(完整版)人教版七年级数学下册实数知识点

(完整版)人教版七年级数学下册实数知识点
(完整版)人教版七年级数学下册实数知识点

(完整)新人教版七年级下册第六章实数全章教案

6.1.1平方根(第一课时)】 知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示; 过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。 情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。 教学重点:算术平方根的概念和求法。 教学难点:算术平方根的求法。 一、情境引入: 问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少? 二、探索归纳: 1.探索: 学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。 接下来教师可以再深入地引导此问题: 如果正方形的面积分别是1、9、16、36、25 4,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、5 2,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。 2.归纳: ⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。 三、应用: 例1、 求下列各数的算术平方根: ⑴100 ⑵6449 ⑶9 71 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。由此例题教师可以引导学生思考如下问题: 你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?

新人教版七年级数学下册第六章实数测试题及答案

第六章实数(2) 一、选择题(每小题3分,共30分) 1.下列各式中无意义的是( ) A. 6 1- B. 21-)( C.12+a D.222-+-x x 2.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③ 94的平方根是3 2 ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( ) A.1个 B.2个 C.3个 D.4个 2.下列说法中正确的是( ) A.立方根是它本身的数只有1和0 B.算数平方根是它本身的数只有1和0 C.平方根是它本身的数只有1和0 D.绝对值是它本身的数只有1和0 4. 641的立方根是( ) A.21± B.41± C.41 D.2 1 5.现有四个无理数5,6,7,8,其中在实数2+1 与 3+1 之间的有( ) A.1个 B.2个 C.3个 D.4个 6.实数7- ,-2,-3的大小关系是( ) A. 237--- B. 273--- C. 372--- D.723--- 7.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( ) A.24.72 B.53.25 C.11.47 D.114.7 8.若33)2(,2,3--=--=-=c b a ,则 c b a ,,的大小关系是( ) A.c b a B.b a c C.c a b D.a b c 9.已知x 是169的平方根,且232x y x =+,则y 的值是( ) A.11 B .±11 C. ±15 D.65或 3143 10.大于52-且小于23的整数有( ) A.9个 B.8个 C .7个 D.5个 二、填空题(每小题3分,共30分) 11. 3-绝对值是 ,3- 的相反数是 . 12. 81的平方根是 ,364 的平方根是 ,-343的立方根是 ,

最新人教版七年级数学下册实数知识点

一、本章共3小节共8个课时(3.10~3.21第5、6周) 二、本章概念 1.算术平方根 2.被开方数 3.平方根(二次方根) 4.开平方 5.立方根(三次方根) 6.开立方 7.根指数 8.无理数 9.实数 10.实数与数轴上的点一一对应. 三、分类的数学思想 1. 2. 四、估算 下列各数分别界于哪两个整数之间 1

【知识要点】 1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”. 2. 如果x2=a,则x叫做a的平方根,记作“±a” (a称为被开方数). 3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根. 4. 平方根和算术平方根的区别与联系: 区别:正数的平方根有两个,而它的算术平方根只有一个. 联系: (1)被开方数必须都为非负数; (2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根. (3)0的算术平方根与平方根同为0. 5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数). 6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根. 7. 求一个数的平方根(立方根)的运算叫开平方(开立方). 8. 立方根与平方根的区别: 一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0. 9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如 =. 25= 50 ,5 2500 10.平方表:(自行完成) 题型规律总结: 1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1. 2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同. 3≥0a≥0. 4、公式:⑴)2=a(a≥0)=(a取任何数).

人教版七年级下册实数测试题及答案

实数 (时间:45分钟满分:100分) 一、选择题(每小题3分,共24分) 1.81的算术平方根是( ) A.±9 B.1 9 C.9 D.-9 2.下列各数中,最小的是( ) A.0 B.1 C.-1 D.-2 3.下列说法不正确的是( ) A.8的立方根是2 B.-8的立方根是-2 C.0的立方根是0 D.125的立方根是±5 4.在实数:3.141 59,364,1.010 010 001,4.21,π,22 7 中,无理数有( ) A.1个 B.2个 C.3个 D.4个 5.有下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤0没有算术平方根.其中,正确的有( ) A.0个 B.1个 C.2个 D.3个 6.某地新建一个以环保为主题的公园,开辟了一块长方形的荒地,已知这块荒地的长是宽的3倍,它的面积为120 000 m2,那么公园的宽为( ) A.200 m B.400 m C.600 m D.200 m或600 m 7.如果m=7-1,那么m的取值范围是( ) A.0

新人教版初中七年级数学下册《实数》教案

实数 第一课时 教学目标: 了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。 教学重点:实数的意义和实数的分类;实数的运算法则及运算律。 教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算。 教学过程 一、导入新课: 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , 3 5- ,478 ,911 ,119 ,59 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3 3.0= ,30.65-=- , 47 5.8758= ,90.8111= ,11 1.29= ,50.59= 二、新课: 1、 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数, 3.14159265π=也是无理数;有理数和无理数统称为实数 ??????????→?整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数

像有理数一样,无理数也有正负之分。 ,π 是正无理数, ,π-是负无理数。由于非0有理数和无理数都有正负之分, 实数也可以这样分类: ???????????????正有理数正实数正无理数实数负有理数负实数负无理数 2、探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少? 每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 数a 的相反数是a -,这里a 表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0 3、例1 (1)求下列各数的相反数和绝对值: 2.5,-7,5π-,0,32,π-3 (2) 一个数的绝对值是3,求这个数。

数学人教版七年级下册实数 【教学设计】

实数(第1课时) 教学目标: 知识与技能:1、理解无理数和实数的概念及实数的分类。 2、知道实数与数轴上的点具有一一对应关系。 过程与方法: 1、经历对实数进行分类的过程,培养学生的分类意识。 2、经历从有理数逐步扩充到实数的过程,学生了解人类对数的认识是不断发展的。 3、感受实数可以用数轴上的点来表示,增强学生数形结合的思想。 情感态度价值观:1、通过活动探究,体会数系扩充对人类发展的作用; 2、善于观察、勇于探究,并能有意识地运用已有知识解决新问题. 重 点:1、学生了解无理数和实数的概念。 2、实数的分类。 难 点:对无理数的认识和理解 活动1【导入】激情引趣 1、你了解 2吗?有怎样的认识 ? 2、2闯“祸”了 “不好了,不好了,保安和2 吵起来了。”数字π急忙去探明真相,原来是刚来到“数字王国”的 2,看到一群数字如:3,847,53-,911,119,95 …自由进入“数字王国”,好奇的2也想进去,却被保安拦住,于是2 就和保安理论,保安说 2 和它们不一样,2 不服气,保安又指了指大门上的标志“××××王国”,于是 2 只好作罢。 【设计意图】一个精彩的故事导入,就能够大大调动学生的积极性,增强学生的求知欲以及对数学学习的兴趣。通过有趣的数学故事,引起学生对数学学习的兴趣,开发他们的智力,提高学生探究问题的积极性,从而提高他们逻辑思考能力。 活动2【探究】探究新知 1、算一算:把下列有理数转换成小数的形式,你有什么发现? 3,478,91135-,119, 9 5 整数和分数统称为有理数 有限小数和无限循环小数叫有理数 2、议一议2是整数吗?是分数吗?是有理数吗?那又是什么数呢? 观察:2=1.41421356237309504880168… 像这种无限不循环的小数叫做无理数 3、 无理数的诞生(微视频) 4、说一说

七年级下册实数经典例题与习题

七年级下册经典实数提高经典例题 类型一.有关概念的识别 1.下面几个数: 0. 23 , 1.010010001?,, 3π,, ,其中,无理数的 个 数有() A 、1 B 、2 C、 3 D、 4 解析:本题主要考察对无理数概念的理解和应用,其中,1.01001000 1 ?, 3π,是无理数 故选 C 举一反三: 【变式1】下列说法中正确的是 () A 、的平方根是± 3 B、 1 的立方根是± 1 C、=±1D、是 5 的平方根的相反 数 【答案】本题主要考察平方根、算术平方根、立方根的概念, ∵=9, 9 的平方根是± 3,∴ A 正确. ∵ 1 的立方根是1,=1,是 5 的平方根,∴B、 C、D 都不正确.【变式 2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角 线长为半径画弧,交数轴正半轴于点 A ,则点 A 表示的数是() A 、1 B 、1.4 C、D、 【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知 |AO|= ,∴ A 表示数为,故选 C. 【变式 3】 【答案】∵π= 3.1415 ?,∴ 9< 3π< 10 因此 3π -9> 0, 3π -10< 0 ∴ 类型二.计算类型题 2.设,则下列结论正确的是()

A. B.

C. D. 解析:(估算)因为,所以选B 举一反三: 【变式 1】1)1.25 的算术平方根是__________ ;平方根是 __________.2 ) -27 立方根是 __________. 3 ) ___________,___________,___________. 【答案】 1);.2) -3. 3),, 【变式 2】求下列各式中的 (1)(2)(3) 【答案】( 1)( 2) x=4 或 x=-2 ( 3) x=-4 类型三.数形结合 3. 点 A 在数轴上表示的数为,点 B 在数轴上表示的数为,则 A,B 两点的距离为 ______ 解析:在数轴上找到A、 B 两点, 举一反三: 【变式1】如图,数轴上表示1,的对应点分别为A , B,点 B 关于点 A 的对称点 为 C,则点 C 表示的数是 (). A .-1 B.1-C.2-D.-2 【答案】选C [变式 2] 已知实数、、在数轴上的位置如图所示: 化简 【答案】:

七年级下册实数知识点总结及常见题

实数 1.算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 2. 如果a x =2 ,则x 叫做a 的平方根,记作“±a ” (a 称为被开方数)。 3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 4. 平方根和算术平方根的区别与联系: 区别:正数的平方根有两个,而它的算术平方根只有一个且为正。 联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平方根与平方根同为0。 5. 如果x 3=a ,则x 叫做a 的立方根,记作“3a ” (a 称为被开方数)。 6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。 7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。 8. 立方根与平方根的区别: 一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0. 9. 实数:有理数和无理数统称为实数 有理数:有限小数或无限循环小数(分数又可以转化成无限循环小数) 无理数:无限不循环小数(常见无理数有2,3,π等) 10. 数轴上的点和实数一一对应。 题型规律总结: 1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。 2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。 3、a 本身为非负数,有非负性,即a ≥0;a 有意义的条件是a ≥0。 4、公式:⑴(a )2=a (a ≥0);⑵3a -=3a -(a 取任何数)。 5、区分(a )2=a (a ≥0),与 2a =a 6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。 【典型例题】 1.下列语句中,正确的是( ) A .一个实数的平方根有两个,它们互为相反数 B .负数没有立方根 C .一个实数的立方根不是正数就是负数 D .立方根是这个数本身的数共有三个 2. 下列说法正确的是( ) A .-2是2 )2(-的算术平方根 B .3是-9的算术平方根 C .16的平方根是±4 D .27的立方根是±3

数学人教版七年级下册实数概念

(一)教学目标 1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。 2让学生体验用有理数估计一个无理数的大致范围的过程,掌握“逐次逼近法”这种对数进行分析、猜测、探索的方法 3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点 (二)教材分析 “实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。由、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。 重点:无理数、实数的意义,在数轴上表示实数。 难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。 (三)学生分析 学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。但对七年级学生来讲,思维仍较直观,无理数显得比较抽象,难以理解。对的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。 (四)设计理念 让学生主动参与合作交流,探索、发现,注重知识形成的过程 (五)教学方法 启发式、探索式教学 (六)教学过程 复习有理数相关概念学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类. 活动1 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?动手试一试,说说你的发现并与同学交流 小结无限不循环的小数----------叫做无理数 活动2 举例无理数 活动3 练习 给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征. 活动4 实数分类(类似于有理数分类) 小组合作完成 活动5 根据有理数的相关知识试着回答下列问题 活动6 讲解例题 活动7 小结 在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。 活动8 练习 总结及作业

初中数学七年级下册实数

第1课时 实 数 【教学目标】 1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力; 2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义; 3、了解实数范围内相反数和绝对值的意。 【学难点与重点】 1、难点:理解实数的概念。 2、重点:正确理解实数的概念。 【教学过程】 一、 创设情境 学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类. 试一试 1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3,5 3 ,847,119,911,95 动手试一试,说说你的发现并与同学交流. (结论:上面的有理数都可以写成有限小数或无限循环小数的形式) 可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式. 2、追问:任何一个有限小数或无限循环小数都能化成分数吗? (课件展示) 阅读下列材料: 设x=0.3 =0.333…① 则10x=3.333…② 则②-①得9x=3,即x=3 1 即0.3 =0.333…=3 1 根据上面提供的方法,你能把0.7 ,0.41 化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?

在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。 二、引入新知 1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫“无理数”.有理数和无理数统称为实数. 例1(1)你能尝试着找出三个无理数来吗? (2)下列各数中,哪些是有理数?哪些是无理数? 解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?” 2、实数的分类 (1)画一画 学生自己回忆并画出有理数的分类图. (2)挑战自己 请学生尝试画出实数的分类图. 例2把下列各数填人相应的集合内: 整数集合{…} 负分数集合{…} 正数集合{…} 负数集合{…} 有理数集合{…} 无理数集合{…} 三、探一探

初一数学实数计算题附答案

初一数学实数计算题附 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

实数计算题练习 1 = 2 .= = = = = = = = 10. = = = 13. = 14. ( )2013 1 1 2 +- = 15. = = 17. ( ( -= = 2

= = 2 = = 24 )4= 25. = - = = = = 2 1 2 ?? -= ? ?? 31. ( )() 20130 312014 -+-? = 1 12014 2 ?? -= ? ?? 33. 31 22 = 1 16 += = 36. 21 += 3

= += 2 4 3 ÷?= 13 += + = 3 = 43. ()3 211250 x--= 44. ()2 4190 x--= 45. 41 x-= 46. ()361 121 64 x +-= 47. ()3 20.1 x+= 2 = 49. 3 3 26 4 x-= 50. () 2 2110 x+= 51. 2322 x= 52. ()3 0.70.027 x-= 53. 3 2540 x-= 54. 3 98 1 27 x+=- 55. ()29 21 8 x-= 实数计算题答案: 1. 1 4 7 2.3- 3. 9 4. 4 5 5. 0.2 6. 0.8 7. 2 8. 2 3 - 9. 1 10. 3 2 - 11. 2 12. 11 24 - 13. 2 14. 4

5 -21. 133- 22. 60.15- 24. -1 25. 4 26. 325 27. 323 28. 2.2 29. 125 34. -3 35. 144 36. 1- 39. 5 40. 241. 1 26- 42. 5x =± 43. 3x = 44. 122x =,12x =- 45. 3x =+ 5x =-46. 1 8x = 47. 1950x = 48. 13x = 49. 32x = 50. 2x =± 51. 18x =± 52. 1 4x = 53. 3x = 54. 5 3x =- 55. 314x =,1 4x =

最新人教版七年级下册数学《实数》知识归纳

实数 一、本章知识结构 二、基础知识 1.算术平方根。 (1)定义:如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根. 记为a ”,a 叫做被开方数。 (2)规定:0的算术平方根是0 (3)性质:算术平方根a 具有双重非负性: ①被开方数a 是非负数,即a ≥0. ②算术平方根a 本身是非负数,即a ≥0。 也就是说, 任何正数的算术平方根是一个正数, 0的算术平方根是( 0 ), 负数没有算术平方根。 2.平方根 (1)定义:如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根或二次方根 (2)非负数a 的平方根的表示方法: a ± (3)性质:一个正数有两个平方根,这两个平方根互为相反数。

0 只有一个平方根,它是0 。 负数没有平方根。 说明:平方根有三种表示形式:±a ,a ,-a ,它们的意义分别是:非负数a 的平方根,非负数a 的算术平方根,非负数a 的负平方根。要特别注意: a ≠±a 。 3.平方根与算术平方根的区别与联系: 区别:①定义不同算术平方根要求是正数 ②个数不同平方根有2个,算术平方根1个 ③表示方法不同:算术平方根为a ,平方根为±a 联系:①具有包含关系:算术平方根平方根? ②存在条件相同:0≥a ③0的平方根和算术平方根都是0。 4.a 2的算术平方根的性质 a (a ≥0) 2a =│a │= -a (a<0) 从算术平方根的定义可得:2)(a =a (a ≥0) 5.立方根 (1) 定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根 (2) 数a 的立方根的表示方法:3a (3) 互为相反数的两个数的立方根之间的关系:互为相反数 (4) 两个重要的公式 为任何数) 为任何数)a a a a a (()3(3333== 6.开方运算: (1)定义: ①开平方运算:求一个数a 的平方根的运算叫做开平方。 ②开立方运算:求一个数立方根的运算叫做开立方 (2)平方与开平方是互逆关系,故在运算结果中可以相互检验。 7.无理数的定义 无限不循环小数叫做无理数 8.有理数与无理数的区别

数学七年级下册实数

教案:实数 目标确定的依据: 1、课程标准相关要求: 了解实数和无理数的概念:知道数轴上的点与实数一一对应。 2、教材分析: 实数是继学生学习了自然数、有理数、无理数之后的内容,通过本节 的学习,使学生逐步经历数系的扩展过程。从而形成新的知识结构, 为后继的学习打下基础。 3、学情分析: 学生已经在七年级上学期学习了《数怎么不够用了》,经历了自然数向有理数的扩展过程,本节课继续使学生经历此过程,从而得出无理数的概念,以及实数的概念,本节课的难点就是实数的分类,及实数 与数轴上的点一一对应,学生往往在分类时遗漏一些东西,或添加一些东西,要使学生互相交流讨论,教师引导予以解决。同时学生对实 数与数轴上的点一一对应弄不明白,要引导学生通过数形结合予以解决。 目标: 1.了解实数的意义,能对实数按要求进行分类。 2.理解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。 评价任务: 1、通过计算器,计算出常见的有理数化为小数的形式,归纳出有理 数的特征。

2、通过分析2、3等,得出这些是无限不循环的小数,从而归纳出无理数的定义,进一步归纳出实数的定义。 3、能够通过互相交流,对实数进行分类,并展示结果。 4、能够从圆在数轴上的滚动,找出所表示的数。能够根据正方形的特点,找出数轴上表示的无理数。 5、用自己的语言归纳总结出实数与数轴上的点一一对应。 6、能够利用估算,并利用数轴比较两个无理数的大小。 学习环节评价要点教学流程 探索新知1、通过计算器, 计算出常见的 有理数化为小 数的形式,归纳 出有理数的特 征。 2、通过分析 2、3等, 得出这些是无 限不循环的小 数,从而归纳出 无理数的定义, 进一步归纳出 实数的定义。1、回顾:有理数及分类。 2、举出所常见的有理数,通过计算器化为小数,观察特点。总结出无限循环小数和有限小数是有理数。 3、引出概念:教师引导学生再举出所学的数,2、3使学生分析出特点,把它们归类。从而得到无理数的概念。 4、得出实数的概:念 再探新知1、能够通过互 相交流,对实数 进行分类,并展 示结果。1、思考有理数的分类,你能对实数分类吗?同桌交流,并展示结果。教师总结出实数的分类。 按正负分类: 实数

七年级数学下实数计算题

1)25—327+2- 2)32- + 2- 3)33008.0127 26 --- 3)22+12- 327 4)(15-)(53+) 5)3231)3(27---+- 4)25—327+2- 5)32- + 2- 6)33008.0127 26 --- 6)22+12- 327 7)(15-)(53+) 8)3231)3(27---+- ------

9)3353+- 10)4 1083-+ 11)2332-+- 12)316273--+- 13)32)3223(-+ 14)3 1 ×(1—81)+31- 15)3353+- 16)4 1083-+ 17)2332-+- 18)316273--+- 19)32)3223(-+ 20)3 1 ×(1—81)+31-

21)123221-+-+- 22)52233221-+-+-+- 23)1664)13(233+-+--- 24)(-2)3 ×2)4(-+33)4(-×(-2 1)2—3 27 25)(- 2 1)×(-2)2 —381-+2)21(- 26)123221-+-+- 27)52233221-+-+-+- 28)1664)13(233+-+--- 29)(-2)3 ×2)4(-+33)4(-×(-2 1)2—3 27 30)(- 2 1)×(-2)2 —381-+2)21(-

31)2)4(-+3 3 )4(-×(-2 1)2—3 27- 32)2008 2)1()3(323---+-- 33)20073)1(64359-+-+-+ 34) 127 125.6)125.0(813333 --+-- 35)2)4(-+3 3 )4(-×(-2 1)2—327- 36)2008 2)1()3(323---+-- 37)20073)1(64359-+-+-+ 38) 127 1 25.6)125.0(813333 --+--

新人教版七年级下册实数课时练习题

6.1平方根同步练习(1) 知识点: 1.算术平方根:一般地,如果一个正数的平方等于a,那么这个正数叫做a的算术平方根。A叫做被开方数。 1.平方根:如果一个数的平方等于a,那么这个数叫做a的平方根 2.平方根的性质:正数有两个平方根,互为相反数 0的平方根是0 负数没有平方根 同步练习: 一、基础训练 1.(05年市中考)9的算术平方根是() A.-3 B.3 C.±3 D.81 2.下列计算不正确的是() A=±2 B= C 3.下列说法中不正确的是() A.9的算术平方根是3 B 2 C.27的立方根是±3 D.立方根等于-1的实数是-1 4的平方根是() A.±8 B.±4 C.±2 D 5.-1 8 的平方的立方根是() A.4 B.1 8 C.- 1 4 D. 1 4 6_______;9的立方根是_______. 7______________(保留4个有效数字) 8.求下列各数的平方根. (1)100;(2)0;(3)9 25 ;(4)1;(5)1 15 49 ;(6)0.09. 9.计算:

(1)234 二、能力训练 10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是() A.x+1 B.x2+1 C+1 D 11.若2m-4与3m-1是同一个数的平方根,则m的值是() A.-3 B.1 C.-3或1 D.-1 12.已知x,y+(y-3)2=0,则xy的值是() A.4 B.-4 C.9 4 D.- 9 4 13.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,?小铁 球的半径是多少厘米?(球的体积公式为V=4 3 πR3) 三、综合训练 15.利用平方根、立方根来解下列方程. (1)(2x-1)2-169=0;(2)4(3x+1)2-1=0; (3)27 4 x3-2=0;(4) 1 2 (x+3)3=4.

七年级下册数学实数知识点总结

第一章 实数 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。 一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

人教版七年级下册数学教案:6.3实数

6.3实数 (第1课时) 教学目标: 了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。 教学重点:实数的意义和实数的分类;实数的运算法则及运算律。 教学难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算。 教学过程 一、导入新课: 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , 3 5- ,478 ,911 ,119 ,59 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3 3.0= ,30.65-=- , 47 5.8758= ,90.8111= ,11 1.29= ,50.59= 二、新课: 1、 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数, 3.14159265π=也是无理数;有理数和无理数统称为实数 ??????????→?整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数

像有理数一样,无理数也有正负之分。 π 是正无理数, π-是负无理数。 由于非0有理数和无理数都有正负之分,实数也可以这样分类: ???????????????正有理数正实数正无理数实数负有理数负实数负无理数 2、探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少? 每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 数a 的相反数是a -,这里a 表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0 3、例1 (1)求下列各数的相反数和绝对值: 2.5,-7,5π -,0,32,π-3 (2) 一个数的绝对值是3,求这个数。

(人教版)七年级数学下学期实数知识点归纳及常见考题

七年级数学(下)辅导资料(4) 知识整理:石怿成华丽

【知识要点】 1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。 2. 如果x2=a,则x叫做a的平方根,记作“±a” (a称为被开方数)。 3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 4. 平方根和算术平方根的区别与联系: 区别:正数的平方根有两个,而它的算术平方根只有一个。 联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平方根与平方根同为0。 5. 如果x3=a,则x叫做a的立方根,记作“3a” (a称为被开方数)。 6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。 7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。 8. 立方根与平方根的区别: 一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0. 9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如 25= =. ,5 2500 50 10.平方表:(自行完成) 题型规律总结: 1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。 2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。 30a≥0。 4、公式:⑴2=a(a≥0)a取任何数)。 5、区分2=a(a≥0),与2a=a

七年级下册数学实数计算题练习

七年级下册数学实数计算题练习 一、求下列各式的值 ______)49)(1(2= _______)11)(2(2=- _________)5()3(2=- _______)5()4(2=± _______)13 12(1)5(2=-± _______2425)6(22=- _______256)7(= _________)31()8(2=-- _________9 17)9(=± 二、求下列各式的值 _______027.0)1(3= _______1)2(3=- _______8 1)3(3=- _______)3()4(33=- _______512)5(3=- _______ 27)6(3=-- _______1125 61)7(3=- _______343.0)8(3=- _______)5)(9(33= 三、计算 |)4 1(|495.0)2(33-+- 256311641891)81(278)3(323-----+- 33271816)1(- +--333364 271)4(-+---)313(3)5(-2 )3(223)6(-----π

四、解方程 22)7()32)(3(-=-x 0125)1(27)6(3=+-x 22)7(=+m 2783)7(=-y 51)8(3=-x 五、解答题 的平方根。 求满足、若)1(5|,13|)2(.422--+--=+a b a b a b a 93)1(2=x 0 16)1(9)2(2=-+x 0 258)4(3=+x . ,2,3.1的值求的平方根是如果的平方根是如果n m n m +±±.,21,31.2的立方根求的立方根是如果的平方根是如果n m n m +-+±-.,73.3的值和求和的平方根是如果x m m m x +-

七年级数学下实数计算题

__________________________________________________ 1)25— 3 27 +2- 2)3 2- + 2 - 3)33 008.0127 26 --- 3)22 +12- 327 4)(15-)(53+) 5)3231)3(27---+- 4)25—327+2- ---

__________________________________________________ 5)32- + 2- 6)33 008.0127 26 --- 6)22 +12- 327 7)(15-)(53+) 8)3231)3(27---+- 9)3353+- 10)4 1083- + ---

__________________________________________________ 11)2332-+- 12)316273--+- 13)32)3223(-+ 14)3 1 ×(1—81)+31- 15)3353+- 16)4 1083- + 17) 2332-+-

__________________________________________________ 18)316273--+- 19)32)3223(-+ 20)3 1 ×(1—81)+31- 21)123221-+-+- 22)52233221-+-+-+- 23) 1664)13(233+-+---

__________________________________________________ 24)(-2)3×2)4(-+33)4(-×(-2 1)2—3 27 25)(- 2 1)×(-2)2 —381-+2)21(- 26)123221-+-+- 27)52233221-+-+-+ - 28)1664)13(233+-+---

新人教版七年级数学下册《实数》题型

新人教版七年级数学下册《实数》题型分类归纳

班级: 姓名: 《实数》知识点比较: 算术平方根 平方根 立方根 定义 若正数x ,a 2 =x ,正数x 叫做a 的算术平方根,a =x 。 若数x ,a 2=x , 数x 叫做a 的平方 根,a ±=x 若数x ,a 3 =x , 数 x 叫做 a 的立 方根,3x a =。 a 的范围 0≥a 0≥a a 是任意数 表示 a (根号a ) a ±(正负根号 a ) 3 a (三次根号a ) 正数有一个算术平方根,是正数 正数有两个平方根,它们互为相反数 正数有一个立方根,是正数 0的算术平方根是0 0的平方根是0 0的立方根是0 负数没有算术平方根 负数没有平方根 负数有一个立方根,是负数 性质 ?? ?≥≥0 0a a 双重非负性 33 -a a -= a a =2 () )0(2 ≥=a a a a a =3 3 () a a =3 3 被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动一位。 被开方数小数点向 右(左)每移动三位,立方根的小数点向右(左)移动一位。 例1、求下列各数的算术平方根。 (1)100 (2)6449 (3)16 9 1 (4)0.0025 (5)0 (6) 2 (7)()26- 例2、求下列各数的平方根。

(1)100 (2)6449 (3)16 9 1 (4)0.0025 (5)0 (6) 2 (7)()26- 例3、求下列各数的立方根。 (1)1000 (2)278 (3)27 10 2 (4)0.001 (5)0 (6)2 (7) ()36- 类型二:化简求值 例1、 求下列各式的值。 (1)22= (2)256 169 -= (3)0196.0= (4)2224-25-= (5)327--= (6)33512729+= 例2、求下列各式的值 (1)222-4-25)(+ (2)22 42.06-100001.0?+?)( 类型三:算术平方根的双重非负性? ??≥≥00 a a 一、 被开方数的非负性0≥a 例1、下列各式中,有意义的有哪些? 2 1 6- 6- 2)6(- 6- a 2a a 例2、若下列各式有意义,在后面横线上写出x 的取值范围。 (1)x _________ (2)x -5__________ 例3、若x 、y 都是实数,且833+-+-=x x y ,求y 3x +的立方根。 二、 算术平方根的非负性 0≥a

相关文档
最新文档