锐角的三角比知识讲解
《求锐角的三角比的值》 讲义

《求锐角的三角比的值》讲义一、锐角三角比的定义在直角三角形中,锐角的三角比包括正弦(sin)、余弦(cos)、正切(tan)。
正弦(sin)等于锐角的对边与斜边的比值;余弦(cos)等于锐角的邻边与斜边的比值;正切(tan)等于锐角的对边与邻边的比值。
例如,在一个直角三角形 ABC 中,∠C 为直角,∠A 为锐角,其对边为 a,邻边为 b,斜边为 c。
那么,sin A = a / c,cos A = b / c,tan A = a / b。
二、特殊锐角的三角比值我们先来了解一些特殊锐角(30°、45°、60°)的三角比值,这些是需要大家牢记的。
1、 30°角对于 30°角的直角三角形,假设斜边为 2,对边为 1,根据勾股定理可得邻边为√3。
所以,sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3。
2、 45°角在等腰直角三角形中,两个直角边相等,假设直角边为 1,斜边为√2。
则 sin 45°= cos 45°=√2 / 2,tan 45°= 1。
3、 60°角与30°角相对应,60°角的直角三角形中,假设斜边为2,邻边为1,对边为√3。
所以,sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3。
三、利用三角函数定义求三角比值当已知直角三角形的边长时,我们可以直接根据三角比的定义来求出相应锐角的三角比值。
例如,在直角三角形中,∠C 为直角,∠A 为锐角,已知∠A 的对边为 4,邻边为 3,斜边为 5。
则 sin A = 4 / 5,cos A = 3 / 5,tanA = 4 / 3。
再比如,一个直角三角形的斜边为 10,一个锐角的对边为 6,那么这个锐角的正弦值就是 6 / 10 = 3 / 5。
第六讲 锐角三角比(教师版)

第六讲 锐角的三角比知识要点:(一)锐角的三角比的定义:在Rt △ABC 中,若∠C =90o ,AB 称作斜边,AC 、BC 称作直角边.其中与∠A 相对的直角边称为∠A 的对边,与∠A 相邻的直角边称为∠A 的邻边. ∠A 、∠B 、∠C 所对的边分别记为a 、b 、c .邻边b对边aA①我们把锐角A 的对边与邻边的比叫做∠A 的正切(tangent ).记作tan A .tan A =ba=∠∠的邻边的对边A A②我们把锐角A 的邻边与对边的比叫做∠A 的余切(cotangent).记作cot A .cot A =的邻边的对边∠∠A A =ba③我们把锐角A 的对边与斜边的比叫做这个锐角的正弦(sine ).记作A sin .caA A A =∠∠=斜边的对边sin④我们把锐角A 的邻边与斜边的比叫做这个锐角的余弦(cosine ).记作A cos .cA A A bcos =∠∠=斜边的邻边(二)特殊角三角比的值:22sin cos 1,tan cot 1αααα+==(三)解直角三角形的定义:由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形. 1.已知Rt △ABC 中,∠C =90°,∠A=45o ,设BC=a ,根据含45°角的直角三角形三边长之间的关系,求45°角的正切、余切、正弦、余弦值. 解:1, 1,22,222.在直角坐标平面中有一点P (3,4).求OP 与x 轴正半轴的夹角α的正切、正弦、和余弦的值.解:作PQ ⊥x 轴于点Q ,则∠OQP =900.由点P 的坐标为(3,4)得OQ =3,QP =4.则OP =5.∴tan α=43=PQ OQ ,sin α=45=PQ OP ,cos α=35=OQ OP . 3.计算:222sin 60cos60tan 604cos45--o oo o解:原式()2231222342⎛⎫⨯- ⎪⎝⎭=-⨯3122322322-==--322=+ 4.在Rt △ABC 中,∠C =90°,BC =6,3sin 4=A .求:(1)AB 的长 ;(2)sin B 的值.解:(1)在Rt △ABC 中,∠C =90°,∵sin =BC A AB ∴sin =BC AB A 又36,sin ,4==BC A ∴6834==AB(2)由勾股定理,得27=AC ∴277sin ===AC B AB 5. 如图,已知在∆ABC 中,点D 是BC 边上一点,⊥DA AB ,12=AC , 7=BD ,9=CD . (1)求证:∆ACD ∽∆BCA ;(2)求tan ∠CAD 的值.解:(1)证明:∵7BD =,9CD =,∴16BC =,∵12AC =,∴34CD AC =,34AC BC =,∴CD ACAC BC=,∵C C ∠=∠,∴ACD ∆∽BCA ∆.(2)∵ACD ∆∽BCA ∆,∴CAD B ∠=∠,34AD CD AB AC ==, ∵DA AB ⊥,∴3tan 4AD B AB ==,∴3tan 4CAD ∠=.6.已知:ABC ∆中,090=∠C ,030=∠A ,求015tan 的值。
九年级同步第10讲:锐角三角比的意义

acABCb锐角的三角比的意义是九年级数学上学期第二章第一节的内容.锐角三角比的概念是以相似三角形为基础建立起来的,本讲主要讲解锐角的正切和余切、正弦和余弦的概念,重点是会根据直角三角形中两边的长求相应的锐角的三角比的值,难点是在几何图形和直角坐标系中灵活运用锐角的三角比进行解题,为解直角三角形做好准备.1、 正切直角三角形中一个锐角的对边与邻边的比叫做这个锐角的正切(tangent ).锐角A 的正切记作tan A .tan A BC aA A AC b===锐角的对边锐角的邻边.2、 余切直角三角形中一个锐角的邻边与对边的比叫做这个锐角的余切(cotangent ).锐角A 的余切记作cot A .cot A AC bA A BC a===锐角的邻边锐角的对边.锐角的三角比的意义内容分析知识结构模块一:正切和余切知识精讲PNMQABCPNMQ【例1】 如图,在Rt ABC ∆中,90ACB ∠=︒,A ∠的对边是______,A ∠的邻边是______;B ∠的对边是______,B ∠的邻边是______.【难度】★ 【答案】 【解析】【例2】 如图,在Rt MNP ∆中,90MPN ∠=︒,PQ MN ⊥,垂足为点Q .(1) 在Rt MNP ∆中,M ∠的对边是______,M ∠的邻边是______;在Rt MPQ ∆中,M ∠的对边是______,M ∠的邻边是______.(2) 在Rt ∆____中,N ∠的对边是MP ;在Rt ∆____中,N ∠的邻边是NQ . (3) MPQ ∠的邻边是______,NPQ ∠的对边是______.【难度】★ 【答案】 【解析】【例3】 如图,在Rt MNP ∆中,90MPN ∠=︒,PQ MN ⊥,垂足为点Q .(1) ()()tan NPM MQ==. (2)PQ QN =______,=MPPN______.(用正切或余切表示) 【难度】★ 【答案】 【解析】例题解析ABCDOyxABO 【例4】 在Rt ABC ∆中,90C ∠=︒,AC = 4,BC = 5,求tan A 、cot A 、tan B 、cot B 的值.【难度】★ 【答案】 【解析】【例5】 在Rt ABC ∆中,90C ∠=︒,AC = 4,AB = 5,求tan A 、cot A 、tan B 、cot B 的值.【难度】★ 【答案】 【解析】【例6】 如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,已知OA = 2,AB = 3,求tan OAD ∠和cot ODC ∠的值.【难度】★★ 【答案】 【解析】【例7】 如图,已知正比例函数2y x =的图像上有一动点A ,x 轴上有一动点B ,求tan AOB ∠和cot AOB ∠的值.【难度】★★ 【答案】 【解析】【例8】 已知,在Rt ABC ∆中,90C ∠=︒,BC = 9,tan A =34. 求:(1)AB 的长;(2)tan B 的值.【难度】★★ 【答案】 【解析】acABCbPNMQ1、 正弦直角三角形中一个锐角的对边与斜边的比叫做这个锐角的正弦(sine ).锐角A 的正弦记作sin A . sin A BC aA AB c===锐角的对边斜边.2、 余弦直角三角形中一个锐角的邻边与斜边的比叫做这个锐角的余弦(cosine ).锐角A 的余弦记作cos A .cos A AC bA AB c ===锐角的邻边斜边.【例9】 如图,在Rt MNP ∆中,90MPN ∠=︒,PQ MN ⊥,垂足为点Q .(1) ()()sin NPM MP==. (2)PQ PN =______,=MQMP______.(用正弦或余弦表示) 【难度】★ 【答案】 【解析】【例10】 在Rt ABC ∆中,90C ∠=︒,AC = 4,AB = 5,求sin A ,cos A ,sin B ,cos B 的值.【难度】★ 【答案】 【解析】模块二:正弦和余弦知识精讲例题解析xyPO【例11】 在Rt ABC ∆中,90C ∠=︒,AC = 4,BC = 5,求sin A ,cos A ,sin B ,cos B 的值.【难度】★ 【答案】 【解析】【例12】 如图,在直角坐标平面内有一点P (2,3).求OP 与x 轴正半轴的夹角α的正弦和余弦的值.【难度】★ 【答案】 【解析】【例13】 已知,在Rt ABC ∆中,90C ∠=︒,BC = 9,sin A =34. 求:(1)AB 的长;(2)sin B 的值.【难度】★ 【答案】 【解析】【例14】 已知,在Rt ABC ∆中,90C ∠=︒,sin A =23,求sin B 的值. 【难度】★★ 【答案】 【解析】ABCABC1、 锐角的三角比一个锐角的正切、余切、正弦、余弦统称为这个锐角的三角比.【例15】 如图,在Rt ABC ∆中,90C ∠=︒,AB = 5,BC = 4,求A ∠的四个三角比的值. 【难度】★ 【答案】 【解析】【例16】 在Rt ABC ∆中,90C ∠=︒,BC = 3,tan A =34,求B ∠的四个三角比的值. 【难度】★ 【答案】 【解析】定义 表达式 取值范围 相互关系正 切 tan A A A ∠=∠的对边的邻边tan a A b= tan b B a=tan 0A > (A ∠为锐角) 1tan cot A A=余 切 cot A A A ∠=∠的邻边的对边cot b A a=cot a B b=cot 0A > (A ∠为锐角)正 弦 sin A A ∠=的对边斜边sin aA c =sin bB c=0sin 1A << (A ∠为锐角) ()sin cos 90A A =︒-∠ ()cos sin 90A A =︒-∠余 弦cos A A ∠=的邻边斜边cos b A c=cos a B c=0cos 1A << (A ∠为锐角)模块三:锐角的三角比知识精讲例题解析ABC DABCD【例17】 在Rt ABC ∆中,90C ∠=︒,sin B =34,求sin A 、cos A 、tan A 和cot A . 【难度】★★ 【答案】 【解析】【例18】 在Rt ABC ∆中,90C ∠=︒,AB = 13,BC = 12,AC = 5,求sin A 、cos A 、tan A和cot A .【难度】★★ 【答案】 【解析】【例19】 已知等腰ABC ∆中,底边BC = 20 cm ,面积为40 cm 2,求sin B 和tan C . 【难度】★★ 【答案】 【解析】【例20】 如图,在Rt ABC ∆中,90ABC ∠=︒,BD ⊥AC ,若AB = 9,BC = 12,求sin A 、cos α、tan β、cot C 的值.【难度】★★ 【答案】 【解析】【例21】 如图,在Rt ABC ∆中,90C ∠=︒,点D 在边BC 上,AD = BD = 5,4sin 5ADC ∠=,求cos ABC ∠和tan ABC ∠的值.【难度】★★ 【答案】 【解析】ABO xyAB CD E68【例22】 在直角坐标平面内有一点A (3,1),点A 与原点O 的连线与x 轴正半轴的夹角为α,求sin α、cos α、tan α和cot α.【难度】★★ 【答案】 【解析】【例23】 已知一次函数y = 2x -1与x 轴所夹的锐角为α,求tan α和sin α的值. 【难度】★★ 【答案】 【解析】【例24】 如图,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO = 5,3sin 5BOA ∠=.求:(1)点B 的坐标;(2)cos BAO ∠的值.【难度】★★ 【答案】 【解析】【例25】 直角三角形纸片的两直角边长分别为6、8,现将ABC ∆如图那样折叠,使点A与点B 重合,折痕为DE ,求sin CBE ∠的值.【难度】★★ 【答案】 【解析】ABCDEABCDAB CA BC【例26】 如图,在平行四边形ABCD 中,AB = 10,B ∠为锐角,sin B =45,1tan 2ACB ∠=,求AD 、AC 的长.【难度】★★ 【答案】 【解析】【例27】 如图,在ABC ∆中,AB = 20,BC = 21,AC = 13,求ACB ∠的四个三角比的值. 【难度】★★ 【答案】 【解析】【例28】 已知ABC ∆中,sin A = 513,tan B = 2,且AB = 29.求ABC ∆的面积. 【难度】★★★ 【答案】 【解析】【例29】 如图,在梯形ABCD 中,AD // BC ,AB ⊥AD ,对角线AC 、BD 相交于点E ,BD ⊥CD ,AB = 12,4cot 3ADB ∠=,求:(1)DBC ∠的余弦值;(2)DE 的长.【难度】★★★ 【答案】 【解析】ABCDA BCD CABMOxy【例30】 如图,在ABC ∆中,90ACB ∠=︒,CD ⊥AB 于点D ,DCB α∠=,若AD : BC= 16 : 15,求sin α、cot α的值.【难度】★★★ 【答案】 【解析】【例31】 如图,在ABC ∆中,45ABC ∠=︒,3sin 5A =,AB = 14,BD 是AC 边上的中线.求:(1)ABC ∆的面积;(2)ABD ∠的余切值.【难度】★★★ 【答案】 【解析】【例32】 如图,在等腰Rt ABC ∆中,90BAC ∠=︒,已知A (1,0),B (0,3),M 为BC 中点,求tan MOA ∠.【难度】★★★ 【答案】 【解析】ABC【习题1】已知,在Rt ABC ∆中,90C ∠=︒,AB = 5,AC = 4.则:(1)sin A = ______,cos A = ______,tan A = ______,cot A = ______; (2)sin B = ______,cos B = ______,tan B = ______,cot B = ______.【难度】★ 【答案】 【解析】【习题2】 在Rt ABC ∆中,90C ∠=︒,BC = 3,cos A =25,则AB = ______. 【难度】★ 【答案】 【解析】【习题3】 已知90A B ∠+∠=︒,则sin A – cos B 的值为______. 【难度】★ 【答案】 【解析】【习题4】如图,在ABC ∆中,AB = BC = 20,410AC =,求sin A 和tan A 的值.【难度】★★ 【答案】 【解析】随堂检测ABC DEABC D【习题5】如图,在Rt ABC ∆中,90C ∠=︒,CD ⊥AB 于D .已知AC = 8,BC = 15.求DCA ∠的三角比.【难度】★★ 【答案】 【解析】【习题6】如图,在Rt ABC ∆中,90ACB ∠=︒,sin A =23,点D 、E 分别在边AB 、AC 上,DE ⊥AC ,DE = 2,DB = 9,求DC 的长.【难度】★★ 【答案】 【解析】【习题7】已知,锐角α的顶点在坐标原点,一边与x 轴正半轴重合,另一边经过点P (15).求α的三角比. 【难度】★★ 【答案】 【解析】ABCDA BP xyO 【习题8】 已知一次函数y =43x – 4的图像分别与x 轴、y 轴交于A 、B 两点,P 是线段AB 的中点,求sin POB ∠的值.【难度】★★ 【答案】 【解析】【习题9】ABC ∆中,90ACB ∠=︒,CD ⊥AB 于点D ,DCA α∠=,AD : BC = 7 : 12,求sin α、tan α的值.【难度】★★★ 【答案】 【解析】【习题10】 如图,在梯形ABCD 中,AD // BC ,AD = AB = CD = 4,1cos 4C ∠=. (1)求BC 的长; (2)求tan ADB ∠的值.【难度】★★★ 【答案】 【解析】ABC【作业1】在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠的对边是a 、b ,则ba( )A .A ∠的正弦值B .B ∠的余弦值C .A ∠的余切值D .B ∠的余切值【难度】★ 【答案】 【解析】【作业2】在Rt ABC ∆中,90C ∠=︒,AB = c ,AC = b ,BC = a ,则下列关系不成立的是()A .b = c ·cos AB .a = b ·tan BC .c =cos aBD .tan A ·tan B = 1【难度】★ 【答案】 【解析】【作业3】已知,在Rt ABC ∆中,90C ∠=︒,AB = 16,cos A =34. 求:(1)AC 的长;(2)tan B 的值.【难度】★ 【答案】 【解析】【作业4】已知ABC ∆的三边a 、b 、c 满足a : b : c = 5 : 12 : 13,则sin A + cos A=______.【难度】★★ 【答案】 【解析】课后作业ABCABCD EABC【作业5】若α是锐角,且1cot 3α=,则()cos 90α︒-=______. 【难度】★★ 【答案】 【解析】【作业6】已知ABC ∆中,BC = 10,cos C =18,AC = 8.求AB 的长和B ∠的正切值.【难度】★★【答案】 【解析】【作业7】如图,在ABC ∆中,AB = BC = 10,210AC =sin B 和tan B 的值.【难度】★★ 【答案】 【解析】【作业8】如图,在Rt ABC ∆中,90C ∠=︒,AC = 8,BC = 6,CD 是斜边AB 上的高.若点E 在线段DB 上,联结CE ,24sin 25AEC ∠=.求CE 的长.【难度】★★ 【答案】 【解析】【作业9】已知ABC ∆中,C ∠是锐角,BC = a ,AC = b .求证:1sin 2ABC S ab C ∆=.【难度】★★★ 【答案】 【解析】【作业10】 已知,在平面直角坐标系内有A 、B 、C 三点,点A 的坐标为(2,1),点B 的坐标为(1,4),点C 的坐标为(8,3),求sin ACB ∠和tan ABC ∠的值.【难度】★★★ 【答案】 【解析】。
锐角的三角比

锐角的三角比一、介绍在数学中,三角比是指三角函数中的比值,用于描述三角形的各个边与角之间的关系。
锐角是指小于90度的角,因此在本文中,我们将讨论关于锐角的三角比。
三角比一共有六个,分别是正弦(sin)、余弦(cos)、正切(tan)、余切(cot)、正割(sec)和余割(csc)。
这些三角比在数学和物理等科学领域中都有广泛的应用,例如解决三角函数方程、测量角度和距离等。
二、正弦(sin)在锐角三角形中,正弦表示三角形的对边与斜边之间的比值。
数学表达式如下:sin(A) = 对边 / 斜边其中,A表示锐角的大小。
正弦的取值范围是-1到1之间,当A接近0度时,正弦的值接近0;而当A接近90度时,正弦的值接近1。
三、余弦(cos)余弦代表锐角三角形的邻边与斜边之间的比值。
数学表达式如下:cos(A) = 邻边 / 斜边同样地,余弦的取值范围也是-1到1之间。
在锐角三角形中,当A接近0度时,余弦的值接近1;当A接近90度时,余弦的值接近0。
四、正切(tan)正切是锐角三角形中对边与邻边之间的比值。
数学表达式如下:tan(A) = 对边 / 邻边正切的取值范围是无穷,当A接近0度时,正切的值接近0;当A接近90度时,正切的值趋于无穷大。
五、余切(cot)余切是锐角三角形中邻边与对边之间的比值。
数学表达式如下:cot(A) = 邻边 / 对边余切的取值范围也是无穷,当A接近0度时,余切的值趋于无穷大;当A接近90度时,余切的值接近0。
六、正割(sec)正割表示斜边与邻边之间的比值。
数学表达式如下:sec(A) = 斜边 / 邻边正割的取值范围是大于等于1的实数。
当A接近0度时,正割的值趋于无穷大;当A接近90度时,正割的值接近1。
七、余割(csc)余割代表斜边与对边之间的比值。
数学表达式如下:csc(A) = 斜边 / 对边余割的取值范围也是大于等于1的实数。
当A接近0度时,余割的值接近无穷大;当A接近90度时,余割的值趋近于1。
锐角三角比

锐角三角比知识点复习1.重要公式(1)在RtABC中,C=90sinA=斜边的对边A ∠=c a cosA=斜边的邻边A ∠=c b tanA=的邻边的对边A A ∠∠=bacotA=的对边的邻边A A ∠∠=ab2.特殊角的三角函数值三角函数030456090Sin Cos Tan Cot可从中看出规律:锐角的正弦值或正切值随着角度的增大而增大(或减小而减小)。
锐角的余弦或余切值随着角度的增大而减小(或减小而增大)3.直角三角形中元素间的关系在Rt ABC中,C=90边边关系a 2+b 2=c 2,a 2=c 2-b 2,b 2=c 2-a 2角角关系A+B=90边角关系sinA=cosB=cacosA=sinB=c btanA=cotB=b acotA=tanB=a b4.解直角三角形的应用:(1)坡度(坡比):坡面的垂直高度h和水平宽度L的比,记作i ,即L hi =,通常坡度写成1:m的形式,如i =1:4,i=1:1.25等。
坡角:坡面与水平面的夹角,记作.坡度与坡角的关系为:i=tan (=L h)(2)仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角。
俯角:在视线与水平视线所成的角中,视线在水平线下方的角叫做俯角。
典型例题考点一锐角三角比概念、特殊角三角比1.已知Rt△ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=32; B.cosB=32; C.tanB=32; D.cotB=32.2.在Rt△ABC 中,∠ACB =90°,CD 是高,以下各线段的比与∠A 的余切值不相等的是()A.CDAD ;B.BDCD ;C.ABAC ;D.BCAC .3.计算sin60°•cos45°=_________。
4.tan15°•tan75°=________。
5.在坐标平面内,O 为原点,A(2,4),如果OA 与X 轴正半轴的夹角为α,那么cos α=________。
锐角三角比专题讲解

先画30°45°60°的直角三角形,分别求sia 30° cos45° tan60° 归纳结果 30° 45° 60° siaA cosA tanA【典型例题讲解】【例1】在中,,BC=6,3sin 5A =求cos 和tan 的值.【借题发挥】1.在中,∠C =90°,如果4cos 5A =,那么tan B 的值为( ) A . B . C . D .2.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有( )A .B .C .D .3.如图:P 是∠的边OA 上一点,且P 点的坐标为(3,4), 则cos =_____________.【例2】在Rt △ABC 中,下列式子中不一定成立的是______A .sinA =sinB B .cosA =sinBC .sinA =cosBD .sin(A+B)=sinC 例3如果sin2α+sin2300=1那么锐角α的度数是( )A.150 B.300 C.450 D.600 已知特殊角的三角函值求锐角 例4.①已知sinA=21,则∠A= ; ②已知tanA=1,则∠A= ; ③已知cosB=21,则∠B= ;④已知sinB=23,则∠B= ; ⑤已知,03cot 3=-α则∠α= ; ⑥已知,23)15sin(3=︒-β则∠=β ; ⑦已知()033tan 1sin 22=-+-B A ,A,B 为△ABC 的内角,则∠C = ; ⑧已知03tan )31(tan 2=++-αα,则=α ;例5.①︒+︒+︒45tan 60cos 330sin 2 ( )②︒-︒︒-︒45cot 230cot 45tan 30cos ( )③︒+︒30cos 30sin ( )④︒-++︒-︒30sin 1160sin 260sin 2( )例6用计算器求锐角的正弦、余弦、正切值 利用计算器求下列三角函数值sin37°24′ sin37°23′ cos21°28′ cos38°12′tan52°; tan36°20′; tan75°17′;sinA=0.9816.∠A =. cosA =0.8607,∠A =; tanA =0.1890,∠A=; tanA =56.78,∠A =.例8.在△ABC 中,∠C=90°,sinA=43,求cosA 的值二、解直角三角形例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2,a=6,解这个三角形.例2在Rt △ABC 中, ∠B =35,b=20,解这个三角形.练习:在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1)已知a =615,b =65 ,求c ;(2)已知a =20,c =202,求∠B ;(3)已知c =30,∠A =60°,求a ;(4)已知b =15,∠A =30°,求a .一、选择题1.在ABC Rt ∆中,∠090=C ,2=AB ,1=AC ,则B sin 的值是( )(A )21; (B )22; (C )23; (D )2. 2.如果ABC Rt ∆中各边的长度都扩大到原来的2倍,那么锐角∠A 的三角比的值( )(A ) 都扩大到原来的2倍; (B ) 都缩小到原来的一半; (C ) 没有变化; (D ) 不能确定.3.等腰三角形的底边长10cm ,周长36cm ,则底角的余弦值为……( ) (A)125; (B)512; (C)135; (D)1312.4.在ABC Rt ∆中,∠︒=90C ,31sin =B ,则A tan 的值为……( ) (A )113; (B )33; (C )22; (D )31010.5.在Rt △ABC 中,∠C=90°,∠A 的对边为a ,已知∠A 和边a ,求边c ,则下列关系中正确的是…………………………………………………………………( ) (A )A a c sin =; (B )A a c sin =; (C )a=b ⋅tanA ; (D )Aac cos =. 6.在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是……( )(A )锐角三角形;(B ) 直角三角形; (C )钝角三角形; (C )等腰三角形 三、计算下列各题: 6、000245tan 45cos 230cos 60tan 45sin +⋅+四、解答下列各题:7、已知如图:AB ∥DC ,∠D =900,BC =10,AB =4,C tan =31,求梯形ABCD 的面积。
锐角三角比讲义

【知识点总结与归纳】1、 锐角的三角比(1) 定义:在直角三角形ABC 中,A ∠为一锐角,则∠A 的正弦=A a sin A=c∠的对边,即斜边∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tanA=A b∠的对边,即∠的邻边∠A 的余切=A a =A b∠的邻边,即cotA ∠的对边注:三角函数值是一个比值.定义的前提是有一个角为直角,故如果题目中无直角条件时,应设法构造一个直角。
若A ∠为一锐角,则sinA,cosA,tanA,cotA 的取值范分别是:0sinA<1,0<cosA<1,tanA>0,cotA>0<。
同一个锐角的正切和余切值互为倒数,即:1tanA cotA=1tanA=cot A或2、 特殊锐角的三角比的值(1) 特殊锐角(30°,45°,60°)的三角比的值锐角的三角比的概念(正切、余切、正弦、余弦)已知锐角,求三角比已知锐角的一个三角比,求锐角 直角三角形中的边角关系(三边之间、两锐角之间、一锐角与两边之间) 解直角三角形已知一边和一锐角已知两边解直角三角形的应用(2) 同角,互余的两角多的三角比之间的关系: 倒数关系:1tanA=cot A平方关系:22sin A+cos A=1 积商关系:sin cos tanA=,cot cos sin A AA A A= 余角和余函数的关系:如果090A B ∠+∠=,那么sinA=cosB, tanA=cotB (正弦和余弦,正切和余切被称为余函数关系)。
注意:求锐角三角比的值问题(1) 在直角三角形中,给定两边求锐角的三角比,关键是搞清某锐角的“对边”“邻边”,掌握三角比的定义。
(2) 给出锐角的度数,求这个锐角的三角比特殊锐角,一般情况下,使用精确值;在实际应用中,根据问题要求处理。
求非特殊锐角的三角比的值,使用计算器或查表求值。
第一讲 锐角三角比的意义

九年级上册数学教案锐角三角比的意义第一讲锐角三角比的意义知识框架1 .正切直角三角形中一个锐角的对边与邻边的比叫做这个锐角的正切(tangent).锐角A的正切记作tan A.tanA BC aAA AC b===锐角的对边锐角的邻边.2 . 余切直角三角形中一个锐角的邻边与对边的比叫做这个锐角的余切(cotangent).锐角A的余切记作cot A.cotA AC b AA BC a ===锐角的邻边锐角的对边3 . 正弦直角三角形中一个锐角的对边与斜边的比叫做这个锐角的正弦(sine).锐角A的正弦记作sin A.sinA BC aAAB c===锐角的对边斜边.4 .余弦直角三角形中一个锐角的邻边与斜边的比叫做这个锐角的余弦(cosine ).锐角A 的余弦记作cos A .cos A AC bA AB c===锐角的邻边斜边.5 .锐角的三角比一个锐角的正切、余切、正弦、余弦统称为这个锐角的三角比. 例题解析【例1】 在Rt ABC ∆中,90ACB ∠=︒,A ∠的对边是______,A ∠的邻边是______B ∠的对边是______,B ∠的邻边是______.【例2】 在Rt MNP ∆中,90MPN ∠=︒,PQ MN ⊥,垂足为点Q .(1) 在Rt MNP ∆中,M ∠的对边是______,M ∠的邻边是______;在Rt MPQ ∆中,M ∠的对边是______,M ∠的邻边是______.九年级上册数学教案锐角三角比的意义(2)在Rt∆____中,N∠的对边是MP;在Rt∆____中,N∠的邻边是NQ.(3)MPQ∠的邻边是______,NPQ∠的对边是______.【例3】在Rt MNP∆中,90MPN∠=︒,PQ MN⊥,垂足为点Q.(1)()() tanNPMMQ==.(2)PQQN=______,=MPPN______.(用正切或余切表示)【例4】在Rt ABC∆中,90C∠=︒,AC = 4,BC = 5,求tan A、cot A、tan B、cot B的值.【例5】在Rt ABC∆中,90C∠=︒,AC = 4,AB = 5,求tan A、cot A、tan B、cot B的值.【例6】矩形ABCD中,对角线AC、BD相交于点O,已知OA = 2,AB = 3,求tan OAD∠和cot ODC∠的值.【例7】已知正比例函数y=的图像上有一动点A,x轴上有一动点B,求tan AOB∠和cot AOB∠的值.【例8】已知,在Rt ABC∆中,90C∠=︒,BC = 9,tan A = 34.求:(1)AB的长;(2)tan B的值.【例9】在Rt MNP∆中,90MPN∠=︒,PQ MN⊥,垂足为点Q.(1)()() sinNPMMP==.(2)PQPN=______,=MQMP______.(用正弦或余弦表示)【例10】在Rt ABC∆中,90C∠=︒,AC = 4,AB = 5,求sin A,cos A,sin B,cos B的值.【例11】在直角坐标平面内有一点P(2,3).求OP与x轴正半轴的夹角α的正弦和余弦的值.【例12】已知,在Rt ABC∆中,90C∠=︒,BC = 9,sin A =34.求:(1)AB的长;(2)sin B的值.【例13】已知,在Rt ABC∆中,90C∠=︒,sin A =23,求sin B的值.【例14】在Rt ABC∆中,90C∠=︒,AB = 5,BC = 4,求A∠的四个三角比的值.九年级上册数学教案 锐角三角比的意义【例15】 在Rt ABC ∆中,90C ∠=︒,BC = 3,tan A =34,求B ∠的四个三角比的值.【例16】 在Rt ABC ∆中,90C ∠=︒,sin B =34,求sin A 、cos A 、tan A 和cot A . 【例17】在Rt ABC ∆中,90C ∠=︒,AB = 13,BC = 12,AC = 5,求sin A 、cos A 、tan A和cot A .【例18】 已知等腰ABC ∆中,底边BC = 20 cm ,面积为40 cm 2,求sin B 和tan C .【例19】在Rt ABC ∆中,90ABC ∠=︒,BD ⊥AC ,若AB = 9,BC = 12,求sin A 、cos α、tan β、cot C 的值.【例20】 在Rt ABC ∆中,90C ∠=︒,点D 在边BC 上,AD = BD = 5,4sin 5ADC ∠=, 求cos ABC ∠和tan ABC ∠的值.【例21】在直角坐标平面内有一点A(3,1),点A与原点O的连线与x轴正半轴的夹角为α,求sinα、cosα、tanα和cotα.【例22】已知一次函数y = 2x-1与x轴所夹的锐角为α,求tanα和sinα的值.【例23】在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO = 5,3sin5BOA∠=.求:(1)点B的坐标;(2)cos BAO∠的值.【例24】直角三角形纸片的两直角边长分别为6、8,现将ABC∆如图那样折叠,使点A 与点B重合,折痕为DE,求sin CBE∠的值.【例25】直角三角形纸片的两直角边长分别为6、8,现将ABC∆如图那样折叠,使点A 与点B重合,折痕为DE,求sin CBE∠的值.九年级上册数学教案 锐角三角比的意义【例26】 在平行四边形ABCD 中,AB = 10,B ∠为锐角,sin B =45,1tan 2ACB ∠=, 求AD 、AC 的长.【例27】 在ABC ∆中,AB = 20,BC = 21,AC = 13,求ACB ∠的四个三角比的值.【例28】 已知ABC ∆中,sin A =513,tan B = 2,且AB = 29.求ABC ∆的面积.【例29】 在梯形ABCD 中,AD // BC ,AB ⊥AD ,对角线AC 、BD 相交于点E ,BD ⊥CD ,AB = 12,4cot 3ADB ∠=,求:(1)DBC ∠的余弦值;(2)DE 的长.【例30】 在ABC ∆中,90ACB ∠=︒,CD ⊥AB 于点D ,DCB α∠=,若AD : BC = 16 : 15,求sin α、cot α的值.【例31】 在等腰Rt ABC ∆中,90BAC ∠=︒,已知A (1,0),B (0,3),M 为BC课堂练习题【习题1】已知,在Rt ABC∆中,90C∠=︒,AB = 5,AC = 4.则:(1)sin A = ______,cos A = ______,tan A = ______,cot A = ______;(2)sin B = ______,cos B = ______,tan B= ______,cot B = ______.【习题2】在Rt ABC∆中,90C∠=︒,BC = 3,cos A =25,则AB = ______.【习题3】已知90A B∠+∠=︒,则sin A – cos B的值为______.【习题4】在ABC∆中,AB = BC = 20,AC=sin A和tan A的值.【习题5】在Rt ABC∆中,90C∠=︒,CD⊥AB于D.已知AC = 8,BC = 15.求DCA∠的三角比.【习题6】在Rt ABC∆中,90ACB∠=︒,sin A = 23,点D、E分别在边AB、AC上,DE⊥AC,DE = 2,DB = 9,求DC的长.【习题7】已知,锐角α的顶点在坐标原点,一边与x轴正半轴重合,另一边经过点P(1).求α的三角比.九年级上册数学教案 锐角三角比的意义BDCABFE 【习题8】 已知一次函数y =43x – 4的图像分别与x 轴、y 轴交于A 、B 两点,P 是线段AB 的中点,求sin POB ∠的值.【习题9】 ABC ∆中,90ACB ∠=︒,CD ⊥AB 于点D ,DCA α∠=,AD : BC = 7 : 12,求sin α、 tan α的值.【习题10】 如图,在梯形ABCD 中,AD // BC ,AD = AB = CD = 4,1cos 4C ∠=. (1)求BC 的长; (2)求tan ADB ∠的值.课后作业【作业1】 在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠的对边是a 、b ,则ba( )A .A ∠的正弦值B .B ∠的余弦值C .A ∠的余切值D .B ∠的余切值【作业2】 在Rt ABC ∆中,90C ∠=︒,AB = c ,AC = b ,BC = a ,则下列关系不成立的是()A .b = c ·cos AB .a = b ·tan BC .c =cos aBD .tan A ·tan B = 1【作业3】 已知,在Rt ABC ∆中,90C ∠=︒,AB = 16,cos A =34. 求:(1)AC 的长;(2)tan B 的值.【作业4】 已知ABC ∆的三边a 、b 、c 满足a : b : c = 5 : 12 : 13,则sin A + cos A =______.【作业5】 若α是锐角,且1cot 3α=,则()cos 90α︒-=______.【作业6】 已知ABC ∆中,BC = 10,cos C =18,AC = 8.求AB 的长和B ∠的正切值.九年级上册数学教案 锐角三角比的意义用心 细心 耐心 恒心 11【作业7】 如图,在ABC ∆中,AB = BC = 10,AC =sin B 和tan B 的值.【作业8】 在Rt ABC ∆中,90C ∠=︒,AC = 8,BC = 6,CD 是斜边AB 上的高.若点E 在线段DB 上,联结CE ,24sin 25AEC ∠=.求CE 的长.【作业9】 已知ABC ∆中,C ∠是锐角,BC = a ,AC = b .求证:1sin 2ABC S ab C ∆=.【作业10】 已知,在平面直角坐标系内有A 、B 、C 三点,点A 的坐标为(2,1),点B的坐标为(1,4),点C 的坐标为(8,3),求sin ACB ∠和tan ABC ∠的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角的三角比 知识讲解【学习目标】1.结合图形理解记忆锐角三角函数的定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”. 【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即s i n A a A c∠==的对边斜边; 锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c o s A bA c∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边;锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cot A bA A a∠==∠的邻边的对边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边;cot B a B B b∠==∠的邻边的对边要点诠释:(1)正弦、余弦、正切、余切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA ,cotA分别是一个完整的数学符号,是一个整体,不能写成,,,cot A ∙不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A ,cot 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、、2cot A ()常写成、、、Ca b2cot A.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0 cotA>0.要点二、特殊角的三角函数值要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦、余切值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;tanA=cot(90°-∠A)=cotB , tanB=cot(90°-∠B)=cotA.(2)平方关系:;(3)倒数关系:或;(4)商的关系:sin cos tan,cotcos sinA AA AA A==要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.如图所示,在Rt△ABC中,∠C=90°,AB=13,BC=5,求∠A,∠B的正弦、余弦、正切、余切值.【答案与解析】在Rt△ABC中,∠C=90°.∵ AB=13,BC=5.∴12 AC===.∴5sin13BCAAB==,12cos13ACAAB==,5tan12BCAAC==,12cot5ACABC==;12sin13ACBAB==,5cos13BCBAB==,12tan5ACBBC==,5cot12BCBAC==.【总结升华】先运用勾股定理求出另一条直角边,再运用锐角三角函数的定义求值.举一反三:【变式】在Rt△ABC中,∠C=90°,若a=3,b=4,则c=,sinA=,cosA=,sinB=,cosB=.【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)sin30°-2cos60°+cot45°; (2)tan30sin30cot45tan60∙∙°°°°;(3)11(1|1sin30|2-⎛⎫--+ ⎪⎝⎭°.【答案与解析】(1)原式11121222 =-⨯+=;(2)原式116==;(3)原式115 11212222 =--+=-+=.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在Rt△ABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B =45°,sinA =2, cosA =2,sinB =2, cosB =2. 类型三、锐角三角函数之间的关系3.(1)求锐角; (2)已知求锐角.【答案与解析】(1)先将已知方程变形后再求解.∴锐角=30°.(2)先将已知方程因式分解变形.∴锐角=45°.【总结升华】要求等式中的锐角,只需求得这个角的三角函数值,运用换元的方法,把角的三角函数看作未知数,解方程求得它的解(值),然后再求这个锐角.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P , 若弦CD =6,试求cos ∠APC 的值. 【答案与解析】连结AC ,∵ AB 是⊙O 的直径, ∴ ∠ACP =90°,又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB , ∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====. 【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PCAPC PA∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______. (3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值. 【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a ,∴ 4ACa ==,∴ CD =5a-4a =a ,BD ==,∴ sadA BD AD == 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。