=8,由(2)知:m=t+4=8=OM,∴CM∥y轴,∵∠PNM=∠POC=90°,∴BM∥OC,∴四边形BOCM是平行四边形,∴四边形BOCM的面BO×OM=4×8=32;7.解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.8.解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得S△OPM==﹣(x﹣2)2+∴当x0=2时,△OPM的面积,有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵PM∥OB,∴∴,将代入代入中,得∴P(,);②在△BOP中,当OP=BP时,如图,过点P作PN⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,NP=∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).9.解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC==32.5,∴S≠S△AOC,理由:由(1)知,直线AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△AOC≠S.10.解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BNN′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=3t﹣24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.11.解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.解:(1)将A(6,0)代入y=﹣x+b,得:0=﹣×6+b,解得:b=8,∴点B的坐标为(0,8).∵BC=2,点C在线段OB上,∴点C的坐标为(0,6).设直线AC的函数解析式为y=mx+n(m≠0),将点A(6,0),C(0,6)代入y=mx+n,得:,解得:,∴直线AC的函数解析式为y=﹣x+6;(2)∵点C的坐标为(0,t),∴OC=t,BC=OB﹣OC=8﹣t,∴S△ABC=OA•BC=×6×(8﹣t)=﹣3t+24.∵1≤t≤4,∴12≤﹣3t+24≤21,∴△ABC面积的取值范围是12≤S△ABC≤21;(3)在Rt△AOB中,OA=6,OB=8,∴AB==10.过点C作CD⊥AB于点D,如图所示.∵AC平分∠OAB,∴CD=CO=t.∵∠CBD=∠ABO,∠CDB=∠AOB=90°,∴△BCD~△BAO,∴=,即=,解得:t=3,∴BC=5,∴m=AB+BC+AC=15+AC,n=AC+OC+OA=AC+9,∴m﹣n=(15+AC)﹣(AC+9)=6.13.解:(1)∵直线y=﹣x+b过点C(1,2)∴﹣1+b=2∴b=3,即直线为y=﹣x+3当y=0时,﹣x+3=0,得x=3;当x=0时,y=3∴B(3,0),D(0,3)故答案为:(3,0);(0,3).(2)①∵Rt△AOC中,∠OAC=90°,C(1,2)∴A(0,2),OA=2,AC=1∵OB=OD=3,∠BOD=90°∴OA+AC=OB=3,∠OBD=45°∴0≤t<3,且t≠2i)当0≤t<2时,点P在线段OA上,点H在线段BC上,如图1∴OP=BQ=t∴AP=OA﹣OP=2﹣t,OQ=OB﹣BQ=3﹣t∵HQ⊥x轴于点Q∴∠BQH=90°∴△BQH是等腰直角三角形∴HQ=BQ=t∴HQ∥OP且HQ=OP∴四边形OPHQ是平行四边形∴PH∥x轴,PH=OQ=3﹣t∴S=S△CPH=PH•AP=(3﹣t)(2﹣t)=t2﹣t+3ii)当2<t<3时,点P在线段AC上,点H在线段OC上,如图2∴CP=OA+AC﹣t=3﹣t,x H=OQ=3﹣t∵直线OC解析式为:y=2x∴QH=y H=2(3﹣t)=6﹣2t∴点H到CP的距离h=2﹣(6﹣2t)=2t﹣4∴S=S△CPH=CP•h=(3﹣t)(2t﹣4)=﹣t2+5t﹣6综上所述,S关于t的函数关系式为S=②存在以Q、P、H为顶点的三角形的面积与S相等.i)当0≤t<2时,如图3∵S△CPH=S△QPH,两三角形有公共底边为PH∴点C和点Q到PH距离相等,即AP=OP∴t=2﹣t∴t=1ii)当2<t≤2.5时,如图4,延长QH交AC于点E∴AE=OQ=3﹣t,AP=t﹣2,QH=6﹣2t∴PE=AE﹣AP=(3﹣t)﹣(t﹣2)=5﹣2t∴S△QPH=QH•PE=(6﹣2t)(5﹣2t)=2t2﹣11t+15∵S△CPH=S△QPH∴﹣t2+5t﹣6=2t2﹣11t+15解得:t1=3(舍去),t2=iii)当2.5<t<3时,如图5,延长QH交AC于点E∴PE=AP﹣AE=(t﹣2)﹣(3﹣t)=2t﹣5∴S△QPH=QH•PE=(6﹣2t)(2t﹣5)=﹣2t2+11t﹣15∴﹣t2+5t﹣6=﹣2t2+11t﹣15解得:t1=t2=3(舍去)综上所述,t=1或时,以Q、P、H为顶点的三角形的面积与S相等.14.解:(1)把A(﹣3,1)、B(2,4)分别代入y=kx+b,得.解得.∵直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,∴点P(x,y)是直线y=2x+3与直线y=3x+2的交点.∴.解得.∴P(1,5)故答案是:;(2)∵点M(m,n)是直线y=kx+b上的任意一点,∴km+b=n①,∵点N(2m,6n﹣34)在y=kx+b的“对称直线”上,即N(2m,6n﹣34)在直线y=bx+k上∴2bm+k=6n﹣34②,将①代入②得,2bm+k=6km+6b﹣34,整理得:(2b﹣6k)m=6b﹣k﹣34,∵对于任意一点M(m,n)等式均成立,∴,解得,∴y=2x+6.∴B(﹣3,0).设点C,E的坐标分别为(x1,y1),(x2,y2)(x1≠x2),∵L(C,D)=L(D,E),且D点的坐标为(2,2),∴2x1+2y1=2x2+2y2,即x1+y1=x2+y2,由材料一可知:直线CE的斜率为k CE=﹣1,故设直线CE的解析式为:y=﹣x+d(c≠0)∵DF=6,DF∥y轴,∴F(2,﹣4).∴﹣2+d=﹣4.则d=﹣2.故直线CE的解析式是:y=﹣x﹣2.易得A(﹣2,0).由得到:,即G(﹣,).∴S△ABG=AB•|y G|=×1×=;同理,当直线C′E′的解析式为:y=﹣x+10时,B′(12,0),G′(,),此时S△AB′F=AB′•|y G|=×13×=;综上所述,直线CE、直线y=kx+b与x轴围成的三角形的面积是或.15.解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,∵S△BFG=BG•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),解得k=或k=4(舍去),∴直线l的表达式为y=x+4.16.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).17.解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),故答案为(4,0);(2)当点Q在原点O时,OA=6,∴AP=OA=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t),∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),∵A(6,0)∴点N是直线AG:y=﹣x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG=6,在Rt△AOG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T正方形PQMN的对角线的交点,∴TN=TP,∴OT+TP=OT+TN,∴点O,T,N在同一条直线上(点Q与点O重合时),且ON⊥AG时,OT+TN最小,即:OT+TN最小,∵S△OAG=OA×OG=AG×ON,∴ON==3.即:OT+PT的最小值为3.18.解:(1)设直线BC的解析式为y=kx+b,则,解得,∴直线BC的解析式为y=x+4.(2)如图,连接AD交MN于点O′.由题意:四边形AMDN是菱形,M(3﹣t,0),N(3﹣t,t),∴O′(3﹣t,t),D(3﹣t,t),∵点D在BC上,∴t=×(3﹣t)+4,解得t=.∴t=s时,点A恰好落在BC边上点D处,此时D(﹣,).(3)如图2中,当0<t≤5时,△ABC在直线MN右侧部分是△AMN,S=•t•t=t2.如图3中,当5<t≤6时,△ABC在直线MN右侧部分是四边形ABNM.S=×6×4﹣×(6﹣t)•[4﹣(t﹣5)]=﹣t2+t﹣12.19.解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)•t=﹣t2+t.当t>时,S=OQ•P y=(2t﹣1)•t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=•,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.20.解:(1)如图1中,∵BD⊥OD,∴∠BDO=90°,∵BD=2a,AB=a,∴OD==a,∵四边形ODCB是等腰梯形,∴BD=OD=a.故答案为a.(2)如图2中,作DM⊥OB于M,CN⊥OB于N.∵∠DOB=∠CBO,BC=a,∴sin∠CBO=sin∠DOB==a=,∴CN=a,BN==a,∴ON=OB﹣BN=a,∴C(a,a),∵直线y=2x﹣经过点C,∴a=a﹣,∴a=1.∴B(,0),C(,),D(,).(3)如图3﹣1中,当点F在线段BC上时,∵EF⊥BD,OD⊥BD,∴EF∥OD,∴∠FEB=∠DOB,∵∠DOB=∠CBO,∴FEB=∠FBE,∴FE=FB,∴△FEB是等腰三角形,如图2中,当直线EF经过点C时,E(,0),此时EB=,∴PB=EB•cos∠EBP=•=,共线图形可知当0<t≤时,△BFE是等腰三角形.如图3﹣2中,当点F在线段CD上,EF=BE时,1=t,∴t=.如图3﹣3中,当点F在线段CD上,BF=BE时,易证:PE=PF,∴t=,∴t=1,综上所述,t的值为0<t≤或或1时,△BEF是等腰三角形.当t=1时,△BEF的面积最大,最大值=××=.。
2020年中考数学压轴题专项训练:一次函数的综合(含答案)

2020年数学中考压轴题专项训练:一次函数的综合1如图,在平面内,点Q为线段AB上任意一点,对于该平面内任意的点P,若满足PQ小于等于AB,则称点P为线段AB的“限距点”(1)在平面直角坐标系Xoy中,若点A (- 1, 0), B( 1, 0).①在的点C(0, 2), D(- 2, - 2), E(0,-一 -:)中,是线段AB的“限距点”的是E②点P是直线y = x+'上一点,若点P是线段AB的“限距点”,请求出点P横坐标3 3X P的取值范围.存在线段AB的“限距点”,请直接写出t的取值范围Λ Q B∙∙∙ C不是线段AB的“限距点”;当D(-2, - 2)时,D到AB的最短距离2, T AB= 2 ,∙D不是线段AB的“限距点”;当E (0,--;)时,E到AB的最短距离「: , T AB= 2 ,∙E是线段AB的“限距点”;故答案为E;②如图:以(1 , 0)为圆心,2为半径做圆,以(-两圆与直线(2)如图,以A (t , 1)为圆心,2为半径做圆,以B (t, - 1两圆与直线(2)在平面直角坐标系XOy 中,若点A (t , 1), B (t, - 1).若直线y=解:(1)①当C (0, 2)时, C到AB的最短距离2, T AB= 2 ,1 , 0)为圆心,2为半径做圆,为圆心,2为半径做圆,上y=b"χ+±i的交点为P22.如图,已知过点 B (1, 0)的直线I i 与直线l 2: y = 2x +4相交于点 P ( - 1, a ), I i 与y 轴交于点 C, I 2与X 轴交于点 A(1) 求a 的值及直线I i 的解析式.(2) 求四边形PAoC 勺面积.(3) 在X 轴上方有一动直线平行于 X 轴,分别与I i ,丨2交于点M N 且点M 在点N 的右 侧,X轴上是否存在点 Q 使厶MN(为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.解:(1)τ y = 2x +4 过点 P (- 1,a ),.∙. a= 2,•••直线 I 1 过点 B (1,0)和点 P (- 1,2),设线段BP 所表示的函数表达式 y = kx +b 并解得: 函数的表达式y =- x +1;(2) 过点P 作PEIOA 于点E,作PF ⊥y 轴交y 轴于点F ,Il 5(3) 如图,M( 1 - a ,a ),点 N^~,小,HI a -4l-⅛-∙∙∙ MN= NQ 则3.在平面直角坐标系中,直线 I 仁y =- 2x +6与坐标轴交于 A, B 两点,直线12: y = kx +2(k > 0)与坐标轴交于点 C, D,直线∣1,丨2与相交于点 E(1) 当k = 2时,求两条直线与 X 轴围成的厶BDB 的面积;(2) 点P (a, b )在直线12: y Q kx +2 (k > 0)上,且点 P 在第二象限.当四边形 OBEC23的面积为=时.① 求k 的值;② 若m= a+b ,求m 的取值范围.%C\ .r 3\ X O B \ k X备丿 胭解:(1)τ直线l I : y =- 2x +6与坐标轴交于 A B 两点,.∙.当 Xy= O 时,得 X = 3,当 X = 0 时,y = 6;综上,点Q 的坐标为:(-匸,0)或(- 0)或( ,0) •③当 MQ NQ 寸,*∙∙∙ A (O, 6) B (3, 0);当k = 2 时,直线12: y= 2x+2 ( k≠ 0),∙ C (0, 2), D(- 1, 0)I' y=-2x÷6' K=I解F 得,,[y=2x+2 ,y=4∙ E (1, 4),•••△ BDE的面积=丄× 4× 4= 8.2(2)①连接OE设E ( n,- 2n+6),T S 四边形OBEe= S A EO+S^EOB∙—x 2× n+二× 3 ×(- 2n+6 )=二,2解得n=—,•E⅛,和14把点E 的人y= kx+2 中,丁 = p^k+2 ,解得k= 4.②T直线y= 4k+2交X轴于D,•D(-「O),τ P (a, b)在第二象限,在线段CD上,1 C∙- —V a v 0 ,•b= 4a+2 ,•m= a+b= 5a+2 ,1 C•- --v mv 2.(2)函数y =--x +b 的图象与X 轴交于点D,点E 从点D 出发沿DA 方向,以每秒2个单 位长度匀速运动到点 A (到A 停止运动).设点E 的运动时间为t 秒.①当△ ACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在 t 的值,使△ ACE 为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.解:(1)∙.∙点 C(- 2, m 在直线 y =- x +2上,.∙. m =-(- 2) +2= 2+2 = 4, •••点 C( - 2, 4), ∙.∙函数y =二χ+b 的图象过点 C (- 2, 4),--×(- 2) +b ,得 b =即m 的值是4, b 的值是一一;(2)①T 函数y =- x +2的图象与X 轴,y 轴分别交于点 A , B ,•点 A (2, 0),点 B (0 , 2),T 函数y = -χ+丄的图象与X 轴交于点D•点D 的坐标为(-14 , 0),∙∙∙ AD= 16,由题意可得,DE= 2t ,则AE= 16-2t ,y =- x +2的图象与X 轴,y 轴分别交于点 A , B,与函y=-3t+2,得≈--2f 1 14V=— XH - I g 3I l y=4则点C的坐标为(-2, 4),∙∙∙△ ACE的面积为12,∙QA盘)X 4 12•• : =12,解得,t = 5即当△ ACE的面积为12时,t的值是5;②当t = 4或t = 6时,△ ACE是直角三角形,理由:当∠ ACE= 90° 时,ACLCE •/点A (2, 0),点B( 0 , 2),点C(- 2 , 4),点D(- 14, 0), •OA= OB AC= 4 J ,∙∠BAO 45° , ∙∠CAE= 45° ,∙∠CEA= 45° ,•CA= CE= ,∙AE= 8 , ∙∙∙AE= 16- 2t ,•8 = 16- 2t ,解得,t =4;当∠ CEA 90° 时,T AC= 4 .「, ∠ CAE= 45•AE= 4 ,∙∙∙AE= 16- 2t , • 4 = 16- 2t ,解得,t =6;由上可得,当t = 4或t = 6时,△ ACE是直角三角形.5•如图1已知线段 AB 与点P ,若在线段 AB 上存在点 Q 满足P(≤ AB 则称点P 为线段(1)如图2,在平面直角坐标系 xθy (2)中,若点 A (- 1, 0), B( 1, 0)① 在 C(0, 2) 2, D(- 2, - 2), -√3) 中,是线段AB 的“限距点”的是C, E ; ② 点P 是直线y = x +1上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标XP 的取 值范围.围. 解:(1)①T 点 A (- 1, 0), B (1, 0),∙∙∙ AB= 2,T 点C 到线段AB 的最短距离是 2≤AB∙点C 是线段AB 的“限距点”,T 点D 到线段AB 的最短距离=j ∙f 「八2= ∏>AB∙点D 不是线段AB 的“限距点”(2)在平面直角坐标系XOy 中,点 A( t , 1), B(t , - 1),直线y =半沙2近与X 轴 交于点M 与y 轴交于点N 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范AB 的“限距•••点E到线段AB的最短距离是_ [≤ AB•••点E是线段AB的“限距点”,故答案为:C, E;②•••点A (- 1, 0), B (1, 0)•点P为线段AB的“限距点”的范围是平行于AB且到AB距离为2两条线段」和以点A, 点B为圆心,2为半径的两个半圆围成的封闭式图形,如图所示:如图3,直线y= x+1与该封闭式图形的交点为M N•点M坐标(1, 2)设点N (X, x+1)•( x+1) 2+ (x+1 - 0) 2= 4•X =- 1 - "< /•匚iy ¥AV F MOA V E MN•••点P 横坐标X P 的取值范围为;(2)•••直线y = ^^工卜趴卮与X 轴交于点 M 与y 轴交于点N•点 N (0, 2 品,点 M(— 6, 0)如图3,线段AB 的“限距点”的范围所形成的图形与线段MN 交于点M•••点M 是线段AB 的“限距点”,∙∙∙- 6-t = 2,∙ t = - 8,若线段AB 的“限距点”的范围所形成的图形与线段 MN 相切于点F ,延长BA '交MNF E,∙∙∙ t的取值范围为-8≤ t ≤ -:- 2.6.如图(1),在平面直角坐标系中,直线y =-2 x+4交坐标轴于A、B两点,过点C( - 4,(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C E重合),0N⊥Oh交AB于点N,连接MN①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△ OMr面积最小时,求点M的坐标和厶OM面积.4 、一解:(1)τ直线y ----- x+4交坐标轴于A B两点,d∙当y= 0 时,X= 3,当X = 0 时,y = 4,∙点A的坐标为(3, 0),点B的坐标为(0, 4),∙OA= 3;故答案为:(0, 4), 3;(2 )•••过点C (- 4, 0)作CD交AB于D,交y轴于点已且厶CO B^ BOA∙OC= 4 , OC= OB OE= OA•••点A (3 , 0),∙OA= 3 ,∙OE= 3 ,•点E的坐标为(0, 3),设过点C (- 4 , 0),点E ( 0 , 3)的直线解析式为y = kx+b ,.∙.直线CE 的解析式为y = x +3,4即直线CD 的解析式为y = x +3,4 12■■-,2?(3)①线段OM 与ON 数量关系是Oh =ON 保持不变,证明:•••△ CO B^ BoA∙∙∙ OE= OA ∠ OEI =∠ OAN ∙∙∙∠ Bo =90°, ONLOMl∙∠ MO = ∠ BOA= 90°,∙∠ MO +∠ EO =∠ EON ∠ NOA∙∠ MO = ∠ NOA在厶 MO^ NOA 中,r ZMOE=ZNOA〈OE=OA ,LZOEK=ZOAN •••△ IMO B △ NOA( SAS ,• OM= ON即线段OMl 与ON 数量关系是OM= ON 保持不变;②由①知OM= ON•当OM ,∙∙∙OC= 4 , OE= 3, ∠ COE= 90° , ∙∙∙CE= 5 ,•••当OML CE 时,OM 取得最小值,f-⅛+b=0 lb=3 ,得即点D 的坐标为 12 25 84 25); ∙∙∙ OML ON• △ OM 面积OH-ONOK 2 2 212 v 2 亍 当AOM 取得最小值时,设此时点M 的坐标为(a ,二a +3),4解得,a =-∙τa+3=故 A (4, 0);当 X = 0 时,y =— 3, 故 B (0,- 3);2 ^ 2 恥5 4×3 2 _ 2 解得,OMk125 7225^,⅛+3)Ξ 12_.S•••△OM 面积取得最小值是: •点M 的坐标为__ ), 由上可得,当△36 48 OMN 面积最小时,点 M 的坐标是(=ς?,石孑)和厶OMN 面积 25 ' 25积是 72 7.如图,一次函数「V 的图象分别与X 轴、y 轴交于点A B ,以线段AB 为边在第四象限内作等腰直角厶 ABC 且∠ BAC= 90°.(1)试写出点A B 的坐标:A ( 4 , 0 ) , B ( 0 , - 3 );(2)求点C 的坐标;解得:X = 4,故答案为:(4, 0), (0,- 3);(2)过点C作CDL X轴,垂足为点D,∙∙∙∠ BAC= 90°,∙∙∙∠OAB∠ DAC= 90 ° ,又∙∙∙∠DCA∠ DAC= 90°,∙∠ACD=∠ OAB在厶AOBm CDA中r ZBOA=ZATC•Z0A&=ZACDl AB=AC•••△ AOB^△ CDA( AAS,•AD= OB= 3, CD= OA= 4,•OD= 7,• C ( 7,- 4);(3)设直线BC的函数表达式为y = kx+b 把B (0,- 3), C (乙-4)代入上式:解之得:* 7 ,,b=~3•直线BC的函数表达式为y =今鼻-3・&如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程yι, y2 (千米)与行驶时间X (小时)之间的函数关系图象.圉I ≡2(1)填空:A, B两地相距600千米;货车的速度是40千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间X之间的函数表达式;(3)试求客车与货两车何时相距40千米?解:(1)由函数图象可得, A B两地相距:480+120 = 600 ( k∏),货车的速度是:120 ÷ 3 = 40 ( km(h)∙故答案为:600; 40 ;(2)y= 40 (X- 3) = 40x - 120 (X> 3);(3)分两种情况:①相遇前:80x+40x = 600 - 4014解之得X = -y…(8分)②相遇后:80x+40x = 600+40解之得X =千综上所述:当行驶时间为学小时或二小时,两车相遇40千米.9.如图1,在平面直角坐标系XOy中,点A (2, 0),点B( - 4, 3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S∖AO P S^ AOB=2: 3时,求点P的坐标;(3)如图2,在(2)的条;件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP求厶APC的面积,并直接写出点C的坐标.图1 解:(1)设直线AB 的函数表达式为•/点 A (2,0),点 B (- 4, 3),.卩沙bo V ⅛+b=3,1 解得:* ■ L b = I•••直线AB 的函数表达式为 y =-—x +1;(2)过B 作BEl X 轴于E ,过P 作PDL X 轴于D,• PD// BE• S ^AO P S ^ AO = 2 :AP 2 AB 3,•点 B (- 4, 3),• BE= 3,• PD// BE• △ APDo ^ ABEPD PD 2 BE3 3,• PD= 2,当 y = 2 时,X =- 2,• P (- 2, 2);A Xy = . kx +b ,(3)点A (2, 0)、点B (- 4, 3),点P (- 2, 2),则AP= 2 U AB= CA= 3 匚,过点P作HPL AC交AC的延长线于点H,△ APC的面积=二:ACX PH=--× 3. □× . 口 =二•;2 二2设点C (X, y),则PC= P H+H C= 15+( i. ,+3 :■) 2= 95 =( x+2) 2+ (y - 2) 2…①,CA= 45 =( X - 2) 2+y2…②,联立①②并解得:X y=∙..,故点1). 〜10.如图,平面直角坐标系中,直线AB y = kx+3 ( k≠ 0)交X轴于点A (4, 0),交y轴正半轴于点B,过点C( 0, 2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED 向右运动,设PE= n.(1)求直线AB的表达式;(2)当厶ABP为等腰三角形时,求n的值;(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt △ BPM试问随着点P的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.解:将点A 的坐标代入直线 AB y = kx +3并解得:k =-丁, 故AB 的表达式为:y =-工x +3;4而点A B 坐标分别为:(4, 0)、(0, 3),当AP= AB 时,同理可得: n = _ +「(不合题意值已舍去);当AB= BP 时,同理可得: n =-—+2「;⅞-)(3)在直线上,理由:如图,过点M 作MDL CD 于点H,∙∙∙∠ CPB=∠ MPH BP= PM ∠ MH =∠ PCB= 90°∙∙∙ MH △^^ PCB( AAS ,故点M 在直线y = x +1上.11.小聪和小慧去某风景区游览,两人在景点古刹处碰面,相约一起去游览景点飞瀑, 骑自行车先行出发,小慧乘电动车出发,途径草甸游玩后,再乘电动’车去飞瀑,人同时到达飞瀑.图中线段 OA 和折线B- C- D- A 表示小聪、小慧离古刹的路程(2)当 y = 2 时,X = ,故点E (■ ,2),则点 P (n +二,2),≡ A P =(壬+n - 4) 2+4 ; BP =( n2+1, AB = 25, 当 AP = BP 时,(2+ n - 4) +4=( n +")2+1,解得:n =-二6BC=1 = PH7故点M( n +—,n+∙10小聪 结果两y (米)O,∠ BPG ∠ MP = 90°,则 CP= MHb n与小聪的骑行时间X (分)的函数关系的图象,根据图中所给信息,解答下列问题:(1) 小聪的速度是多少米/分?从古刹到飞瀑的路程是多少米? (2) 当小慧第一次与小聪相遇时,小慧离草甸还有多少米? (3) 在电动车行驶速度不变的条件下,求小慧在草甸游玩的时间.U≡0.αrι解: (1) Y 小职-禺厂丄创(米/分).古刹到飞瀑的路程=180 × 50= 9000 (米).答:小聪的速度是180米/分,从古刹到飞瀑的路程是 9000米;10k+b=0.∙. Y = 450x - 4500当 X = 20, Y = 45004500 - 3000= 1500 米 答:小慧与小聪第一次相遇时,离草甸还有1500米.(3) 9000- 4500= 4500 (米) 4500 ÷ 450 = 10 (分钟). 50- 10- 10 - 10= 20 (分钟) 答:20分钟.12.对于平面直角坐标系 XOY 中,已知点 A (- 2, 0)和点B(3, 0),线段AB 和线段AB 外的一点P,给出如下定义:若 45°≤∠ APB≡ 90 °时,则称点 P 为线段AB 的可视点, 且当PA= PB 时,称点P 为线段AB 的正可视点. (1)①如图1 ,在点P 1(3, 6), P 2 (- 2, - 5) ,P 3 (2,2)(2)设 Y = kx +b , 解得⅛=450 Ib='450C则k-⅛-3000中,线段AB的可视点是P2,2-4Γ备用團解:(1)①如图1,以AB 为直径作圆 G 贝U 点P 在圆上,则∠ APB= 90°,若点P 在圆内, 则∠ APB>90°,5 — 4 —*-C/ Fr■ - **■■■ *-I70 G 1b_ Ib r ・.■-3-D—■以C (勺",女)为圆心,AC 为半径作圆,在点 P 优弧如B 上时,∠ APB= 45° ,点P 在优 弧」内,圆G 外时,45°v∠ AP 欢90°;,-—)为圆心,AD 为半径作圆,在点 P 优弧TE 上时,∠ APB= 45°,点P 在优弧」■内,圆G 外时,45°v∠ APB≤ 90°;②若点P 在y 轴正半轴上,写出一个满足条件的点 P 的坐标: P( 0,3)(答案不唯一)(2)在直线y = x +b 上存在线段 AB 的可视点,求 b 的取值范围;(3)在直线y =- x +m 上存在线段 AB 的正可视点,直接写出 m 的取值范围.Ai ■ i 占 id 斗亠3亠2 -1 O3-2-10-1-4Γ•••点P ( 3, 6), P2 (- 2,- 5), P (2, 2)∙∙∙ P I C=^4〉M= AC 则点P i在圆C外,则∠ ARB< 45°,■: ■■:P2D= ' = AC 则点P2在圆D上,则∠ APB= 45 ° ,2RG=層=BG 点P a在圆G上,则∠ APB= 90°,∙线段AB的可视点是P2, P a,故答案为:B, P a;②由图1可得,点P的坐标:P(0, 3)(答案不唯一,纵坐标y范围:∣l≤ y p≤ 6).(2)如图2,设直线y=x+b与圆C相切于点H交X轴于点N连接BH∙∙∙∠ HN=∠ HBN= 45° ,∙NH= BH ∠ NH= 90°,且NH是切线,∙BH是直径,∙BH= 5,∙BN= 10 ,∙ON= 7 ,∙点N ( - 7 , 0)∙0 =- 7+b , ∙b= 7 ,当直线y = x+b与圆D相切同理可求:b =- 88≤ b ≤ 7(3)如图3,作AB 的中垂线,交Θ C 于点Q 交Θ D 于点 W--⅛,, Xg.亠 ・■■T 直线y =- x +m 上存在线段 AB 的正可视点,.线段CC 和线段DWt 的点为线段 AB 的正可视点.别代入解析式可得:匕的函数关系如图所示:(2) 求甲、乙两车相遇后y 与X 之间的函数关系式,并写出相应的自变量 X 的取值范围.T 点 CL-,=-),点 D (-^-5√2 2.m = 3, m = .m 的取值范围:^√+3,m =-2,m =-—.「- X.二冷._ 或]13.已知 A 、B 两地之间有一条 270千米的公路, 甲、乙两车同时出发,甲车以每小时 60千米/时的速度沿此公路从 A 地匀速开往B 地, 乙车从B 地沿此公路匀速开往A 地, 两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间X (时) 之间(1)乙年的速度为75 千米/时,a = 3.6 ,b =4.5 ;⅛41),点Q),点÷ 2= 75千米/时,故答案为:75; 3.6 ; 4.5 ;(2) 60× 3.6 = 216 (千米),故A (2, O), B( 3.6 , 216) , C (4.5 , 270) 当2 V x≤ 3.6时,设y = k1x+b1,根据题意得:2k1+b 1=06k1+b1^21⅛解得∙∙∙ y = 135x - 270 (2 V x≤ 3.6 );当 3.6 V X≤ 4.5 时,设y= k2x+b2,贝U3.6k2+b Ξ=2164,解得∙当3.6 V X≤ 4.5 时,y = 60x,r135χ-270(2<x<3.6)y(60讥£代κj≤4∙5)14.已知:在平面直角坐标系中,直线x+4与X轴交于点A,与y轴交于点B,点C是X轴正半轴上一点,AB= AC 连接BC(1)如图1 ,求直线BC解析式;(2)如图2,点P Q分别是线段AB BC上的点,且AF=J BQ连接PQ若点Q的横坐标为t , △ BPC 的面积为S ,求S 关于t 的函数关系式,并写出自变量取值范围; (3) 如图3,在(2)的条件下,点 E 是线段OA 上一点,连接 BE 将厶ABE 沿BE 翻折, 使翻折后的点 A 落在y 轴上的点H 处,点F 在y 轴上点H 上方EH= FH 连接EF 并延长交BC 于点G 若B 'AR 连接PE 连接P G 交BE 于点「求BT 长.≡1鈕解:(1)由已知可得 A (- 3 , 0), B(0, 4),∙∙∙ OA= 3, OB= 4,∙∙∙ A B=常丁吐;CF 丛=•二 I = 5,∙∙∙ AB= AC∙ AC= 5,∙C ( 2, 0), 设BC 的直线解析式为 y = kx +b , 将点B 与点C 代入,得(O-Ξk+b U=b , r ⅛=-2∙ BC 的直线解析式为 y =- 2x +4;(2)过点Q 作MQ y 轴,与y 轴交于点 M 过点Q 作QEL AB 过点C 作CF ⊥ABS34图2τ Q 点横坐标是t ,∙°∙ MQ= t ,T Ma OC…典厶/5∙ BQ= ∏t ,∙.∙ AP = BQ∙ AP= F ,T AA 5,∙ PB- 5 -凤.∣t ,在等腰三角形 ABC 中, AC= AB= 5, BC= 2 一二,1 11V--ABX CF=T-ACX OB∙ CF = OB^ 4, T EQ/ CFES -√5t•— L ∙ EQ= 2t ,∙ S =丄 L-×( 5- Γt )=-.匸—t (0≤ t ≤ 2); (3)如图3,8CH≡3EH)23 占 八3 4)BG=54E 、0O E =丄OiAE =( 4 - AE ) 2+12•••将厶ABE 沿BE 翻折,使翻折后的点 A 落在y 轴上的点H 处,∙∙∙ AH= AB= 5,∙∙∙ OH= BH- ∙∙∙ EH =O+H,∙点 E (- -二,∙点 F (0,4 3∙∙∙ EH= FH= ⅛ ∙直线EF 解析式为y=—x+—, 直线BE 的解析式为: y = 3x +4,∙ X ∙- 2x +4= ―X• X =- 1,•点 T (- 1, 1)• B T =:厂 Iuj . T J = '115.如图,在平面直角坐标系中,点A (4, 0)、点B (0, 4),过原点的直线l 交直线AB 于点P * X\P 丿(1 )∠ BAQ 的度数为 45 °,△ AoB 的面积为 8(2) 当直线l 的解析式为y = 3X 时,求△ AOP 勺面积;1(3) 当时,求直线I 的解析式. Li AEOF J解:(1)τ点 A (4, 0)、点 B (0, 4),• OA= OB∙∙∙∠ AO = 90°,• △ AOB 是等腰直角三角形,∙∙∙ BG=主丄AP ∙∙∙ AP= 1, •••点 P (- 12 4 T ,百 •直线PG 的解析式为:•/ BAO= 45°,A AOB的面积=f-× 4 × 4= 8;故答案为:45, 8;(2)设直线AB 的解析式为:y = kx +b ,•••直线AB 的解析式为:y =- x +4, •••直线l 的解析式为y =3x ,解苗得Dl• P (1, 3),• △ AoP 勺面积=⅛× 4× 3= 6;(3)如图,过 P 作 PC ⊥OA 于 C, 贝y PC// OB S AAOP^ABOFAP- LPB = 3PAL •屈=1?∙∙∙ PC// OBPC AC PA OB OA AB'• PC= 1, AC= 1, ∙ OC= 3, • P (3,1), .∙.∙=直线I 的解析式为y =二χ∙把点A (4, 0)、点B(0, 4)代入得 '4fc+b=0 L b =4 解得: t b=4。
中考数学《二次函数与一次函数的综合应用》专项练习题(带答案)
中考数学《二次函数与一次函数的综合应用》专项练习题(带答案)一、单选题1.如图,在平面直角坐标系中,y =−34x 2+94x +3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,点P 是BC 上方抛物线上一点,连结AP 交BC 于点D ,连结AC ,CP ,记△ACD 的面积为S 1,△PCD 的面积为S 2,则S1S 2的最小值为( )A .43B .53C .54D .12.若b <0,则一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系内的图象可能是( )A .B . .C .D .3.在直角坐标系中,函数y= 3x 与y= -x 2+1的图像大致是( )A .B .C.D.4.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.45.如图,在平面直角坐标系中,过点A且与x轴平行的直线交抛物线y=13(x+1)2于B,C两点,若线段BC的长为6,则点A的坐标为()A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)6.函数y=k x与y=ax2+bx+c的图象如图所示,则y=kx−b的大致图象为()A.B.C.D.7.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①M的最大值是2;②使得M=1的x值是−12或√2.其中正确的说法是()2A.只有①B.只有②C.①②都正确D.①②都不正确8.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图象与x轴()A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点10.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.−1≤x≤9B.−1≤x<9C.−1<x≤9D.x≤−1或x≥9 11.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=14(x−4)2的图象与两坐标轴所围成的图形最接近的面积是()A.5B.225C.4D.17﹣4π12.如图,抛物线y=12x2+72x+3与直线y=−12x−12交于A,B两点,点C为y轴上点,当△ABC周长最短时;周长的值为()A.√73+5√3B.√73+3√5C.√43+3√5D.√43+5√3二、填空题13.如图所示,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n<ax2+bx+c的解集是14.如图,已知抛物线y1=﹣x2+1,直线y2=﹣x+1,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=2时,y1=﹣3,y2=﹣1,y1<y2,此时M=﹣3.下列判断中:或34;①当x<0或x>1时,y1<y2;②当x<0时,M=y1;③使得M= 14的x的值是﹣√32④对任意x的值,式子√(M−1)2=1﹣M总成立.其中正确的是(填上所有正确的结论)15.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B (8,2)(如图所示),则能使y1>y2成立的x的取值范围是.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则关于x的方程ax2−bx−c=0的解为.17.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是.18.如图,抛物线y=ax2经过矩形OABC的顶点B,交对角线AC于点D.则ADAC的值为.三、综合题19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=√(x1−x2)2+(y1−y2)2).20.如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1)探究与猜想:①取点M(0,1),直接写出直线l的解析式;取点M(0,2),直接写出直线l的解析式.②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为,请取M的纵坐标为n,验证你的猜想(2)如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式21.如图,抛物线y=x2+bx+c与x轴交于A(−1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求ΔADE 的面积.22.已知二次函数y=﹣x2+4x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(6,0),与y轴交于点B,点p是二次函数对称轴上的一个动点,当PB+PA的值最小时,求p的坐标(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.23.如图二次函数的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C.(1)试确定、的值;(2)若点M为此抛物线的顶点,求△MBC的面积.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.参考答案1.【答案】C 2.【答案】B 3.【答案】D 4.【答案】B 5.【答案】C 6.【答案】D 7.【答案】C 8.【答案】C 9.【答案】B 10.【答案】A 11.【答案】A 12.【答案】B 13.【答案】-1<x<4 14.【答案】①②③④ 15.【答案】x <﹣2或x >8. 16.【答案】x 1=−2 17.【答案】﹣3<m <﹣ 15818.【答案】√5−1219.【答案】(1)解:A (1,0)关于x=﹣1的对称点是(﹣3,0)则B 的坐标是(﹣3,0) 根据题意得: {−3m +n =0n =3解得 {m =1n =3则直线的解析式是y=x+3; 根据题意得: 解得: {9a −3b +c =0a +b +c =0c =3则抛物线的解析式是y=﹣x 2﹣2x+3(2)解:设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小. 把x =−1代入直线y =x +3得,y =−1+3=2 ∴M (−1,2)即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)解:如图,设P (−1,t ) 又∵B (−3,0),C (0,3)∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t−3)2=t 2−6t +10 ①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1= 3+√172,t 2=3−√172; ∴P 的坐标是(﹣1, 3+√172 )或(﹣1, 3−√172)或(﹣1,4)或(﹣1,﹣2).20.【答案】(1)PQ :y =6x -29;PQ :y =6x -26;6(2)解:∵S △ABP =3S △ABQ ∴y P =-3y Q ∴kx P +b =-3(kx Q +b) ∵k =6 ∴6x P +18x Q =-b ∴6(5+n)+18(5-n)=4b ,解得b =3n -30∵x P ·x Q =-(5+b)=-5-3n +30=(5+n)(5-n),解得n =3 ∴P(8,27) ∴直线PQ 的解析式为y =6x -2121.【答案】(1)解:∵抛物线 y =x 2+bx +c 与 x 轴交于 A(−1,0) 和 B(3,0) 两点∴{1−b +c =09+3b +c =0 ,解得: {b =−2c =−3故抛物线解析式为: y =x 2−2x −3 ; (2)解:根据题意得: {y =x 2−2x −3y =x +1 解得: {x 1=−1y 1=0∴A(−1,0)对于直线 y =x +1 ,当 x =0 时, y =1 ,∴F(0,1) 对于 y =x 2−2x −3 ,当 x =0 时, y =−3 ,∴E(0,−3) ∴EF =4过点 D 作 DM ⊥y 轴于点 M .∴S ΔADE =12EF ⋅(DM +AO)=10 .22.【答案】(1)解:∵二次函数的图象与x 轴有两个交点 ∴△=42+4m >0∴m >﹣4(2)解:∵二次函数的图象过点A (6,0)∴0=﹣9+6+m·∴m=12∴二次函数的解析式为:y=﹣x 2+4x+12令x=0,则y=12∴B (0,12)设直线AB 的解析式为:y=kx+b∴{6k +b =0b =12, 解得: {k =−2b =12,∴直线AB 的解析式为:y=﹣2x+12∵抛物线y=﹣x 2+4x+12的对称轴为:x=2∴把x=2代入y=﹣2x+12得y=8∴P (2,8).(3)解:根据函数图象可知:x <0或x >6.23.【答案】(1)解:把(-1,0)、(3,0)代入y=x 2+bx+c 中,得 {1−b +c =09+3b +c =0解得 {b =−2c =−3故b=-2,c=-3;(2)解: 过M 作MD 垂直于y 轴,垂足为D .求出抛物线的顶点 M(1,−4) ;△MBC 的面积=梯形MDOB-△OBC-△CMD= 12×(1+3)×4−12×3×3−12×1×1 =3.24.【答案】(1)解:由x=0得y=0+4=4,则点C 的坐标为(0,4); 由y=0得x+4=0,解得x=﹣4,则点A 的坐标为(﹣4,0); 把点C (0,4)代入y=x 2+kx+k ﹣1,得k ﹣1=4解得:k=5∴此抛物线的解析式为y=x 2+5x+4∴此抛物线的对称轴为x=﹣ 52×1 =﹣ 52. 令y=0得x 2+5x+4=0解得:x 1=﹣1,x 2=﹣4∴点B 的坐标为(﹣1,0)(2)解:∵A (﹣4,0),C (0,4)∴OA=OC=4∴△OCA=△OAC.∵△AOC=90°,OB=1,OC=OA=4∴AC= √OA2+OC2=4 √2,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴△ADC<△AOC,即△ADC<90°.又∵△ABC>△BOC,即△ABC>90°,∴△ABC>△ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD△△ABC∴CDAC=CAAB,即CD4√2= 4√23解得:CD= 32 3∴OD=CD﹣CO= 323﹣4=203∴点D的坐标为(0,﹣20 3).。
中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案
中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案一、单选题(共12题;共24分)1.已知直线y=kx+2过一、二、三象限,则直线y=kx+2与抛物线y=x2−2x+3的交点个数为()A.0个B.1个C.2个D.1个或2个2.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>43.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+n与C1、C2共有3个不同的交点,则n的取值范围是()A.−2<n<18B.−3<n<−74C.−3<n<−2D.−3<n<−1584.已知直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,且抛物线与x轴交于点(-1,0)、(2,0),抛物线与直线交点的横坐标为1和,那么不等式mx+n <ax2+bx+c <0的解集是()A.1<x<2B.x<或x>1C.<x<2D.-1<x<25.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,x+2,8−x}时(x≥0),则y的最大值是()A.4B.5C.6D.7 6.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y= x2−x+c(c为常数)在−2<x<4的图象上存在两个二倍点,则c的取值范围是()A.−2<c<14B.−4<c<94C.−4<c<14D.−10<c<947.二次函数y1=x2+bx+c与一次函数y2=kx−9的图象交于点A(2,5)和点B(3,m),要使y1<y2,则x的取值范围是()A.2<x<3B.x>2C.x<3D.x<2或x>38.将二次函数y=−x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时b的值为()A.−214或−3B.−134或−3C.214或−3D.134或−39.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或210.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动,同时点Q沿边AB,BC从点A开始向点C以2cm/s的速度移动,当点P移动到点A时P、Q同时停止移动。
中考数学重难点专题12 一次函数与几何综合问题(学生版)
中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题12一次函数与几何综合问题【典型例题】1.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,点A,B分别在x轴,y轴正半轴上,AO=2BO,点C(3,0)(A点在C点的左侧),连接AB,过点A作AB的垂线,过点C作x轴的垂线,两条垂线交于点D,已知△ABO△△DAC,直线BD交x轴于点E.(1)求直线AD的解析式;(2)直线AD有一点F,设点F的横坐标为t,若△ACF与△ADE相似,求t的值;(3)如图2,在直线AD上找一点G,直线BD上找一点P,直线CD上找一点Q,使得四边形AQPG是菱形,求出G点的坐标.【专题训练】一、选择题1.(2022·山东龙口·七年级期末)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象与x轴的交点坐标为(13,0)2.(2022·江苏溧阳·八年级期末)如图,直线122y x=-+与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是()A.2B.4C.2或4D.2或63.(2022·陕西·辋川乡初级中学八年级期末)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(-1,-6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a-4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.1个B.2个C.3个D.4个4.(2022·江苏启东·八年级期末)如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)二、填空题5.(2022·江苏滨湖·八年级期末)如图,直线y=﹣43x+8与坐标轴分别交于A、B两点,P是AB的中点,则OP的长为_____.6.(2021·山东济阳·八年级期中)如图,一次函数y =x +2的图像与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且△OPC =45°,PC =PO ,则点P 的坐标为______.7.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC ::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.8.(2022·山东龙口·七年级期末)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置,点A 1,A 2,A 3,和点C 1,C 2,C 3,…,分别在直线y =kx +b (k >0)和x 轴上,已知点B 1,B 2,B 3,B 4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn 的坐标为_____三、解答题9.(2022·江苏海州·八年级期末)已知直线l 1经过点A (3,2)和点B (0,5),直线l 2:y =2x ﹣4经过点A 且与y 轴相交于点C .(1)求直线l 1的函数表达式;(2)已知点M 在直线l 1上,过点M 作MN //y 轴,交直线l 2于点N .若MN =6,请求出点M 的横坐标.10.(2022·广西·桂林市雁山中学九年级期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=mx在第一象限的图象交于点C,CD垂直于x轴,垂足为D.如果OA=OB=OD=1,求:(1)点A、B、C的坐标;(2)这个反比例函数的表达式;(3)这个一次函数的表达式.11.(2022·江苏溧阳·八年级期末)如图,在平面直角坐标系中长方形AOBC的顶点A、B坐标分别为(0,8)、(10,0),点D是BC上一点,将△ACD沿直线AD翻折,使得点C落在OB上的点E处,点F是直线AD 与x轴的交点,连接CF.(1)点C坐标为____________;(2)求直线AD的函数表达式_______________________;(3)点P是直线AD上的一点,当△CFP是直角三角形时,请你直接写出点P的坐标.。
2021中考数学分类专题提分训练--一次函数综合题专项2(附详细答案)
中考数学分类专题提分训练一次函数压轴题专项1.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离S(km)与时间t(h)的关系,结合图象回答下列问题:(1)表示甲离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h;乙的速度是km/h.(2)甲出发后多少时间两人恰好相距15km?2.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N 的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.4.如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.5.如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.6.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.7.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.8.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;(4)在(3)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.9.如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(OA <OB)是方程组的解,点C是直线y=2x与直线AB的交点,点D在线段OC 上,OD=(1)求点C的坐标;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形(邻边相等的平行四边形)?若存在,请写出点Q的坐标;若不存在,请说明理由.10.一架方梯AB长2.5米,如图,斜靠在一面墙上,梯子底端离墙OB为0.7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的底端右滑了0.8米,那么梯子的顶端在竖直向下方向滑动了几米?(3)以O为原点建立直角坐标系,求A'B'所在直线的解析式.答案1.解:(1)∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l1,甲的速度是:90÷2=45km/h,乙的速度是:90÷(3.5﹣0.5)=90÷3=30km/h,故答案为:l1,45,30;(2)设甲对应的函数解析式为y=ax+b,,得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,得,即乙对应的函数解析式为y=30x﹣15,∴|(﹣45x+90)﹣(30x﹣15)|=15,解得,x1=1.2,x2=1.6,答:甲出发后1.2h或1.6h时两人恰好相距15km.2.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.3.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=y N=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).4.解:(1)设直线l2的解析表达式为y=kx+b(k≠0),把A(4,0)、B(3,)代入表达式y=kx+b,,解得:,∴直线l2的解析表达式为y=x﹣6.(2)当y=﹣3x+3=0时,x=1,∴D(1,0).联立y=﹣3x+3和y=x﹣6,解得:x=2,y=﹣3,∴S△ADC=×3×|﹣3|=.(3)∵△ADP与△ADC底边都是AD,△ADP与△ADC的面积相等,∴两三角形高相等.∵C(2,﹣3),∴点P的纵坐标为3.当y=x﹣6=3时,x=6,∴点P的坐标为(6,3).5.解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).6.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).7.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.8.解:(1)∵A(2,4)、B(﹣3,﹣8),∴AB==13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,∴AB=|4﹣(﹣1)|=5;(3)△DEF为等腰三角形,理由为:∵D(1,6)、E(﹣2,2)、F(4,2),∴DE==5,DF==5,EF==6,即DE=DF,则△DEF为等腰三角形;(4)做出F关于x轴的对称点F′,连接DF′,与x轴交于点P,此时DP+PF最短,设直线DF′解析式为y=kx+b,将D(1,6),F′(4,﹣2)代入得:,解得:,∴直线DF′解析式为y=﹣x+,令y=0,得:x=,即P(,0),∵PF=PF′,∴PD+PF=DP+PF′=DF′==,则PD+PF的长度最短时点P的坐标为(,0),此时PD+PF的最短长度为.9.解:(1),解得,,∵OA<OB,∴OA=6,OB=12,设直线AB的解析式为:y=kx+b,则,解得,,∴直线AB的解析式为:y=﹣2x+12,,解得,,∴点C的坐标为(3,6);(2)设点D的坐标为(a,2a),∵OD=2,∴a2+(2a)2=(2)2,解得,a=±2,∵由题意得,a>0,∴a=2.∴D(2,4),设直线AD的解析式为y=mx+n,把A(6,0),D(2,4)代入,得,解得,,∴直线AD的解析式为:y=﹣x+6;(3)存在,理由如下:∵点D的坐标为(2,4),点A的坐标为(6,0),∴∠OAD=45°,当四边形OAPQ为菱形时,OQ=OA=6,∴点Q的坐标为(﹣3,3),当四边形OAP′Q′为菱形时,OQ′=OA=6,∴点Q′的坐标为(3,﹣3),直线AD与y轴的交点P′′的坐标为(0,6),∴OP′′=OA=6,当四边形OAQ′′P′′为菱形时,点Q′′的坐标为(6,6),当四边形OPAQ是以OA为对角线的菱形时,点Q的坐标为(3,﹣3),综上所述,以O、A、P、Q为顶点的四边形是菱形时,点Q的坐标为(﹣3,3)或(3,﹣3)或(6,6)或(3,﹣3).10.解:(1)由题意可得,AO==2.4(米),即这个梯子的顶端距地面有2.4米;当梯子的底端右滑了0.8米,梯子顶端距地面的距离为:=2(米),2.4﹣2=0.4(米),即梯子的顶端在竖直向下方向滑动了0.4米;(3)由题意可得,点A′(0,2),点B′(1.5,0),设过A′、B′的直线的解析式为y=kx+b,,解得,,即A′B′所在直线的解析式是y=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 一次函数中考题综合练习 1、在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B.港的距离....分别为1y、2y(km),1y、2y与x的函
数关系如图所示. (1)填空:A、C两港口间的距离为 km,a ; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
2.(2016·黑龙江大庆)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素). (1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量. (2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.
3. (2016·湖北咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件. 为了促俏,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件. 已知该款童装每件成本价40元. 设该款童装每件售价x元,每星期的销售量为y件. (1)求y与x之间的函数关系式; (2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少? (3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
O y/km 90
30 a 0.5 3
P
甲 乙
x/h 2
4.(2016·湖北十堰)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据: 销售单价x(元/kg) 120 130 … 180 每天销量y(kg) 100 95 … 70 设y与x的关系是我们所学过的某一种函数关系. (1)直接写出y与x的函数关系式,并指出自变量x的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?
5. (2016·新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽
车行驶时间x(h)之间的函数图象如图所示. (1)从小刚家到该景区乘车一共用了多少时间? (2)求线段AB对应的函数解析式; (3)小刚一家出发2.5小时时离目的地多远?
6. (2016江苏淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出
了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系. (1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元; (2)求y1、y2与x的函数表达式; (3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围. 3
7. (2016吉林长春)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一
速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示 (1)求甲车从A地到达B地的行驶时间; (2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围; (3)求乙车到达A地时甲车距A地的路程.
8.(2016·山西))我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案): 方案A:每千克5.8元,由基地免费送货. 方案B:每千克5元,客户需支付运费2000元. (1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式; (2)求购买量x在什么范围时,选用方案A比方案B付款少; (3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
9. (2016年浙江省丽水市)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场
西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题: (1)求图中a的值; (2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟. ①求AB所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟? 4
10.(2016.山东省临沂市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克. (1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式; (2)小明选择哪家快递公司更省钱?
11.(2016.山东省泰安市)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元. (1)求两种球拍每副各多少元? (2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
12.(2016·上海)某物流公司引进A、B两种机器人用来搬运某种货物,这
两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题: (1)求yB关于x的函数解析式; (2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克? 5
专题训练:一次函数与几何图形综合 1、直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB (1) 求AC的解析式; (2) 在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你的结论。 (3) 在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①(MQ+AC)/PM的值不变;②(MQ-AC)/PM的值不变,期中只有一个正确结论,请选择并加以证明。
2.(本题满分12分)如图①所示,直线L:5ymxm与x轴负半轴、y轴正半轴分别交于A、B两点。 (1)当OA=OB时,试确定直线L的解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。
x y o B A C
P
Q
x y o B A C
P
Q M
第2题图① 第2题图② 6
(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③。 问:当点B在 y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。
3.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足. (1)求直线AB的解析式; (2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;
(3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.
第2题图③ 7
4、如图,直线1l与x轴、y轴分别交于A、B两点,直线2l与直线1l关于x轴对称,已知直线1l的解析式为3yx, (1)求直线2l的解析式;(3分)
(2)过A点在△ABC的外部作一条直线3l,过点B作BE⊥3l于E,过点C 作CF⊥3l于F分别,请画出图形并求证:BE+CF=EF
(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分)
5.如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。
(1)求直线BC的解析式: (2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由?
CBAl2
l1
0x
y
CBA0x
y
QMPC
B
A0x
y